• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  
2  /* @(#)e_sqrt.c 1.3 95/01/18 */
3  /*
4   * ====================================================
5   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6   *
7   * Developed at SunSoft, a Sun Microsystems, Inc. business.
8   * Permission to use, copy, modify, and distribute this
9   * software is freely granted, provided that this notice
10   * is preserved.
11   * ====================================================
12   */
13  
14  #ifndef lint
15  static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_sqrt.c,v 1.10 2005/02/04 18:26:06 das Exp $";
16  #endif
17  
18  /* __ieee754_sqrt(x)
19   * Return correctly rounded sqrt.
20   *           ------------------------------------------
21   *	     |  Use the hardware sqrt if you have one |
22   *           ------------------------------------------
23   * Method:
24   *   Bit by bit method using integer arithmetic. (Slow, but portable)
25   *   1. Normalization
26   *	Scale x to y in [1,4) with even powers of 2:
27   *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
28   *		sqrt(x) = 2^k * sqrt(y)
29   *   2. Bit by bit computation
30   *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
31   *	     i							 0
32   *                                     i+1         2
33   *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
34   *	     i      i            i                 i
35   *
36   *	To compute q    from q , one checks whether
37   *		    i+1       i
38   *
39   *			      -(i+1) 2
40   *			(q + 2      ) <= y.			(2)
41   *     			  i
42   *							      -(i+1)
43   *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
44   *		 	       i+1   i             i+1   i
45   *
46   *	With some algebric manipulation, it is not difficult to see
47   *	that (2) is equivalent to
48   *                             -(i+1)
49   *			s  +  2       <= y			(3)
50   *			 i                i
51   *
52   *	The advantage of (3) is that s  and y  can be computed by
53   *				      i      i
54   *	the following recurrence formula:
55   *	    if (3) is false
56   *
57   *	    s     =  s  ,	y    = y   ;			(4)
58   *	     i+1      i		 i+1    i
59   *
60   *	    otherwise,
61   *                         -i                     -(i+1)
62   *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
63   *           i+1      i          i+1    i     i
64   *
65   *	One may easily use induction to prove (4) and (5).
66   *	Note. Since the left hand side of (3) contain only i+2 bits,
67   *	      it does not necessary to do a full (53-bit) comparison
68   *	      in (3).
69   *   3. Final rounding
70   *	After generating the 53 bits result, we compute one more bit.
71   *	Together with the remainder, we can decide whether the
72   *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
73   *	(it will never equal to 1/2ulp).
74   *	The rounding mode can be detected by checking whether
75   *	huge + tiny is equal to huge, and whether huge - tiny is
76   *	equal to huge for some floating point number "huge" and "tiny".
77   *
78   * Special cases:
79   *	sqrt(+-0) = +-0 	... exact
80   *	sqrt(inf) = inf
81   *	sqrt(-ve) = NaN		... with invalid signal
82   *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
83   *
84   * Other methods : see the appended file at the end of the program below.
85   *---------------
86   */
87  
88  #include "math.h"
89  #include "math_private.h"
90  
91  static	const double	one	= 1.0, tiny=1.0e-300;
92  
93  double
__ieee754_sqrt(double x)94  __ieee754_sqrt(double x)
95  {
96  	double z;
97  	int32_t sign = (int)0x80000000;
98  	int32_t ix0,s0,q,m,t,i;
99  	u_int32_t r,t1,s1,ix1,q1;
100  
101  	EXTRACT_WORDS(ix0,ix1,x);
102  
103      /* take care of Inf and NaN */
104  	if((ix0&0x7ff00000)==0x7ff00000) {
105  	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
106  					   sqrt(-inf)=sNaN */
107  	}
108      /* take care of zero */
109  	if(ix0<=0) {
110  	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
111  	    else if(ix0<0)
112  		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
113  	}
114      /* normalize x */
115  	m = (ix0>>20);
116  	if(m==0) {				/* subnormal x */
117  	    while(ix0==0) {
118  		m -= 21;
119  		ix0 |= (ix1>>11); ix1 <<= 21;
120  	    }
121  	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
122  	    m -= i-1;
123  	    ix0 |= (ix1>>(32-i));
124  	    ix1 <<= i;
125  	}
126  	m -= 1023;	/* unbias exponent */
127  	ix0 = (ix0&0x000fffff)|0x00100000;
128  	if(m&1){	/* odd m, double x to make it even */
129  	    ix0 += ix0 + ((ix1&sign)>>31);
130  	    ix1 += ix1;
131  	}
132  	m >>= 1;	/* m = [m/2] */
133  
134      /* generate sqrt(x) bit by bit */
135  	ix0 += ix0 + ((ix1&sign)>>31);
136  	ix1 += ix1;
137  	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
138  	r = 0x00200000;		/* r = moving bit from right to left */
139  
140  	while(r!=0) {
141  	    t = s0+r;
142  	    if(t<=ix0) {
143  		s0   = t+r;
144  		ix0 -= t;
145  		q   += r;
146  	    }
147  	    ix0 += ix0 + ((ix1&sign)>>31);
148  	    ix1 += ix1;
149  	    r>>=1;
150  	}
151  
152  	r = sign;
153  	while(r!=0) {
154  	    t1 = s1+r;
155  	    t  = s0;
156  	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
157  		s1  = t1+r;
158  		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
159  		ix0 -= t;
160  		if (ix1 < t1) ix0 -= 1;
161  		ix1 -= t1;
162  		q1  += r;
163  	    }
164  	    ix0 += ix0 + ((ix1&sign)>>31);
165  	    ix1 += ix1;
166  	    r>>=1;
167  	}
168  
169      /* use floating add to find out rounding direction */
170  	if((ix0|ix1)!=0) {
171  	    z = one-tiny; /* trigger inexact flag */
172  	    if (z>=one) {
173  	        z = one+tiny;
174  	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
175  		else if (z>one) {
176  		    if (q1==(u_int32_t)0xfffffffe) q+=1;
177  		    q1+=2;
178  		} else
179  	            q1 += (q1&1);
180  	    }
181  	}
182  	ix0 = (q>>1)+0x3fe00000;
183  	ix1 =  q1>>1;
184  	if ((q&1)==1) ix1 |= sign;
185  	ix0 += (m <<20);
186  	INSERT_WORDS(z,ix0,ix1);
187  	return z;
188  }
189  
190  /*
191  Other methods  (use floating-point arithmetic)
192  -------------
193  (This is a copy of a drafted paper by Prof W. Kahan
194  and K.C. Ng, written in May, 1986)
195  
196  	Two algorithms are given here to implement sqrt(x)
197  	(IEEE double precision arithmetic) in software.
198  	Both supply sqrt(x) correctly rounded. The first algorithm (in
199  	Section A) uses newton iterations and involves four divisions.
200  	The second one uses reciproot iterations to avoid division, but
201  	requires more multiplications. Both algorithms need the ability
202  	to chop results of arithmetic operations instead of round them,
203  	and the INEXACT flag to indicate when an arithmetic operation
204  	is executed exactly with no roundoff error, all part of the
205  	standard (IEEE 754-1985). The ability to perform shift, add,
206  	subtract and logical AND operations upon 32-bit words is needed
207  	too, though not part of the standard.
208  
209  A.  sqrt(x) by Newton Iteration
210  
211     (1)	Initial approximation
212  
213  	Let x0 and x1 be the leading and the trailing 32-bit words of
214  	a floating point number x (in IEEE double format) respectively
215  
216  	    1    11		     52				  ...widths
217  	   ------------------------------------------------------
218  	x: |s|	  e     |	      f				|
219  	   ------------------------------------------------------
220  	      msb    lsb  msb				      lsb ...order
221  
222  
223  	     ------------------------  	     ------------------------
224  	x0:  |s|   e    |    f1     |	 x1: |          f2           |
225  	     ------------------------  	     ------------------------
226  
227  	By performing shifts and subtracts on x0 and x1 (both regarded
228  	as integers), we obtain an 8-bit approximation of sqrt(x) as
229  	follows.
230  
231  		k  := (x0>>1) + 0x1ff80000;
232  		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
233  	Here k is a 32-bit integer and T1[] is an integer array containing
234  	correction terms. Now magically the floating value of y (y's
235  	leading 32-bit word is y0, the value of its trailing word is 0)
236  	approximates sqrt(x) to almost 8-bit.
237  
238  	Value of T1:
239  	static int T1[32]= {
240  	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
241  	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
242  	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
243  	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
244  
245      (2)	Iterative refinement
246  
247  	Apply Heron's rule three times to y, we have y approximates
248  	sqrt(x) to within 1 ulp (Unit in the Last Place):
249  
250  		y := (y+x/y)/2		... almost 17 sig. bits
251  		y := (y+x/y)/2		... almost 35 sig. bits
252  		y := y-(y-x/y)/2	... within 1 ulp
253  
254  
255  	Remark 1.
256  	    Another way to improve y to within 1 ulp is:
257  
258  		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
259  		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
260  
261  				2
262  			    (x-y )*y
263  		y := y + 2* ----------	...within 1 ulp
264  			       2
265  			     3y  + x
266  
267  
268  	This formula has one division fewer than the one above; however,
269  	it requires more multiplications and additions. Also x must be
270  	scaled in advance to avoid spurious overflow in evaluating the
271  	expression 3y*y+x. Hence it is not recommended uless division
272  	is slow. If division is very slow, then one should use the
273  	reciproot algorithm given in section B.
274  
275      (3) Final adjustment
276  
277  	By twiddling y's last bit it is possible to force y to be
278  	correctly rounded according to the prevailing rounding mode
279  	as follows. Let r and i be copies of the rounding mode and
280  	inexact flag before entering the square root program. Also we
281  	use the expression y+-ulp for the next representable floating
282  	numbers (up and down) of y. Note that y+-ulp = either fixed
283  	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
284  	mode.
285  
286  		I := FALSE;	... reset INEXACT flag I
287  		R := RZ;	... set rounding mode to round-toward-zero
288  		z := x/y;	... chopped quotient, possibly inexact
289  		If(not I) then {	... if the quotient is exact
290  		    if(z=y) {
291  		        I := i;	 ... restore inexact flag
292  		        R := r;  ... restore rounded mode
293  		        return sqrt(x):=y.
294  		    } else {
295  			z := z - ulp;	... special rounding
296  		    }
297  		}
298  		i := TRUE;		... sqrt(x) is inexact
299  		If (r=RN) then z=z+ulp	... rounded-to-nearest
300  		If (r=RP) then {	... round-toward-+inf
301  		    y = y+ulp; z=z+ulp;
302  		}
303  		y := y+z;		... chopped sum
304  		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
305  	        I := i;	 		... restore inexact flag
306  	        R := r;  		... restore rounded mode
307  	        return sqrt(x):=y.
308  
309      (4)	Special cases
310  
311  	Square root of +inf, +-0, or NaN is itself;
312  	Square root of a negative number is NaN with invalid signal.
313  
314  
315  B.  sqrt(x) by Reciproot Iteration
316  
317     (1)	Initial approximation
318  
319  	Let x0 and x1 be the leading and the trailing 32-bit words of
320  	a floating point number x (in IEEE double format) respectively
321  	(see section A). By performing shifs and subtracts on x0 and y0,
322  	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
323  
324  	    k := 0x5fe80000 - (x0>>1);
325  	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
326  
327  	Here k is a 32-bit integer and T2[] is an integer array
328  	containing correction terms. Now magically the floating
329  	value of y (y's leading 32-bit word is y0, the value of
330  	its trailing word y1 is set to zero) approximates 1/sqrt(x)
331  	to almost 7.8-bit.
332  
333  	Value of T2:
334  	static int T2[64]= {
335  	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
336  	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
337  	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
338  	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
339  	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
340  	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
341  	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
342  	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
343  
344      (2)	Iterative refinement
345  
346  	Apply Reciproot iteration three times to y and multiply the
347  	result by x to get an approximation z that matches sqrt(x)
348  	to about 1 ulp. To be exact, we will have
349  		-1ulp < sqrt(x)-z<1.0625ulp.
350  
351  	... set rounding mode to Round-to-nearest
352  	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
353  	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
354  	... special arrangement for better accuracy
355  	   z := x*y			... 29 bits to sqrt(x), with z*y<1
356  	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
357  
358  	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
359  	(a) the term z*y in the final iteration is always less than 1;
360  	(b) the error in the final result is biased upward so that
361  		-1 ulp < sqrt(x) - z < 1.0625 ulp
362  	    instead of |sqrt(x)-z|<1.03125ulp.
363  
364      (3)	Final adjustment
365  
366  	By twiddling y's last bit it is possible to force y to be
367  	correctly rounded according to the prevailing rounding mode
368  	as follows. Let r and i be copies of the rounding mode and
369  	inexact flag before entering the square root program. Also we
370  	use the expression y+-ulp for the next representable floating
371  	numbers (up and down) of y. Note that y+-ulp = either fixed
372  	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
373  	mode.
374  
375  	R := RZ;		... set rounding mode to round-toward-zero
376  	switch(r) {
377  	    case RN:		... round-to-nearest
378  	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
379  	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
380  	       break;
381  	    case RZ:case RM:	... round-to-zero or round-to--inf
382  	       R:=RP;		... reset rounding mod to round-to-+inf
383  	       if(x<z*z ... rounded up) z = z - ulp; else
384  	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
385  	       break;
386  	    case RP:		... round-to-+inf
387  	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
388  	       if(x>z*z ...chopped) z = z+ulp;
389  	       break;
390  	}
391  
392  	Remark 3. The above comparisons can be done in fixed point. For
393  	example, to compare x and w=z*z chopped, it suffices to compare
394  	x1 and w1 (the trailing parts of x and w), regarding them as
395  	two's complement integers.
396  
397  	...Is z an exact square root?
398  	To determine whether z is an exact square root of x, let z1 be the
399  	trailing part of z, and also let x0 and x1 be the leading and
400  	trailing parts of x.
401  
402  	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
403  	    I := 1;		... Raise Inexact flag: z is not exact
404  	else {
405  	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
406  	    k := z1 >> 26;		... get z's 25-th and 26-th
407  					    fraction bits
408  	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
409  	}
410  	R:= r		... restore rounded mode
411  	return sqrt(x):=z.
412  
413  	If multiplication is cheaper then the foregoing red tape, the
414  	Inexact flag can be evaluated by
415  
416  	    I := i;
417  	    I := (z*z!=x) or I.
418  
419  	Note that z*z can overwrite I; this value must be sensed if it is
420  	True.
421  
422  	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
423  	zero.
424  
425  		    --------------------
426  		z1: |        f2        |
427  		    --------------------
428  		bit 31		   bit 0
429  
430  	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
431  	or even of logb(x) have the following relations:
432  
433  	-------------------------------------------------
434  	bit 27,26 of z1		bit 1,0 of x1	logb(x)
435  	-------------------------------------------------
436  	00			00		odd and even
437  	01			01		even
438  	10			10		odd
439  	10			00		even
440  	11			01		even
441  	-------------------------------------------------
442  
443      (4)	Special cases (see (4) of Section A).
444  
445   */
446  
447