1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_STACK_CONTAINER_H_ 6 #define BASE_STACK_CONTAINER_H_ 7 8 #include <string> 9 #include <vector> 10 11 #include "base/basictypes.h" 12 13 // This allocator can be used with STL containers to provide a stack buffer 14 // from which to allocate memory and overflows onto the heap. This stack buffer 15 // would be allocated on the stack and allows us to avoid heap operations in 16 // some situations. 17 // 18 // STL likes to make copies of allocators, so the allocator itself can't hold 19 // the data. Instead, we make the creator responsible for creating a 20 // StackAllocator::Source which contains the data. Copying the allocator 21 // merely copies the pointer to this shared source, so all allocators created 22 // based on our allocator will share the same stack buffer. 23 // 24 // This stack buffer implementation is very simple. The first allocation that 25 // fits in the stack buffer will use the stack buffer. Any subsequent 26 // allocations will not use the stack buffer, even if there is unused room. 27 // This makes it appropriate for array-like containers, but the caller should 28 // be sure to reserve() in the container up to the stack buffer size. Otherwise 29 // the container will allocate a small array which will "use up" the stack 30 // buffer. 31 template<typename T, size_t stack_capacity> 32 class StackAllocator : public std::allocator<T> { 33 public: 34 typedef typename std::allocator<T>::pointer pointer; 35 typedef typename std::allocator<T>::size_type size_type; 36 37 // Backing store for the allocator. The container owner is responsible for 38 // maintaining this for as long as any containers using this allocator are 39 // live. 40 struct Source { SourceSource41 Source() : used_stack_buffer_(false) { 42 } 43 44 // Casts the buffer in its right type. stack_bufferSource45 T* stack_buffer() { return reinterpret_cast<T*>(stack_buffer_); } stack_bufferSource46 const T* stack_buffer() const { 47 return reinterpret_cast<const T*>(stack_buffer_); 48 } 49 50 // 51 // IMPORTANT: Take care to ensure that stack_buffer_ is aligned 52 // since it is used to mimic an array of T. 53 // Be careful while declaring any unaligned types (like bool) 54 // before stack_buffer_. 55 // 56 57 // The buffer itself. It is not of type T because we don't want the 58 // constructors and destructors to be automatically called. Define a POD 59 // buffer of the right size instead. 60 char stack_buffer_[sizeof(T[stack_capacity])]; 61 62 // Set when the stack buffer is used for an allocation. We do not track 63 // how much of the buffer is used, only that somebody is using it. 64 bool used_stack_buffer_; 65 }; 66 67 // Used by containers when they want to refer to an allocator of type U. 68 template<typename U> 69 struct rebind { 70 typedef StackAllocator<U, stack_capacity> other; 71 }; 72 73 // For the straight up copy c-tor, we can share storage. StackAllocator(const StackAllocator<T,stack_capacity> & rhs)74 StackAllocator(const StackAllocator<T, stack_capacity>& rhs) 75 : source_(rhs.source_) { 76 } 77 78 // ISO C++ requires the following constructor to be defined, 79 // and std::vector in VC++2008SP1 Release fails with an error 80 // in the class _Container_base_aux_alloc_real (from <xutility>) 81 // if the constructor does not exist. 82 // For this constructor, we cannot share storage; there's 83 // no guarantee that the Source buffer of Ts is large enough 84 // for Us. 85 // TODO: If we were fancy pants, perhaps we could share storage 86 // iff sizeof(T) == sizeof(U). 87 template<typename U, size_t other_capacity> StackAllocator(const StackAllocator<U,other_capacity> & other)88 StackAllocator(const StackAllocator<U, other_capacity>& other) 89 : source_(NULL) { 90 } 91 StackAllocator(Source * source)92 explicit StackAllocator(Source* source) : source_(source) { 93 } 94 95 // Actually do the allocation. Use the stack buffer if nobody has used it yet 96 // and the size requested fits. Otherwise, fall through to the standard 97 // allocator. 98 pointer allocate(size_type n, void* hint = 0) { 99 if (source_ != NULL && !source_->used_stack_buffer_ 100 && n <= stack_capacity) { 101 source_->used_stack_buffer_ = true; 102 return source_->stack_buffer(); 103 } else { 104 return std::allocator<T>::allocate(n, hint); 105 } 106 } 107 108 // Free: when trying to free the stack buffer, just mark it as free. For 109 // non-stack-buffer pointers, just fall though to the standard allocator. deallocate(pointer p,size_type n)110 void deallocate(pointer p, size_type n) { 111 if (source_ != NULL && p == source_->stack_buffer()) 112 source_->used_stack_buffer_ = false; 113 else 114 std::allocator<T>::deallocate(p, n); 115 } 116 117 private: 118 Source* source_; 119 }; 120 121 // A wrapper around STL containers that maintains a stack-sized buffer that the 122 // initial capacity of the vector is based on. Growing the container beyond the 123 // stack capacity will transparently overflow onto the heap. The container must 124 // support reserve(). 125 // 126 // WATCH OUT: the ContainerType MUST use the proper StackAllocator for this 127 // type. This object is really intended to be used only internally. You'll want 128 // to use the wrappers below for different types. 129 template<typename TContainerType, int stack_capacity> 130 class StackContainer { 131 public: 132 typedef TContainerType ContainerType; 133 typedef typename ContainerType::value_type ContainedType; 134 typedef StackAllocator<ContainedType, stack_capacity> Allocator; 135 136 // Allocator must be constructed before the container! StackContainer()137 StackContainer() : allocator_(&stack_data_), container_(allocator_) { 138 // Make the container use the stack allocation by reserving our buffer size 139 // before doing anything else. 140 container_.reserve(stack_capacity); 141 } 142 143 // Getters for the actual container. 144 // 145 // Danger: any copies of this made using the copy constructor must have 146 // shorter lifetimes than the source. The copy will share the same allocator 147 // and therefore the same stack buffer as the original. Use std::copy to 148 // copy into a "real" container for longer-lived objects. container()149 ContainerType& container() { return container_; } container()150 const ContainerType& container() const { return container_; } 151 152 // Support operator-> to get to the container. This allows nicer syntax like: 153 // StackContainer<...> foo; 154 // std::sort(foo->begin(), foo->end()); 155 ContainerType* operator->() { return &container_; } 156 const ContainerType* operator->() const { return &container_; } 157 158 #ifdef UNIT_TEST 159 // Retrieves the stack source so that that unit tests can verify that the 160 // buffer is being used properly. stack_data()161 const typename Allocator::Source& stack_data() const { 162 return stack_data_; 163 } 164 #endif 165 166 protected: 167 typename Allocator::Source stack_data_; 168 Allocator allocator_; 169 ContainerType container_; 170 171 DISALLOW_EVIL_CONSTRUCTORS(StackContainer); 172 }; 173 174 // StackString 175 template<size_t stack_capacity> 176 class StackString : public StackContainer< 177 std::basic_string<char, 178 std::char_traits<char>, 179 StackAllocator<char, stack_capacity> >, 180 stack_capacity> { 181 public: StackString()182 StackString() : StackContainer< 183 std::basic_string<char, 184 std::char_traits<char>, 185 StackAllocator<char, stack_capacity> >, 186 stack_capacity>() { 187 } 188 189 private: 190 DISALLOW_EVIL_CONSTRUCTORS(StackString); 191 }; 192 193 // StackWString 194 template<size_t stack_capacity> 195 class StackWString : public StackContainer< 196 std::basic_string<wchar_t, 197 std::char_traits<wchar_t>, 198 StackAllocator<wchar_t, stack_capacity> >, 199 stack_capacity> { 200 public: StackWString()201 StackWString() : StackContainer< 202 std::basic_string<wchar_t, 203 std::char_traits<wchar_t>, 204 StackAllocator<wchar_t, stack_capacity> >, 205 stack_capacity>() { 206 } 207 208 private: 209 DISALLOW_EVIL_CONSTRUCTORS(StackWString); 210 }; 211 212 // StackVector 213 // 214 // Example: 215 // StackVector<int, 16> foo; 216 // foo->push_back(22); // we have overloaded operator-> 217 // foo[0] = 10; // as well as operator[] 218 template<typename T, size_t stack_capacity> 219 class StackVector : public StackContainer< 220 std::vector<T, StackAllocator<T, stack_capacity> >, 221 stack_capacity> { 222 public: StackVector()223 StackVector() : StackContainer< 224 std::vector<T, StackAllocator<T, stack_capacity> >, 225 stack_capacity>() { 226 } 227 228 // We need to put this in STL containers sometimes, which requires a copy 229 // constructor. We can't call the regular copy constructor because that will 230 // take the stack buffer from the original. Here, we create an empty object 231 // and make a stack buffer of its own. StackVector(const StackVector<T,stack_capacity> & other)232 StackVector(const StackVector<T, stack_capacity>& other) 233 : StackContainer< 234 std::vector<T, StackAllocator<T, stack_capacity> >, 235 stack_capacity>() { 236 this->container().assign(other->begin(), other->end()); 237 } 238 239 StackVector<T, stack_capacity>& operator=( 240 const StackVector<T, stack_capacity>& other) { 241 this->container().assign(other->begin(), other->end()); 242 return *this; 243 } 244 245 // Vectors are commonly indexed, which isn't very convenient even with 246 // operator-> (using "->at()" does exception stuff we don't want). 247 T& operator[](size_t i) { return this->container().operator[](i); } 248 const T& operator[](size_t i) const { 249 return this->container().operator[](i); 250 } 251 }; 252 253 #endif // BASE_STACK_CONTAINER_H_ 254