• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5  * use this file except in compliance with the License. You may obtain a copy of
6  * the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13  * License for the specific language governing permissions and limitations under
14  * the License.
15  */
16 
17 /* This test accepts a collection of N speech waveforms collected as
18    part of N recognition attempts.  The waveforms are ordered by
19    increasing presentation level.  The test determines the extent to
20    which the peak amplitudes in the waveforms track the change in
21    presentation level.  Failure to track the presentation level within
22    some reasonable margin is an indication of clipping or of automatic
23    gain control in the signal path.
24 
25    The speech stimuli that are used for this test should simply be
26    replications of exactly the same speech signal presented at
27    different levels.  It is expected that all recognition attempts on
28    this signal result in correct recognition.  A warning, but not a
29    hard failure, should be issued if any of the attempts fail.  The
30    hard failure criterion for this test should be only based on the
31    amplitude linearity tracking. */
32 
33 #include <stdlib.h>
34 #include <stdio.h>
35 #include <math.h>
36 
37 /* Keep a record of the top N absolute values found using a slow
38    bubble-sort.  This is OK, since the use of this program is not time
39    critical, and N is usually small.  Note that the argument n = N-1. */
bubbleUp(int * store,int n,short val)40 static void bubbleUp(int* store, int n, short val) {
41     if (val < store[n])
42         return;
43     for (int i = 0; i <= n; ++i) {
44         if (val >= store[i]) {
45             for (int j = n; j > i ; j--)
46                 store[j] = store[j-1];
47             store[i] = val;
48             return;
49         }
50     }
51 }
52 
53 /* Make two measurements on the signal of length numSamples sampled at
54    sampleRate in pcm: the RMS of the highest amplitude 30ms segment
55    (returned in peakRms), and the RMS of the top 50 peak absolute
56    values found (returned in peakAverage).  If the signal is too
57    short to make reasonable measurements, the function returns 0, else
58    it returns 1. */
peakLevels(short * pcm,int numSamples,float sampleRate,float * peakAverage,float * peakRms)59 static int peakLevels(short* pcm, int numSamples, float sampleRate,
60                       float* peakAverage, float* peakRms) {
61     float rmsFrameSize = 0.03;
62     float rmsFrameStep = 0.01;
63     int frameStep = int(0.5 + (sampleRate * rmsFrameStep));
64     int frameSize = int(0.5 + (sampleRate * rmsFrameSize));
65     int numFrames = 1 + ((numSamples - frameSize) / frameStep);
66 
67     if (numFrames < 10) {
68         return 0; // failure for too short signal
69     }
70 
71     // Peak RMS calculation
72     double maxEnergy = 0.0;
73     for (int frame = 0; frame < numFrames; ++frame) {
74         double energy = 0.0;
75         int limit = (frame * frameStep) + frameSize;
76         for (int i = frame * frameStep; i < limit; ++i) {
77             double s = pcm[i];
78             energy += s * s;
79         }
80         if (energy > maxEnergy) {
81             maxEnergy = energy;
82         }
83     }
84     *peakRms = sqrt(maxEnergy / frameSize);
85 
86     // Find the absolute highest topN peaks in the signal and compute
87     // the RMS of their values.
88     int topN = 50; // The number of highest peaks over which to average.
89     int topM = topN - 1;
90     int* maxVal = new int[topN];
91     for (int i = 0; i < topN; ++i) {
92         maxVal[i] = 0;
93     }
94     for (int i = 0; i < numSamples; ++i) {
95         if (pcm[i] >= 0) {
96             bubbleUp(maxVal, topM, pcm[i]);
97         } else {
98             bubbleUp(maxVal, topM, -pcm[i]);
99         }
100     }
101     float sum = 0.0;
102     // The RMS is taken bacause we want the values of the highest peaks
103     // to dominate.
104     for (int i = 0; i < topN; ++i) {
105         float fval = maxVal[i];
106         sum += (fval * fval);
107     }
108     delete [] maxVal;
109     *peakAverage = sqrt(sum/topN);
110     return 1; // success
111 }
112 
113 /* There are numSignals int16 signals in pcms.  sampleCounts is an
114    integer array of length numSignals containing their respective
115    lengths in samples.  They are all sampled at sampleRate.  The pcms
116    are ordered by increasing stimulus level.  The level steps between
117    successive stimuli were of size dbStepSize dB.  The signal with
118    index referenceStim (0 <= referenceStim < numSignals) should be in
119    an amplitude range that is reasonably certain to be linear (e.g. at
120    normal speaking levels).  The maximum deviation in linearity found
121    (in dB) is returned in maxDeviation.  The function returns 1 if
122    the measurements could be made, or a negative number that
123    indicates the error, as follows:
124       -1 The input signals or sample counts are missing.
125       -2 The number of input signals is < 2.
126       -3 The specified sample rate is <= 4000.0
127       -4 The dB step size for the increase in stimulus level is <= 0.0
128       -5 The specified reverence stimulus number is out of range.
129       -6 One or more of the stimuli is too short in duration. */
linearityTest(short ** pcms,int * sampleCounts,int numSignals,float sampleRate,float dbStepSize,int referenceStim,float * maxDeviation)130 int linearityTest(short** pcms, int* sampleCounts, int numSignals,
131                   float sampleRate, float dbStepSize, int referenceStim,
132                   float* maxDeviation) {
133     if (!(pcms && sampleCounts)) {
134         return -1; // Input signals or sample counts are missing
135     }
136     if (numSignals < 2) {
137         return -2; // the number of input signals must be >= 2;
138     }
139     if (sampleRate <= 4000.0) {
140         return -3; // The sample rate must be > 4000 Hz.
141     }
142     if (dbStepSize <= 0.0) {
143         return -4; // The dB step size must be > 0.0
144     }
145     if (!((referenceStim >= 0) && (referenceStim < numSignals))) {
146         return -5; // (0 <= referenceStim < numSignals) must be true
147     }
148     float* peakAverage = new float[numSignals];
149     float* peakRms = new float[numSignals];
150     for (int sig = 0; sig < numSignals; ++sig) {
151         if (!peakLevels(pcms[sig], sampleCounts[sig],
152              sampleRate, peakAverage + sig, peakRms + sig)) {
153             return -6; // failure because a signal is too short.
154         }
155     }
156     float peakAverageRef = peakAverage[referenceStim];
157     float peakRmsRef = peakRms[referenceStim];
158     float maxDev = 0.0;
159     for (int i = 0; i < numSignals; ++i) {
160         float dbAverage = 20.0 * log10(peakAverage[i]/peakAverageRef);
161         float dbRms = 20.0 * log10(peakRms[i]/peakRmsRef);
162         float reference = dbStepSize * (i - referenceStim);
163         float average_level = 0.5 * (dbAverage + dbRms);
164         float dev = fabs(average_level - reference);
165         // fprintf(stderr,"dbAverage:%f dbRms:%f reference:%f dev:%f\n",
166         //         dbAverage, dbRms, reference, dev);
167         if (dev > maxDev)
168             maxDev = dev;
169     }
170     *maxDeviation = maxDev;
171     return 1;
172 }
173