1 /*
2 * This file was generated automatically by gen-mterp.py for 'x86'.
3 *
4 * --> DO NOT EDIT <--
5 */
6
7 /* File: c/header.c */
8 /*
9 * Copyright (C) 2008 The Android Open Source Project
10 *
11 * Licensed under the Apache License, Version 2.0 (the "License");
12 * you may not use this file except in compliance with the License.
13 * You may obtain a copy of the License at
14 *
15 * http://www.apache.org/licenses/LICENSE-2.0
16 *
17 * Unless required by applicable law or agreed to in writing, software
18 * distributed under the License is distributed on an "AS IS" BASIS,
19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20 * See the License for the specific language governing permissions and
21 * limitations under the License.
22 */
23
24 /* common includes */
25 #include "Dalvik.h"
26 #include "interp/InterpDefs.h"
27 #include "mterp/Mterp.h"
28 #include <math.h> // needed for fmod, fmodf
29 #include "mterp/common/FindInterface.h"
30
31 /*
32 * Configuration defines. These affect the C implementations, i.e. the
33 * portable interpreter(s) and C stubs.
34 *
35 * Some defines are controlled by the Makefile, e.g.:
36 * WITH_INSTR_CHECKS
37 * WITH_TRACKREF_CHECKS
38 * EASY_GDB
39 * NDEBUG
40 *
41 * If THREADED_INTERP is not defined, we use a classic "while true / switch"
42 * interpreter. If it is defined, then the tail end of each instruction
43 * handler fetches the next instruction and jumps directly to the handler.
44 * This increases the size of the "Std" interpreter by about 10%, but
45 * provides a speedup of about the same magnitude.
46 *
47 * There's a "hybrid" approach that uses a goto table instead of a switch
48 * statement, avoiding the "is the opcode in range" tests required for switch.
49 * The performance is close to the threaded version, and without the 10%
50 * size increase, but the benchmark results are off enough that it's not
51 * worth adding as a third option.
52 */
53 #define THREADED_INTERP /* threaded vs. while-loop interpreter */
54
55 #ifdef WITH_INSTR_CHECKS /* instruction-level paranoia (slow!) */
56 # define CHECK_BRANCH_OFFSETS
57 # define CHECK_REGISTER_INDICES
58 #endif
59
60 /*
61 * ARM EABI requires 64-bit alignment for access to 64-bit data types. We
62 * can't just use pointers to copy 64-bit values out of our interpreted
63 * register set, because gcc will generate ldrd/strd.
64 *
65 * The __UNION version copies data in and out of a union. The __MEMCPY
66 * version uses a memcpy() call to do the transfer; gcc is smart enough to
67 * not actually call memcpy(). The __UNION version is very bad on ARM;
68 * it only uses one more instruction than __MEMCPY, but for some reason
69 * gcc thinks it needs separate storage for every instance of the union.
70 * On top of that, it feels the need to zero them out at the start of the
71 * method. Net result is we zero out ~700 bytes of stack space at the top
72 * of the interpreter using ARM STM instructions.
73 */
74 #if defined(__ARM_EABI__)
75 //# define NO_UNALIGN_64__UNION
76 # define NO_UNALIGN_64__MEMCPY
77 #endif
78
79 //#define LOG_INSTR /* verbose debugging */
80 /* set and adjust ANDROID_LOG_TAGS='*:i jdwp:i dalvikvm:i dalvikvmi:i' */
81
82 /*
83 * Keep a tally of accesses to fields. Currently only works if full DEX
84 * optimization is disabled.
85 */
86 #ifdef PROFILE_FIELD_ACCESS
87 # define UPDATE_FIELD_GET(_field) { (_field)->gets++; }
88 # define UPDATE_FIELD_PUT(_field) { (_field)->puts++; }
89 #else
90 # define UPDATE_FIELD_GET(_field) ((void)0)
91 # define UPDATE_FIELD_PUT(_field) ((void)0)
92 #endif
93
94 /*
95 * Export another copy of the PC on every instruction; this is largely
96 * redundant with EXPORT_PC and the debugger code. This value can be
97 * compared against what we have stored on the stack with EXPORT_PC to
98 * help ensure that we aren't missing any export calls.
99 */
100 #if WITH_EXTRA_GC_CHECKS > 1
101 # define EXPORT_EXTRA_PC() (self->currentPc2 = pc)
102 #else
103 # define EXPORT_EXTRA_PC()
104 #endif
105
106 /*
107 * Adjust the program counter. "_offset" is a signed int, in 16-bit units.
108 *
109 * Assumes the existence of "const u2* pc" and "const u2* curMethod->insns".
110 *
111 * We don't advance the program counter until we finish an instruction or
112 * branch, because we do want to have to unroll the PC if there's an
113 * exception.
114 */
115 #ifdef CHECK_BRANCH_OFFSETS
116 # define ADJUST_PC(_offset) do { \
117 int myoff = _offset; /* deref only once */ \
118 if (pc + myoff < curMethod->insns || \
119 pc + myoff >= curMethod->insns + dvmGetMethodInsnsSize(curMethod)) \
120 { \
121 char* desc; \
122 desc = dexProtoCopyMethodDescriptor(&curMethod->prototype); \
123 LOGE("Invalid branch %d at 0x%04x in %s.%s %s\n", \
124 myoff, (int) (pc - curMethod->insns), \
125 curMethod->clazz->descriptor, curMethod->name, desc); \
126 free(desc); \
127 dvmAbort(); \
128 } \
129 pc += myoff; \
130 EXPORT_EXTRA_PC(); \
131 } while (false)
132 #else
133 # define ADJUST_PC(_offset) do { \
134 pc += _offset; \
135 EXPORT_EXTRA_PC(); \
136 } while (false)
137 #endif
138
139 /*
140 * If enabled, log instructions as we execute them.
141 */
142 #ifdef LOG_INSTR
143 # define ILOGD(...) ILOG(LOG_DEBUG, __VA_ARGS__)
144 # define ILOGV(...) ILOG(LOG_VERBOSE, __VA_ARGS__)
145 # define ILOG(_level, ...) do { \
146 char debugStrBuf[128]; \
147 snprintf(debugStrBuf, sizeof(debugStrBuf), __VA_ARGS__); \
148 if (curMethod != NULL) \
149 LOG(_level, LOG_TAG"i", "%-2d|%04x%s\n", \
150 self->threadId, (int)(pc - curMethod->insns), debugStrBuf); \
151 else \
152 LOG(_level, LOG_TAG"i", "%-2d|####%s\n", \
153 self->threadId, debugStrBuf); \
154 } while(false)
155 void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly);
156 # define DUMP_REGS(_meth, _frame, _inOnly) dvmDumpRegs(_meth, _frame, _inOnly)
157 static const char kSpacing[] = " ";
158 #else
159 # define ILOGD(...) ((void)0)
160 # define ILOGV(...) ((void)0)
161 # define DUMP_REGS(_meth, _frame, _inOnly) ((void)0)
162 #endif
163
164 /* get a long from an array of u4 */
getLongFromArray(const u4 * ptr,int idx)165 static inline s8 getLongFromArray(const u4* ptr, int idx)
166 {
167 #if defined(NO_UNALIGN_64__UNION)
168 union { s8 ll; u4 parts[2]; } conv;
169
170 ptr += idx;
171 conv.parts[0] = ptr[0];
172 conv.parts[1] = ptr[1];
173 return conv.ll;
174 #elif defined(NO_UNALIGN_64__MEMCPY)
175 s8 val;
176 memcpy(&val, &ptr[idx], 8);
177 return val;
178 #else
179 return *((s8*) &ptr[idx]);
180 #endif
181 }
182
183 /* store a long into an array of u4 */
putLongToArray(u4 * ptr,int idx,s8 val)184 static inline void putLongToArray(u4* ptr, int idx, s8 val)
185 {
186 #if defined(NO_UNALIGN_64__UNION)
187 union { s8 ll; u4 parts[2]; } conv;
188
189 ptr += idx;
190 conv.ll = val;
191 ptr[0] = conv.parts[0];
192 ptr[1] = conv.parts[1];
193 #elif defined(NO_UNALIGN_64__MEMCPY)
194 memcpy(&ptr[idx], &val, 8);
195 #else
196 *((s8*) &ptr[idx]) = val;
197 #endif
198 }
199
200 /* get a double from an array of u4 */
getDoubleFromArray(const u4 * ptr,int idx)201 static inline double getDoubleFromArray(const u4* ptr, int idx)
202 {
203 #if defined(NO_UNALIGN_64__UNION)
204 union { double d; u4 parts[2]; } conv;
205
206 ptr += idx;
207 conv.parts[0] = ptr[0];
208 conv.parts[1] = ptr[1];
209 return conv.d;
210 #elif defined(NO_UNALIGN_64__MEMCPY)
211 double dval;
212 memcpy(&dval, &ptr[idx], 8);
213 return dval;
214 #else
215 return *((double*) &ptr[idx]);
216 #endif
217 }
218
219 /* store a double into an array of u4 */
putDoubleToArray(u4 * ptr,int idx,double dval)220 static inline void putDoubleToArray(u4* ptr, int idx, double dval)
221 {
222 #if defined(NO_UNALIGN_64__UNION)
223 union { double d; u4 parts[2]; } conv;
224
225 ptr += idx;
226 conv.d = dval;
227 ptr[0] = conv.parts[0];
228 ptr[1] = conv.parts[1];
229 #elif defined(NO_UNALIGN_64__MEMCPY)
230 memcpy(&ptr[idx], &dval, 8);
231 #else
232 *((double*) &ptr[idx]) = dval;
233 #endif
234 }
235
236 /*
237 * If enabled, validate the register number on every access. Otherwise,
238 * just do an array access.
239 *
240 * Assumes the existence of "u4* fp".
241 *
242 * "_idx" may be referenced more than once.
243 */
244 #ifdef CHECK_REGISTER_INDICES
245 # define GET_REGISTER(_idx) \
246 ( (_idx) < curMethod->registersSize ? \
247 (fp[(_idx)]) : (assert(!"bad reg"),1969) )
248 # define SET_REGISTER(_idx, _val) \
249 ( (_idx) < curMethod->registersSize ? \
250 (fp[(_idx)] = (u4)(_val)) : (assert(!"bad reg"),1969) )
251 # define GET_REGISTER_AS_OBJECT(_idx) ((Object *)GET_REGISTER(_idx))
252 # define SET_REGISTER_AS_OBJECT(_idx, _val) SET_REGISTER(_idx, (s4)_val)
253 # define GET_REGISTER_INT(_idx) ((s4) GET_REGISTER(_idx))
254 # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val)
255 # define GET_REGISTER_WIDE(_idx) \
256 ( (_idx) < curMethod->registersSize-1 ? \
257 getLongFromArray(fp, (_idx)) : (assert(!"bad reg"),1969) )
258 # define SET_REGISTER_WIDE(_idx, _val) \
259 ( (_idx) < curMethod->registersSize-1 ? \
260 putLongToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969) )
261 # define GET_REGISTER_FLOAT(_idx) \
262 ( (_idx) < curMethod->registersSize ? \
263 (*((float*) &fp[(_idx)])) : (assert(!"bad reg"),1969.0f) )
264 # define SET_REGISTER_FLOAT(_idx, _val) \
265 ( (_idx) < curMethod->registersSize ? \
266 (*((float*) &fp[(_idx)]) = (_val)) : (assert(!"bad reg"),1969.0f) )
267 # define GET_REGISTER_DOUBLE(_idx) \
268 ( (_idx) < curMethod->registersSize-1 ? \
269 getDoubleFromArray(fp, (_idx)) : (assert(!"bad reg"),1969.0) )
270 # define SET_REGISTER_DOUBLE(_idx, _val) \
271 ( (_idx) < curMethod->registersSize-1 ? \
272 putDoubleToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969.0) )
273 #else
274 # define GET_REGISTER(_idx) (fp[(_idx)])
275 # define SET_REGISTER(_idx, _val) (fp[(_idx)] = (_val))
276 # define GET_REGISTER_AS_OBJECT(_idx) ((Object*) fp[(_idx)])
277 # define SET_REGISTER_AS_OBJECT(_idx, _val) (fp[(_idx)] = (u4)(_val))
278 # define GET_REGISTER_INT(_idx) ((s4)GET_REGISTER(_idx))
279 # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val)
280 # define GET_REGISTER_WIDE(_idx) getLongFromArray(fp, (_idx))
281 # define SET_REGISTER_WIDE(_idx, _val) putLongToArray(fp, (_idx), (_val))
282 # define GET_REGISTER_FLOAT(_idx) (*((float*) &fp[(_idx)]))
283 # define SET_REGISTER_FLOAT(_idx, _val) (*((float*) &fp[(_idx)]) = (_val))
284 # define GET_REGISTER_DOUBLE(_idx) getDoubleFromArray(fp, (_idx))
285 # define SET_REGISTER_DOUBLE(_idx, _val) putDoubleToArray(fp, (_idx), (_val))
286 #endif
287
288 /*
289 * Get 16 bits from the specified offset of the program counter. We always
290 * want to load 16 bits at a time from the instruction stream -- it's more
291 * efficient than 8 and won't have the alignment problems that 32 might.
292 *
293 * Assumes existence of "const u2* pc".
294 */
295 #define FETCH(_offset) (pc[(_offset)])
296
297 /*
298 * Extract instruction byte from 16-bit fetch (_inst is a u2).
299 */
300 #define INST_INST(_inst) ((_inst) & 0xff)
301
302 /*
303 * Replace the opcode (used when handling breakpoints). _opcode is a u1.
304 */
305 #define INST_REPLACE_OP(_inst, _opcode) (((_inst) & 0xff00) | _opcode)
306
307 /*
308 * Extract the "vA, vB" 4-bit registers from the instruction word (_inst is u2).
309 */
310 #define INST_A(_inst) (((_inst) >> 8) & 0x0f)
311 #define INST_B(_inst) ((_inst) >> 12)
312
313 /*
314 * Get the 8-bit "vAA" 8-bit register index from the instruction word.
315 * (_inst is u2)
316 */
317 #define INST_AA(_inst) ((_inst) >> 8)
318
319 /*
320 * The current PC must be available to Throwable constructors, e.g.
321 * those created by dvmThrowException(), so that the exception stack
322 * trace can be generated correctly. If we don't do this, the offset
323 * within the current method won't be shown correctly. See the notes
324 * in Exception.c.
325 *
326 * This is also used to determine the address for precise GC.
327 *
328 * Assumes existence of "u4* fp" and "const u2* pc".
329 */
330 #define EXPORT_PC() (SAVEAREA_FROM_FP(fp)->xtra.currentPc = pc)
331
332 /*
333 * Determine if we need to switch to a different interpreter. "_current"
334 * is either INTERP_STD or INTERP_DBG. It should be fixed for a given
335 * interpreter generation file, which should remove the outer conditional
336 * from the following.
337 *
338 * If we're building without debug and profiling support, we never switch.
339 */
340 #if defined(WITH_JIT)
341 # define NEED_INTERP_SWITCH(_current) ( \
342 (_current == INTERP_STD) ? \
343 dvmJitDebuggerOrProfilerActive() : !dvmJitDebuggerOrProfilerActive() )
344 #else
345 # define NEED_INTERP_SWITCH(_current) ( \
346 (_current == INTERP_STD) ? \
347 dvmDebuggerOrProfilerActive() : !dvmDebuggerOrProfilerActive() )
348 #endif
349
350 /*
351 * Check to see if "obj" is NULL. If so, throw an exception. Assumes the
352 * pc has already been exported to the stack.
353 *
354 * Perform additional checks on debug builds.
355 *
356 * Use this to check for NULL when the instruction handler calls into
357 * something that could throw an exception (so we have already called
358 * EXPORT_PC at the top).
359 */
checkForNull(Object * obj)360 static inline bool checkForNull(Object* obj)
361 {
362 if (obj == NULL) {
363 dvmThrowException("Ljava/lang/NullPointerException;", NULL);
364 return false;
365 }
366 #ifdef WITH_EXTRA_OBJECT_VALIDATION
367 if (!dvmIsValidObject(obj)) {
368 LOGE("Invalid object %p\n", obj);
369 dvmAbort();
370 }
371 #endif
372 #ifndef NDEBUG
373 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) {
374 /* probable heap corruption */
375 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj);
376 dvmAbort();
377 }
378 #endif
379 return true;
380 }
381
382 /*
383 * Check to see if "obj" is NULL. If so, export the PC into the stack
384 * frame and throw an exception.
385 *
386 * Perform additional checks on debug builds.
387 *
388 * Use this to check for NULL when the instruction handler doesn't do
389 * anything else that can throw an exception.
390 */
checkForNullExportPC(Object * obj,u4 * fp,const u2 * pc)391 static inline bool checkForNullExportPC(Object* obj, u4* fp, const u2* pc)
392 {
393 if (obj == NULL) {
394 EXPORT_PC();
395 dvmThrowException("Ljava/lang/NullPointerException;", NULL);
396 return false;
397 }
398 #ifdef WITH_EXTRA_OBJECT_VALIDATION
399 if (!dvmIsValidObject(obj)) {
400 LOGE("Invalid object %p\n", obj);
401 dvmAbort();
402 }
403 #endif
404 #ifndef NDEBUG
405 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) {
406 /* probable heap corruption */
407 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj);
408 dvmAbort();
409 }
410 #endif
411 return true;
412 }
413
414 /* File: cstubs/stubdefs.c */
415 /* this is a standard (no debug support) interpreter */
416 #define INTERP_TYPE INTERP_STD
417 #define CHECK_DEBUG_AND_PROF() ((void)0)
418 # define CHECK_TRACKED_REFS() ((void)0)
419 #define CHECK_JIT_BOOL() (false)
420 #define CHECK_JIT_VOID()
421 #define ABORT_JIT_TSELECT() ((void)0)
422
423 /*
424 * In the C mterp stubs, "goto" is a function call followed immediately
425 * by a return.
426 */
427
428 #define GOTO_TARGET_DECL(_target, ...) \
429 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__);
430
431 #define GOTO_TARGET(_target, ...) \
432 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__) { \
433 u2 ref, vsrc1, vsrc2, vdst; \
434 u2 inst = FETCH(0); \
435 const Method* methodToCall; \
436 StackSaveArea* debugSaveArea;
437
438 #define GOTO_TARGET_END }
439
440 /*
441 * Redefine what used to be local variable accesses into MterpGlue struct
442 * references. (These are undefined down in "footer.c".)
443 */
444 #define retval glue->retval
445 #define pc glue->pc
446 #define fp glue->fp
447 #define curMethod glue->method
448 #define methodClassDex glue->methodClassDex
449 #define self glue->self
450 #define debugTrackedRefStart glue->debugTrackedRefStart
451
452 /* ugh */
453 #define STUB_HACK(x) x
454
455
456 /*
457 * Opcode handler framing macros. Here, each opcode is a separate function
458 * that takes a "glue" argument and returns void. We can't declare
459 * these "static" because they may be called from an assembly stub.
460 */
461 #define HANDLE_OPCODE(_op) \
462 void dvmMterp_##_op(MterpGlue* glue) { \
463 u2 ref, vsrc1, vsrc2, vdst; \
464 u2 inst = FETCH(0);
465
466 #define OP_END }
467
468 /*
469 * Like the "portable" FINISH, but don't reload "inst", and return to caller
470 * when done.
471 */
472 #define FINISH(_offset) { \
473 ADJUST_PC(_offset); \
474 CHECK_DEBUG_AND_PROF(); \
475 CHECK_TRACKED_REFS(); \
476 return; \
477 }
478
479
480 /*
481 * The "goto label" statements turn into function calls followed by
482 * return statements. Some of the functions take arguments, which in the
483 * portable interpreter are handled by assigning values to globals.
484 */
485
486 #define GOTO_exceptionThrown() \
487 do { \
488 dvmMterp_exceptionThrown(glue); \
489 return; \
490 } while(false)
491
492 #define GOTO_returnFromMethod() \
493 do { \
494 dvmMterp_returnFromMethod(glue); \
495 return; \
496 } while(false)
497
498 #define GOTO_invoke(_target, _methodCallRange) \
499 do { \
500 dvmMterp_##_target(glue, _methodCallRange); \
501 return; \
502 } while(false)
503
504 #define GOTO_invokeMethod(_methodCallRange, _methodToCall, _vsrc1, _vdst) \
505 do { \
506 dvmMterp_invokeMethod(glue, _methodCallRange, _methodToCall, \
507 _vsrc1, _vdst); \
508 return; \
509 } while(false)
510
511 /*
512 * As a special case, "goto bail" turns into a longjmp. Use "bail_switch"
513 * if we need to switch to the other interpreter upon our return.
514 */
515 #define GOTO_bail() \
516 dvmMterpStdBail(glue, false);
517 #define GOTO_bail_switch() \
518 dvmMterpStdBail(glue, true);
519
520 /*
521 * Periodically check for thread suspension.
522 *
523 * While we're at it, see if a debugger has attached or the profiler has
524 * started. If so, switch to a different "goto" table.
525 */
526 #define PERIODIC_CHECKS(_entryPoint, _pcadj) { \
527 if (dvmCheckSuspendQuick(self)) { \
528 EXPORT_PC(); /* need for precise GC */ \
529 dvmCheckSuspendPending(self); \
530 } \
531 if (NEED_INTERP_SWITCH(INTERP_TYPE)) { \
532 ADJUST_PC(_pcadj); \
533 glue->entryPoint = _entryPoint; \
534 LOGVV("threadid=%d: switch to STD ep=%d adj=%d\n", \
535 self->threadId, (_entryPoint), (_pcadj)); \
536 GOTO_bail_switch(); \
537 } \
538 }
539
540 /* File: c/opcommon.c */
541 /* forward declarations of goto targets */
542 GOTO_TARGET_DECL(filledNewArray, bool methodCallRange);
543 GOTO_TARGET_DECL(invokeVirtual, bool methodCallRange);
544 GOTO_TARGET_DECL(invokeSuper, bool methodCallRange);
545 GOTO_TARGET_DECL(invokeInterface, bool methodCallRange);
546 GOTO_TARGET_DECL(invokeDirect, bool methodCallRange);
547 GOTO_TARGET_DECL(invokeStatic, bool methodCallRange);
548 GOTO_TARGET_DECL(invokeVirtualQuick, bool methodCallRange);
549 GOTO_TARGET_DECL(invokeSuperQuick, bool methodCallRange);
550 GOTO_TARGET_DECL(invokeMethod, bool methodCallRange, const Method* methodToCall,
551 u2 count, u2 regs);
552 GOTO_TARGET_DECL(returnFromMethod);
553 GOTO_TARGET_DECL(exceptionThrown);
554
555 /*
556 * ===========================================================================
557 *
558 * What follows are opcode definitions shared between multiple opcodes with
559 * minor substitutions handled by the C pre-processor. These should probably
560 * use the mterp substitution mechanism instead, with the code here moved
561 * into common fragment files (like the asm "binop.S"), although it's hard
562 * to give up the C preprocessor in favor of the much simpler text subst.
563 *
564 * ===========================================================================
565 */
566
567 #define HANDLE_NUMCONV(_opcode, _opname, _fromtype, _totype) \
568 HANDLE_OPCODE(_opcode /*vA, vB*/) \
569 vdst = INST_A(inst); \
570 vsrc1 = INST_B(inst); \
571 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \
572 SET_REGISTER##_totype(vdst, \
573 GET_REGISTER##_fromtype(vsrc1)); \
574 FINISH(1);
575
576 #define HANDLE_FLOAT_TO_INT(_opcode, _opname, _fromvtype, _fromrtype, \
577 _tovtype, _tortype) \
578 HANDLE_OPCODE(_opcode /*vA, vB*/) \
579 { \
580 /* spec defines specific handling for +/- inf and NaN values */ \
581 _fromvtype val; \
582 _tovtype intMin, intMax, result; \
583 vdst = INST_A(inst); \
584 vsrc1 = INST_B(inst); \
585 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \
586 val = GET_REGISTER##_fromrtype(vsrc1); \
587 intMin = (_tovtype) 1 << (sizeof(_tovtype) * 8 -1); \
588 intMax = ~intMin; \
589 result = (_tovtype) val; \
590 if (val >= intMax) /* +inf */ \
591 result = intMax; \
592 else if (val <= intMin) /* -inf */ \
593 result = intMin; \
594 else if (val != val) /* NaN */ \
595 result = 0; \
596 else \
597 result = (_tovtype) val; \
598 SET_REGISTER##_tortype(vdst, result); \
599 } \
600 FINISH(1);
601
602 #define HANDLE_INT_TO_SMALL(_opcode, _opname, _type) \
603 HANDLE_OPCODE(_opcode /*vA, vB*/) \
604 vdst = INST_A(inst); \
605 vsrc1 = INST_B(inst); \
606 ILOGV("|int-to-%s v%d,v%d", (_opname), vdst, vsrc1); \
607 SET_REGISTER(vdst, (_type) GET_REGISTER(vsrc1)); \
608 FINISH(1);
609
610 /* NOTE: the comparison result is always a signed 4-byte integer */
611 #define HANDLE_OP_CMPX(_opcode, _opname, _varType, _type, _nanVal) \
612 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
613 { \
614 int result; \
615 u2 regs; \
616 _varType val1, val2; \
617 vdst = INST_AA(inst); \
618 regs = FETCH(1); \
619 vsrc1 = regs & 0xff; \
620 vsrc2 = regs >> 8; \
621 ILOGV("|cmp%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
622 val1 = GET_REGISTER##_type(vsrc1); \
623 val2 = GET_REGISTER##_type(vsrc2); \
624 if (val1 == val2) \
625 result = 0; \
626 else if (val1 < val2) \
627 result = -1; \
628 else if (val1 > val2) \
629 result = 1; \
630 else \
631 result = (_nanVal); \
632 ILOGV("+ result=%d\n", result); \
633 SET_REGISTER(vdst, result); \
634 } \
635 FINISH(2);
636
637 #define HANDLE_OP_IF_XX(_opcode, _opname, _cmp) \
638 HANDLE_OPCODE(_opcode /*vA, vB, +CCCC*/) \
639 vsrc1 = INST_A(inst); \
640 vsrc2 = INST_B(inst); \
641 if ((s4) GET_REGISTER(vsrc1) _cmp (s4) GET_REGISTER(vsrc2)) { \
642 int branchOffset = (s2)FETCH(1); /* sign-extended */ \
643 ILOGV("|if-%s v%d,v%d,+0x%04x", (_opname), vsrc1, vsrc2, \
644 branchOffset); \
645 ILOGV("> branch taken"); \
646 if (branchOffset < 0) \
647 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \
648 FINISH(branchOffset); \
649 } else { \
650 ILOGV("|if-%s v%d,v%d,-", (_opname), vsrc1, vsrc2); \
651 FINISH(2); \
652 }
653
654 #define HANDLE_OP_IF_XXZ(_opcode, _opname, _cmp) \
655 HANDLE_OPCODE(_opcode /*vAA, +BBBB*/) \
656 vsrc1 = INST_AA(inst); \
657 if ((s4) GET_REGISTER(vsrc1) _cmp 0) { \
658 int branchOffset = (s2)FETCH(1); /* sign-extended */ \
659 ILOGV("|if-%s v%d,+0x%04x", (_opname), vsrc1, branchOffset); \
660 ILOGV("> branch taken"); \
661 if (branchOffset < 0) \
662 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \
663 FINISH(branchOffset); \
664 } else { \
665 ILOGV("|if-%s v%d,-", (_opname), vsrc1); \
666 FINISH(2); \
667 }
668
669 #define HANDLE_UNOP(_opcode, _opname, _pfx, _sfx, _type) \
670 HANDLE_OPCODE(_opcode /*vA, vB*/) \
671 vdst = INST_A(inst); \
672 vsrc1 = INST_B(inst); \
673 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \
674 SET_REGISTER##_type(vdst, _pfx GET_REGISTER##_type(vsrc1) _sfx); \
675 FINISH(1);
676
677 #define HANDLE_OP_X_INT(_opcode, _opname, _op, _chkdiv) \
678 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
679 { \
680 u2 srcRegs; \
681 vdst = INST_AA(inst); \
682 srcRegs = FETCH(1); \
683 vsrc1 = srcRegs & 0xff; \
684 vsrc2 = srcRegs >> 8; \
685 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \
686 if (_chkdiv != 0) { \
687 s4 firstVal, secondVal, result; \
688 firstVal = GET_REGISTER(vsrc1); \
689 secondVal = GET_REGISTER(vsrc2); \
690 if (secondVal == 0) { \
691 EXPORT_PC(); \
692 dvmThrowException("Ljava/lang/ArithmeticException;", \
693 "divide by zero"); \
694 GOTO_exceptionThrown(); \
695 } \
696 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \
697 if (_chkdiv == 1) \
698 result = firstVal; /* division */ \
699 else \
700 result = 0; /* remainder */ \
701 } else { \
702 result = firstVal _op secondVal; \
703 } \
704 SET_REGISTER(vdst, result); \
705 } else { \
706 /* non-div/rem case */ \
707 SET_REGISTER(vdst, \
708 (s4) GET_REGISTER(vsrc1) _op (s4) GET_REGISTER(vsrc2)); \
709 } \
710 } \
711 FINISH(2);
712
713 #define HANDLE_OP_SHX_INT(_opcode, _opname, _cast, _op) \
714 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
715 { \
716 u2 srcRegs; \
717 vdst = INST_AA(inst); \
718 srcRegs = FETCH(1); \
719 vsrc1 = srcRegs & 0xff; \
720 vsrc2 = srcRegs >> 8; \
721 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \
722 SET_REGISTER(vdst, \
723 _cast GET_REGISTER(vsrc1) _op (GET_REGISTER(vsrc2) & 0x1f)); \
724 } \
725 FINISH(2);
726
727 #define HANDLE_OP_X_INT_LIT16(_opcode, _opname, _op, _chkdiv) \
728 HANDLE_OPCODE(_opcode /*vA, vB, #+CCCC*/) \
729 vdst = INST_A(inst); \
730 vsrc1 = INST_B(inst); \
731 vsrc2 = FETCH(1); \
732 ILOGV("|%s-int/lit16 v%d,v%d,#+0x%04x", \
733 (_opname), vdst, vsrc1, vsrc2); \
734 if (_chkdiv != 0) { \
735 s4 firstVal, result; \
736 firstVal = GET_REGISTER(vsrc1); \
737 if ((s2) vsrc2 == 0) { \
738 EXPORT_PC(); \
739 dvmThrowException("Ljava/lang/ArithmeticException;", \
740 "divide by zero"); \
741 GOTO_exceptionThrown(); \
742 } \
743 if ((u4)firstVal == 0x80000000 && ((s2) vsrc2) == -1) { \
744 /* won't generate /lit16 instr for this; check anyway */ \
745 if (_chkdiv == 1) \
746 result = firstVal; /* division */ \
747 else \
748 result = 0; /* remainder */ \
749 } else { \
750 result = firstVal _op (s2) vsrc2; \
751 } \
752 SET_REGISTER(vdst, result); \
753 } else { \
754 /* non-div/rem case */ \
755 SET_REGISTER(vdst, GET_REGISTER(vsrc1) _op (s2) vsrc2); \
756 } \
757 FINISH(2);
758
759 #define HANDLE_OP_X_INT_LIT8(_opcode, _opname, _op, _chkdiv) \
760 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \
761 { \
762 u2 litInfo; \
763 vdst = INST_AA(inst); \
764 litInfo = FETCH(1); \
765 vsrc1 = litInfo & 0xff; \
766 vsrc2 = litInfo >> 8; /* constant */ \
767 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \
768 (_opname), vdst, vsrc1, vsrc2); \
769 if (_chkdiv != 0) { \
770 s4 firstVal, result; \
771 firstVal = GET_REGISTER(vsrc1); \
772 if ((s1) vsrc2 == 0) { \
773 EXPORT_PC(); \
774 dvmThrowException("Ljava/lang/ArithmeticException;", \
775 "divide by zero"); \
776 GOTO_exceptionThrown(); \
777 } \
778 if ((u4)firstVal == 0x80000000 && ((s1) vsrc2) == -1) { \
779 if (_chkdiv == 1) \
780 result = firstVal; /* division */ \
781 else \
782 result = 0; /* remainder */ \
783 } else { \
784 result = firstVal _op ((s1) vsrc2); \
785 } \
786 SET_REGISTER(vdst, result); \
787 } else { \
788 SET_REGISTER(vdst, \
789 (s4) GET_REGISTER(vsrc1) _op (s1) vsrc2); \
790 } \
791 } \
792 FINISH(2);
793
794 #define HANDLE_OP_SHX_INT_LIT8(_opcode, _opname, _cast, _op) \
795 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \
796 { \
797 u2 litInfo; \
798 vdst = INST_AA(inst); \
799 litInfo = FETCH(1); \
800 vsrc1 = litInfo & 0xff; \
801 vsrc2 = litInfo >> 8; /* constant */ \
802 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \
803 (_opname), vdst, vsrc1, vsrc2); \
804 SET_REGISTER(vdst, \
805 _cast GET_REGISTER(vsrc1) _op (vsrc2 & 0x1f)); \
806 } \
807 FINISH(2);
808
809 #define HANDLE_OP_X_INT_2ADDR(_opcode, _opname, _op, _chkdiv) \
810 HANDLE_OPCODE(_opcode /*vA, vB*/) \
811 vdst = INST_A(inst); \
812 vsrc1 = INST_B(inst); \
813 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \
814 if (_chkdiv != 0) { \
815 s4 firstVal, secondVal, result; \
816 firstVal = GET_REGISTER(vdst); \
817 secondVal = GET_REGISTER(vsrc1); \
818 if (secondVal == 0) { \
819 EXPORT_PC(); \
820 dvmThrowException("Ljava/lang/ArithmeticException;", \
821 "divide by zero"); \
822 GOTO_exceptionThrown(); \
823 } \
824 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \
825 if (_chkdiv == 1) \
826 result = firstVal; /* division */ \
827 else \
828 result = 0; /* remainder */ \
829 } else { \
830 result = firstVal _op secondVal; \
831 } \
832 SET_REGISTER(vdst, result); \
833 } else { \
834 SET_REGISTER(vdst, \
835 (s4) GET_REGISTER(vdst) _op (s4) GET_REGISTER(vsrc1)); \
836 } \
837 FINISH(1);
838
839 #define HANDLE_OP_SHX_INT_2ADDR(_opcode, _opname, _cast, _op) \
840 HANDLE_OPCODE(_opcode /*vA, vB*/) \
841 vdst = INST_A(inst); \
842 vsrc1 = INST_B(inst); \
843 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \
844 SET_REGISTER(vdst, \
845 _cast GET_REGISTER(vdst) _op (GET_REGISTER(vsrc1) & 0x1f)); \
846 FINISH(1);
847
848 #define HANDLE_OP_X_LONG(_opcode, _opname, _op, _chkdiv) \
849 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
850 { \
851 u2 srcRegs; \
852 vdst = INST_AA(inst); \
853 srcRegs = FETCH(1); \
854 vsrc1 = srcRegs & 0xff; \
855 vsrc2 = srcRegs >> 8; \
856 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
857 if (_chkdiv != 0) { \
858 s8 firstVal, secondVal, result; \
859 firstVal = GET_REGISTER_WIDE(vsrc1); \
860 secondVal = GET_REGISTER_WIDE(vsrc2); \
861 if (secondVal == 0LL) { \
862 EXPORT_PC(); \
863 dvmThrowException("Ljava/lang/ArithmeticException;", \
864 "divide by zero"); \
865 GOTO_exceptionThrown(); \
866 } \
867 if ((u8)firstVal == 0x8000000000000000ULL && \
868 secondVal == -1LL) \
869 { \
870 if (_chkdiv == 1) \
871 result = firstVal; /* division */ \
872 else \
873 result = 0; /* remainder */ \
874 } else { \
875 result = firstVal _op secondVal; \
876 } \
877 SET_REGISTER_WIDE(vdst, result); \
878 } else { \
879 SET_REGISTER_WIDE(vdst, \
880 (s8) GET_REGISTER_WIDE(vsrc1) _op (s8) GET_REGISTER_WIDE(vsrc2)); \
881 } \
882 } \
883 FINISH(2);
884
885 #define HANDLE_OP_SHX_LONG(_opcode, _opname, _cast, _op) \
886 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
887 { \
888 u2 srcRegs; \
889 vdst = INST_AA(inst); \
890 srcRegs = FETCH(1); \
891 vsrc1 = srcRegs & 0xff; \
892 vsrc2 = srcRegs >> 8; \
893 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
894 SET_REGISTER_WIDE(vdst, \
895 _cast GET_REGISTER_WIDE(vsrc1) _op (GET_REGISTER(vsrc2) & 0x3f)); \
896 } \
897 FINISH(2);
898
899 #define HANDLE_OP_X_LONG_2ADDR(_opcode, _opname, _op, _chkdiv) \
900 HANDLE_OPCODE(_opcode /*vA, vB*/) \
901 vdst = INST_A(inst); \
902 vsrc1 = INST_B(inst); \
903 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \
904 if (_chkdiv != 0) { \
905 s8 firstVal, secondVal, result; \
906 firstVal = GET_REGISTER_WIDE(vdst); \
907 secondVal = GET_REGISTER_WIDE(vsrc1); \
908 if (secondVal == 0LL) { \
909 EXPORT_PC(); \
910 dvmThrowException("Ljava/lang/ArithmeticException;", \
911 "divide by zero"); \
912 GOTO_exceptionThrown(); \
913 } \
914 if ((u8)firstVal == 0x8000000000000000ULL && \
915 secondVal == -1LL) \
916 { \
917 if (_chkdiv == 1) \
918 result = firstVal; /* division */ \
919 else \
920 result = 0; /* remainder */ \
921 } else { \
922 result = firstVal _op secondVal; \
923 } \
924 SET_REGISTER_WIDE(vdst, result); \
925 } else { \
926 SET_REGISTER_WIDE(vdst, \
927 (s8) GET_REGISTER_WIDE(vdst) _op (s8)GET_REGISTER_WIDE(vsrc1));\
928 } \
929 FINISH(1);
930
931 #define HANDLE_OP_SHX_LONG_2ADDR(_opcode, _opname, _cast, _op) \
932 HANDLE_OPCODE(_opcode /*vA, vB*/) \
933 vdst = INST_A(inst); \
934 vsrc1 = INST_B(inst); \
935 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \
936 SET_REGISTER_WIDE(vdst, \
937 _cast GET_REGISTER_WIDE(vdst) _op (GET_REGISTER(vsrc1) & 0x3f)); \
938 FINISH(1);
939
940 #define HANDLE_OP_X_FLOAT(_opcode, _opname, _op) \
941 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
942 { \
943 u2 srcRegs; \
944 vdst = INST_AA(inst); \
945 srcRegs = FETCH(1); \
946 vsrc1 = srcRegs & 0xff; \
947 vsrc2 = srcRegs >> 8; \
948 ILOGV("|%s-float v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
949 SET_REGISTER_FLOAT(vdst, \
950 GET_REGISTER_FLOAT(vsrc1) _op GET_REGISTER_FLOAT(vsrc2)); \
951 } \
952 FINISH(2);
953
954 #define HANDLE_OP_X_DOUBLE(_opcode, _opname, _op) \
955 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
956 { \
957 u2 srcRegs; \
958 vdst = INST_AA(inst); \
959 srcRegs = FETCH(1); \
960 vsrc1 = srcRegs & 0xff; \
961 vsrc2 = srcRegs >> 8; \
962 ILOGV("|%s-double v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
963 SET_REGISTER_DOUBLE(vdst, \
964 GET_REGISTER_DOUBLE(vsrc1) _op GET_REGISTER_DOUBLE(vsrc2)); \
965 } \
966 FINISH(2);
967
968 #define HANDLE_OP_X_FLOAT_2ADDR(_opcode, _opname, _op) \
969 HANDLE_OPCODE(_opcode /*vA, vB*/) \
970 vdst = INST_A(inst); \
971 vsrc1 = INST_B(inst); \
972 ILOGV("|%s-float-2addr v%d,v%d", (_opname), vdst, vsrc1); \
973 SET_REGISTER_FLOAT(vdst, \
974 GET_REGISTER_FLOAT(vdst) _op GET_REGISTER_FLOAT(vsrc1)); \
975 FINISH(1);
976
977 #define HANDLE_OP_X_DOUBLE_2ADDR(_opcode, _opname, _op) \
978 HANDLE_OPCODE(_opcode /*vA, vB*/) \
979 vdst = INST_A(inst); \
980 vsrc1 = INST_B(inst); \
981 ILOGV("|%s-double-2addr v%d,v%d", (_opname), vdst, vsrc1); \
982 SET_REGISTER_DOUBLE(vdst, \
983 GET_REGISTER_DOUBLE(vdst) _op GET_REGISTER_DOUBLE(vsrc1)); \
984 FINISH(1);
985
986 #define HANDLE_OP_AGET(_opcode, _opname, _type, _regsize) \
987 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
988 { \
989 ArrayObject* arrayObj; \
990 u2 arrayInfo; \
991 EXPORT_PC(); \
992 vdst = INST_AA(inst); \
993 arrayInfo = FETCH(1); \
994 vsrc1 = arrayInfo & 0xff; /* array ptr */ \
995 vsrc2 = arrayInfo >> 8; /* index */ \
996 ILOGV("|aget%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
997 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \
998 if (!checkForNull((Object*) arrayObj)) \
999 GOTO_exceptionThrown(); \
1000 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \
1001 LOGV("Invalid array access: %p %d (len=%d)\n", \
1002 arrayObj, vsrc2, arrayObj->length); \
1003 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \
1004 NULL); \
1005 GOTO_exceptionThrown(); \
1006 } \
1007 SET_REGISTER##_regsize(vdst, \
1008 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)]); \
1009 ILOGV("+ AGET[%d]=0x%x", GET_REGISTER(vsrc2), GET_REGISTER(vdst)); \
1010 } \
1011 FINISH(2);
1012
1013 #define HANDLE_OP_APUT(_opcode, _opname, _type, _regsize) \
1014 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
1015 { \
1016 ArrayObject* arrayObj; \
1017 u2 arrayInfo; \
1018 EXPORT_PC(); \
1019 vdst = INST_AA(inst); /* AA: source value */ \
1020 arrayInfo = FETCH(1); \
1021 vsrc1 = arrayInfo & 0xff; /* BB: array ptr */ \
1022 vsrc2 = arrayInfo >> 8; /* CC: index */ \
1023 ILOGV("|aput%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
1024 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \
1025 if (!checkForNull((Object*) arrayObj)) \
1026 GOTO_exceptionThrown(); \
1027 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \
1028 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \
1029 NULL); \
1030 GOTO_exceptionThrown(); \
1031 } \
1032 ILOGV("+ APUT[%d]=0x%08x", GET_REGISTER(vsrc2), GET_REGISTER(vdst));\
1033 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)] = \
1034 GET_REGISTER##_regsize(vdst); \
1035 } \
1036 FINISH(2);
1037
1038 /*
1039 * It's possible to get a bad value out of a field with sub-32-bit stores
1040 * because the -quick versions always operate on 32 bits. Consider:
1041 * short foo = -1 (sets a 32-bit register to 0xffffffff)
1042 * iput-quick foo (writes all 32 bits to the field)
1043 * short bar = 1 (sets a 32-bit register to 0x00000001)
1044 * iput-short (writes the low 16 bits to the field)
1045 * iget-quick foo (reads all 32 bits from the field, yielding 0xffff0001)
1046 * This can only happen when optimized and non-optimized code has interleaved
1047 * access to the same field. This is unlikely but possible.
1048 *
1049 * The easiest way to fix this is to always read/write 32 bits at a time. On
1050 * a device with a 16-bit data bus this is sub-optimal. (The alternative
1051 * approach is to have sub-int versions of iget-quick, but now we're wasting
1052 * Dalvik instruction space and making it less likely that handler code will
1053 * already be in the CPU i-cache.)
1054 */
1055 #define HANDLE_IGET_X(_opcode, _opname, _ftype, _regsize) \
1056 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1057 { \
1058 InstField* ifield; \
1059 Object* obj; \
1060 EXPORT_PC(); \
1061 vdst = INST_A(inst); \
1062 vsrc1 = INST_B(inst); /* object ptr */ \
1063 ref = FETCH(1); /* field ref */ \
1064 ILOGV("|iget%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \
1065 obj = (Object*) GET_REGISTER(vsrc1); \
1066 if (!checkForNull(obj)) \
1067 GOTO_exceptionThrown(); \
1068 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \
1069 if (ifield == NULL) { \
1070 ifield = dvmResolveInstField(curMethod->clazz, ref); \
1071 if (ifield == NULL) \
1072 GOTO_exceptionThrown(); \
1073 } \
1074 SET_REGISTER##_regsize(vdst, \
1075 dvmGetField##_ftype(obj, ifield->byteOffset)); \
1076 ILOGV("+ IGET '%s'=0x%08llx", ifield->field.name, \
1077 (u8) GET_REGISTER##_regsize(vdst)); \
1078 UPDATE_FIELD_GET(&ifield->field); \
1079 } \
1080 FINISH(2);
1081
1082 #define HANDLE_IGET_X_QUICK(_opcode, _opname, _ftype, _regsize) \
1083 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1084 { \
1085 Object* obj; \
1086 vdst = INST_A(inst); \
1087 vsrc1 = INST_B(inst); /* object ptr */ \
1088 ref = FETCH(1); /* field offset */ \
1089 ILOGV("|iget%s-quick v%d,v%d,field@+%u", \
1090 (_opname), vdst, vsrc1, ref); \
1091 obj = (Object*) GET_REGISTER(vsrc1); \
1092 if (!checkForNullExportPC(obj, fp, pc)) \
1093 GOTO_exceptionThrown(); \
1094 SET_REGISTER##_regsize(vdst, dvmGetField##_ftype(obj, ref)); \
1095 ILOGV("+ IGETQ %d=0x%08llx", ref, \
1096 (u8) GET_REGISTER##_regsize(vdst)); \
1097 } \
1098 FINISH(2);
1099
1100 #define HANDLE_IPUT_X(_opcode, _opname, _ftype, _regsize) \
1101 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1102 { \
1103 InstField* ifield; \
1104 Object* obj; \
1105 EXPORT_PC(); \
1106 vdst = INST_A(inst); \
1107 vsrc1 = INST_B(inst); /* object ptr */ \
1108 ref = FETCH(1); /* field ref */ \
1109 ILOGV("|iput%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \
1110 obj = (Object*) GET_REGISTER(vsrc1); \
1111 if (!checkForNull(obj)) \
1112 GOTO_exceptionThrown(); \
1113 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \
1114 if (ifield == NULL) { \
1115 ifield = dvmResolveInstField(curMethod->clazz, ref); \
1116 if (ifield == NULL) \
1117 GOTO_exceptionThrown(); \
1118 } \
1119 dvmSetField##_ftype(obj, ifield->byteOffset, \
1120 GET_REGISTER##_regsize(vdst)); \
1121 ILOGV("+ IPUT '%s'=0x%08llx", ifield->field.name, \
1122 (u8) GET_REGISTER##_regsize(vdst)); \
1123 UPDATE_FIELD_PUT(&ifield->field); \
1124 } \
1125 FINISH(2);
1126
1127 #define HANDLE_IPUT_X_QUICK(_opcode, _opname, _ftype, _regsize) \
1128 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1129 { \
1130 Object* obj; \
1131 vdst = INST_A(inst); \
1132 vsrc1 = INST_B(inst); /* object ptr */ \
1133 ref = FETCH(1); /* field offset */ \
1134 ILOGV("|iput%s-quick v%d,v%d,field@0x%04x", \
1135 (_opname), vdst, vsrc1, ref); \
1136 obj = (Object*) GET_REGISTER(vsrc1); \
1137 if (!checkForNullExportPC(obj, fp, pc)) \
1138 GOTO_exceptionThrown(); \
1139 dvmSetField##_ftype(obj, ref, GET_REGISTER##_regsize(vdst)); \
1140 ILOGV("+ IPUTQ %d=0x%08llx", ref, \
1141 (u8) GET_REGISTER##_regsize(vdst)); \
1142 } \
1143 FINISH(2);
1144
1145 /*
1146 * The JIT needs dvmDexGetResolvedField() to return non-null.
1147 * Since we use the portable interpreter to build the trace, the extra
1148 * checks in HANDLE_SGET_X and HANDLE_SPUT_X are not needed for mterp.
1149 */
1150 #define HANDLE_SGET_X(_opcode, _opname, _ftype, _regsize) \
1151 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \
1152 { \
1153 StaticField* sfield; \
1154 vdst = INST_AA(inst); \
1155 ref = FETCH(1); /* field ref */ \
1156 ILOGV("|sget%s v%d,sfield@0x%04x", (_opname), vdst, ref); \
1157 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \
1158 if (sfield == NULL) { \
1159 EXPORT_PC(); \
1160 sfield = dvmResolveStaticField(curMethod->clazz, ref); \
1161 if (sfield == NULL) \
1162 GOTO_exceptionThrown(); \
1163 if (dvmDexGetResolvedField(methodClassDex, ref) == NULL) { \
1164 ABORT_JIT_TSELECT(); \
1165 } \
1166 } \
1167 SET_REGISTER##_regsize(vdst, dvmGetStaticField##_ftype(sfield)); \
1168 ILOGV("+ SGET '%s'=0x%08llx", \
1169 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \
1170 UPDATE_FIELD_GET(&sfield->field); \
1171 } \
1172 FINISH(2);
1173
1174 #define HANDLE_SPUT_X(_opcode, _opname, _ftype, _regsize) \
1175 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \
1176 { \
1177 StaticField* sfield; \
1178 vdst = INST_AA(inst); \
1179 ref = FETCH(1); /* field ref */ \
1180 ILOGV("|sput%s v%d,sfield@0x%04x", (_opname), vdst, ref); \
1181 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \
1182 if (sfield == NULL) { \
1183 EXPORT_PC(); \
1184 sfield = dvmResolveStaticField(curMethod->clazz, ref); \
1185 if (sfield == NULL) \
1186 GOTO_exceptionThrown(); \
1187 if (dvmDexGetResolvedField(methodClassDex, ref) == NULL) { \
1188 ABORT_JIT_TSELECT(); \
1189 } \
1190 } \
1191 dvmSetStaticField##_ftype(sfield, GET_REGISTER##_regsize(vdst)); \
1192 ILOGV("+ SPUT '%s'=0x%08llx", \
1193 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \
1194 UPDATE_FIELD_PUT(&sfield->field); \
1195 } \
1196 FINISH(2);
1197
1198 /* File: c/OP_IGET_WIDE_VOLATILE.c */
1199 HANDLE_IGET_X(OP_IGET_WIDE_VOLATILE, "-wide-volatile", LongVolatile, _WIDE)
1200 OP_END
1201
1202 /* File: c/OP_IPUT_WIDE_VOLATILE.c */
1203 HANDLE_IPUT_X(OP_IPUT_WIDE_VOLATILE, "-wide-volatile", LongVolatile, _WIDE)
1204 OP_END
1205
1206 /* File: c/OP_SGET_WIDE_VOLATILE.c */
1207 HANDLE_SGET_X(OP_SGET_WIDE_VOLATILE, "-wide-volatile", LongVolatile, _WIDE)
1208 OP_END
1209
1210 /* File: c/OP_SPUT_WIDE_VOLATILE.c */
1211 HANDLE_SPUT_X(OP_SPUT_WIDE_VOLATILE, "-wide-volatile", LongVolatile, _WIDE)
1212 OP_END
1213
1214 /* File: c/OP_EXECUTE_INLINE_RANGE.c */
HANDLE_OPCODE(OP_EXECUTE_INLINE_RANGE)1215 HANDLE_OPCODE(OP_EXECUTE_INLINE_RANGE /*{vCCCC..v(CCCC+AA-1)}, inline@BBBB*/)
1216 {
1217 u4 arg0, arg1, arg2, arg3;
1218 arg0 = arg1 = arg2 = arg3 = 0; /* placate gcc */
1219
1220 EXPORT_PC();
1221
1222 vsrc1 = INST_AA(inst); /* #of args */
1223 ref = FETCH(1); /* inline call "ref" */
1224 vdst = FETCH(2); /* range base */
1225 ILOGV("|execute-inline-range args=%d @%d {regs=v%d-v%d}",
1226 vsrc1, ref, vdst, vdst+vsrc1-1);
1227
1228 assert((vdst >> 16) == 0); // 16-bit type -or- high 16 bits clear
1229 assert(vsrc1 <= 4);
1230
1231 switch (vsrc1) {
1232 case 4:
1233 arg3 = GET_REGISTER(vdst+3);
1234 /* fall through */
1235 case 3:
1236 arg2 = GET_REGISTER(vdst+2);
1237 /* fall through */
1238 case 2:
1239 arg1 = GET_REGISTER(vdst+1);
1240 /* fall through */
1241 case 1:
1242 arg0 = GET_REGISTER(vdst+0);
1243 /* fall through */
1244 default: // case 0
1245 ;
1246 }
1247
1248 #if INTERP_TYPE == INTERP_DBG
1249 if (!dvmPerformInlineOp4Dbg(arg0, arg1, arg2, arg3, &retval, ref))
1250 GOTO_exceptionThrown();
1251 #else
1252 if (!dvmPerformInlineOp4Std(arg0, arg1, arg2, arg3, &retval, ref))
1253 GOTO_exceptionThrown();
1254 #endif
1255 }
1256 FINISH(3);
1257 OP_END
1258
1259 /* File: c/gotoTargets.c */
1260 /*
1261 * C footer. This has some common code shared by the various targets.
1262 */
1263
1264 /*
1265 * Everything from here on is a "goto target". In the basic interpreter
1266 * we jump into these targets and then jump directly to the handler for
1267 * next instruction. Here, these are subroutines that return to the caller.
1268 */
1269
GOTO_TARGET(filledNewArray,bool methodCallRange)1270 GOTO_TARGET(filledNewArray, bool methodCallRange)
1271 {
1272 ClassObject* arrayClass;
1273 ArrayObject* newArray;
1274 u4* contents;
1275 char typeCh;
1276 int i;
1277 u4 arg5;
1278
1279 EXPORT_PC();
1280
1281 ref = FETCH(1); /* class ref */
1282 vdst = FETCH(2); /* first 4 regs -or- range base */
1283
1284 if (methodCallRange) {
1285 vsrc1 = INST_AA(inst); /* #of elements */
1286 arg5 = -1; /* silence compiler warning */
1287 ILOGV("|filled-new-array-range args=%d @0x%04x {regs=v%d-v%d}",
1288 vsrc1, ref, vdst, vdst+vsrc1-1);
1289 } else {
1290 arg5 = INST_A(inst);
1291 vsrc1 = INST_B(inst); /* #of elements */
1292 ILOGV("|filled-new-array args=%d @0x%04x {regs=0x%04x %x}",
1293 vsrc1, ref, vdst, arg5);
1294 }
1295
1296 /*
1297 * Resolve the array class.
1298 */
1299 arrayClass = dvmDexGetResolvedClass(methodClassDex, ref);
1300 if (arrayClass == NULL) {
1301 arrayClass = dvmResolveClass(curMethod->clazz, ref, false);
1302 if (arrayClass == NULL)
1303 GOTO_exceptionThrown();
1304 }
1305 /*
1306 if (!dvmIsArrayClass(arrayClass)) {
1307 dvmThrowException("Ljava/lang/RuntimeError;",
1308 "filled-new-array needs array class");
1309 GOTO_exceptionThrown();
1310 }
1311 */
1312 /* verifier guarantees this is an array class */
1313 assert(dvmIsArrayClass(arrayClass));
1314 assert(dvmIsClassInitialized(arrayClass));
1315
1316 /*
1317 * Create an array of the specified type.
1318 */
1319 LOGVV("+++ filled-new-array type is '%s'\n", arrayClass->descriptor);
1320 typeCh = arrayClass->descriptor[1];
1321 if (typeCh == 'D' || typeCh == 'J') {
1322 /* category 2 primitives not allowed */
1323 dvmThrowException("Ljava/lang/RuntimeError;",
1324 "bad filled array req");
1325 GOTO_exceptionThrown();
1326 } else if (typeCh != 'L' && typeCh != '[' && typeCh != 'I') {
1327 /* TODO: requires multiple "fill in" loops with different widths */
1328 LOGE("non-int primitives not implemented\n");
1329 dvmThrowException("Ljava/lang/InternalError;",
1330 "filled-new-array not implemented for anything but 'int'");
1331 GOTO_exceptionThrown();
1332 }
1333
1334 newArray = dvmAllocArrayByClass(arrayClass, vsrc1, ALLOC_DONT_TRACK);
1335 if (newArray == NULL)
1336 GOTO_exceptionThrown();
1337
1338 /*
1339 * Fill in the elements. It's legal for vsrc1 to be zero.
1340 */
1341 contents = (u4*) newArray->contents;
1342 if (methodCallRange) {
1343 for (i = 0; i < vsrc1; i++)
1344 contents[i] = GET_REGISTER(vdst+i);
1345 } else {
1346 assert(vsrc1 <= 5);
1347 if (vsrc1 == 5) {
1348 contents[4] = GET_REGISTER(arg5);
1349 vsrc1--;
1350 }
1351 for (i = 0; i < vsrc1; i++) {
1352 contents[i] = GET_REGISTER(vdst & 0x0f);
1353 vdst >>= 4;
1354 }
1355 }
1356 if (typeCh == 'L' || typeCh == '[') {
1357 dvmWriteBarrierArray(newArray, 0, newArray->length);
1358 }
1359
1360 retval.l = newArray;
1361 }
1362 FINISH(3);
1363 GOTO_TARGET_END
1364
1365
GOTO_TARGET(invokeVirtual,bool methodCallRange)1366 GOTO_TARGET(invokeVirtual, bool methodCallRange)
1367 {
1368 Method* baseMethod;
1369 Object* thisPtr;
1370
1371 EXPORT_PC();
1372
1373 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1374 ref = FETCH(1); /* method ref */
1375 vdst = FETCH(2); /* 4 regs -or- first reg */
1376
1377 /*
1378 * The object against which we are executing a method is always
1379 * in the first argument.
1380 */
1381 if (methodCallRange) {
1382 assert(vsrc1 > 0);
1383 ILOGV("|invoke-virtual-range args=%d @0x%04x {regs=v%d-v%d}",
1384 vsrc1, ref, vdst, vdst+vsrc1-1);
1385 thisPtr = (Object*) GET_REGISTER(vdst);
1386 } else {
1387 assert((vsrc1>>4) > 0);
1388 ILOGV("|invoke-virtual args=%d @0x%04x {regs=0x%04x %x}",
1389 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1390 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f);
1391 }
1392
1393 if (!checkForNull(thisPtr))
1394 GOTO_exceptionThrown();
1395
1396 /*
1397 * Resolve the method. This is the correct method for the static
1398 * type of the object. We also verify access permissions here.
1399 */
1400 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref);
1401 if (baseMethod == NULL) {
1402 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL);
1403 if (baseMethod == NULL) {
1404 ILOGV("+ unknown method or access denied\n");
1405 GOTO_exceptionThrown();
1406 }
1407 }
1408
1409 /*
1410 * Combine the object we found with the vtable offset in the
1411 * method.
1412 */
1413 assert(baseMethod->methodIndex < thisPtr->clazz->vtableCount);
1414 methodToCall = thisPtr->clazz->vtable[baseMethod->methodIndex];
1415
1416 #if defined(WITH_JIT) && (INTERP_TYPE == INTERP_DBG)
1417 callsiteClass = thisPtr->clazz;
1418 #endif
1419
1420 #if 0
1421 if (dvmIsAbstractMethod(methodToCall)) {
1422 /*
1423 * This can happen if you create two classes, Base and Sub, where
1424 * Sub is a sub-class of Base. Declare a protected abstract
1425 * method foo() in Base, and invoke foo() from a method in Base.
1426 * Base is an "abstract base class" and is never instantiated
1427 * directly. Now, Override foo() in Sub, and use Sub. This
1428 * Works fine unless Sub stops providing an implementation of
1429 * the method.
1430 */
1431 dvmThrowException("Ljava/lang/AbstractMethodError;",
1432 "abstract method not implemented");
1433 GOTO_exceptionThrown();
1434 }
1435 #else
1436 assert(!dvmIsAbstractMethod(methodToCall) ||
1437 methodToCall->nativeFunc != NULL);
1438 #endif
1439
1440 LOGVV("+++ base=%s.%s virtual[%d]=%s.%s\n",
1441 baseMethod->clazz->descriptor, baseMethod->name,
1442 (u4) baseMethod->methodIndex,
1443 methodToCall->clazz->descriptor, methodToCall->name);
1444 assert(methodToCall != NULL);
1445
1446 #if 0
1447 if (vsrc1 != methodToCall->insSize) {
1448 LOGW("WRONG METHOD: base=%s.%s virtual[%d]=%s.%s\n",
1449 baseMethod->clazz->descriptor, baseMethod->name,
1450 (u4) baseMethod->methodIndex,
1451 methodToCall->clazz->descriptor, methodToCall->name);
1452 //dvmDumpClass(baseMethod->clazz);
1453 //dvmDumpClass(methodToCall->clazz);
1454 dvmDumpAllClasses(0);
1455 }
1456 #endif
1457
1458 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1459 }
1460 GOTO_TARGET_END
1461
GOTO_TARGET(invokeSuper,bool methodCallRange)1462 GOTO_TARGET(invokeSuper, bool methodCallRange)
1463 {
1464 Method* baseMethod;
1465 u2 thisReg;
1466
1467 EXPORT_PC();
1468
1469 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1470 ref = FETCH(1); /* method ref */
1471 vdst = FETCH(2); /* 4 regs -or- first reg */
1472
1473 if (methodCallRange) {
1474 ILOGV("|invoke-super-range args=%d @0x%04x {regs=v%d-v%d}",
1475 vsrc1, ref, vdst, vdst+vsrc1-1);
1476 thisReg = vdst;
1477 } else {
1478 ILOGV("|invoke-super args=%d @0x%04x {regs=0x%04x %x}",
1479 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1480 thisReg = vdst & 0x0f;
1481 }
1482 /* impossible in well-formed code, but we must check nevertheless */
1483 if (!checkForNull((Object*) GET_REGISTER(thisReg)))
1484 GOTO_exceptionThrown();
1485
1486 /*
1487 * Resolve the method. This is the correct method for the static
1488 * type of the object. We also verify access permissions here.
1489 * The first arg to dvmResolveMethod() is just the referring class
1490 * (used for class loaders and such), so we don't want to pass
1491 * the superclass into the resolution call.
1492 */
1493 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref);
1494 if (baseMethod == NULL) {
1495 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL);
1496 if (baseMethod == NULL) {
1497 ILOGV("+ unknown method or access denied\n");
1498 GOTO_exceptionThrown();
1499 }
1500 }
1501
1502 /*
1503 * Combine the object we found with the vtable offset in the
1504 * method's class.
1505 *
1506 * We're using the current method's class' superclass, not the
1507 * superclass of "this". This is because we might be executing
1508 * in a method inherited from a superclass, and we want to run
1509 * in that class' superclass.
1510 */
1511 if (baseMethod->methodIndex >= curMethod->clazz->super->vtableCount) {
1512 /*
1513 * Method does not exist in the superclass. Could happen if
1514 * superclass gets updated.
1515 */
1516 dvmThrowException("Ljava/lang/NoSuchMethodError;",
1517 baseMethod->name);
1518 GOTO_exceptionThrown();
1519 }
1520 methodToCall = curMethod->clazz->super->vtable[baseMethod->methodIndex];
1521 #if 0
1522 if (dvmIsAbstractMethod(methodToCall)) {
1523 dvmThrowException("Ljava/lang/AbstractMethodError;",
1524 "abstract method not implemented");
1525 GOTO_exceptionThrown();
1526 }
1527 #else
1528 assert(!dvmIsAbstractMethod(methodToCall) ||
1529 methodToCall->nativeFunc != NULL);
1530 #endif
1531 LOGVV("+++ base=%s.%s super-virtual=%s.%s\n",
1532 baseMethod->clazz->descriptor, baseMethod->name,
1533 methodToCall->clazz->descriptor, methodToCall->name);
1534 assert(methodToCall != NULL);
1535
1536 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1537 }
1538 GOTO_TARGET_END
1539
GOTO_TARGET(invokeInterface,bool methodCallRange)1540 GOTO_TARGET(invokeInterface, bool methodCallRange)
1541 {
1542 Object* thisPtr;
1543 ClassObject* thisClass;
1544
1545 EXPORT_PC();
1546
1547 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1548 ref = FETCH(1); /* method ref */
1549 vdst = FETCH(2); /* 4 regs -or- first reg */
1550
1551 /*
1552 * The object against which we are executing a method is always
1553 * in the first argument.
1554 */
1555 if (methodCallRange) {
1556 assert(vsrc1 > 0);
1557 ILOGV("|invoke-interface-range args=%d @0x%04x {regs=v%d-v%d}",
1558 vsrc1, ref, vdst, vdst+vsrc1-1);
1559 thisPtr = (Object*) GET_REGISTER(vdst);
1560 } else {
1561 assert((vsrc1>>4) > 0);
1562 ILOGV("|invoke-interface args=%d @0x%04x {regs=0x%04x %x}",
1563 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1564 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f);
1565 }
1566 if (!checkForNull(thisPtr))
1567 GOTO_exceptionThrown();
1568
1569 thisClass = thisPtr->clazz;
1570
1571 #if defined(WITH_JIT) && (INTERP_TYPE == INTERP_DBG)
1572 callsiteClass = thisClass;
1573 #endif
1574
1575 /*
1576 * Given a class and a method index, find the Method* with the
1577 * actual code we want to execute.
1578 */
1579 methodToCall = dvmFindInterfaceMethodInCache(thisClass, ref, curMethod,
1580 methodClassDex);
1581 if (methodToCall == NULL) {
1582 assert(dvmCheckException(self));
1583 GOTO_exceptionThrown();
1584 }
1585
1586 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1587 }
1588 GOTO_TARGET_END
1589
GOTO_TARGET(invokeDirect,bool methodCallRange)1590 GOTO_TARGET(invokeDirect, bool methodCallRange)
1591 {
1592 u2 thisReg;
1593
1594 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1595 ref = FETCH(1); /* method ref */
1596 vdst = FETCH(2); /* 4 regs -or- first reg */
1597
1598 EXPORT_PC();
1599
1600 if (methodCallRange) {
1601 ILOGV("|invoke-direct-range args=%d @0x%04x {regs=v%d-v%d}",
1602 vsrc1, ref, vdst, vdst+vsrc1-1);
1603 thisReg = vdst;
1604 } else {
1605 ILOGV("|invoke-direct args=%d @0x%04x {regs=0x%04x %x}",
1606 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1607 thisReg = vdst & 0x0f;
1608 }
1609 if (!checkForNull((Object*) GET_REGISTER(thisReg)))
1610 GOTO_exceptionThrown();
1611
1612 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref);
1613 if (methodToCall == NULL) {
1614 methodToCall = dvmResolveMethod(curMethod->clazz, ref,
1615 METHOD_DIRECT);
1616 if (methodToCall == NULL) {
1617 ILOGV("+ unknown direct method\n"); // should be impossible
1618 GOTO_exceptionThrown();
1619 }
1620 }
1621 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1622 }
1623 GOTO_TARGET_END
1624
1625 GOTO_TARGET(invokeStatic, bool methodCallRange)
1626 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1627 ref = FETCH(1); /* method ref */
1628 vdst = FETCH(2); /* 4 regs -or- first reg */
1629
1630 EXPORT_PC();
1631
1632 if (methodCallRange)
1633 ILOGV("|invoke-static-range args=%d @0x%04x {regs=v%d-v%d}",
1634 vsrc1, ref, vdst, vdst+vsrc1-1);
1635 else
1636 ILOGV("|invoke-static args=%d @0x%04x {regs=0x%04x %x}",
1637 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1638
1639 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref);
1640 if (methodToCall == NULL) {
1641 methodToCall = dvmResolveMethod(curMethod->clazz, ref, METHOD_STATIC);
1642 if (methodToCall == NULL) {
1643 ILOGV("+ unknown method\n");
1644 GOTO_exceptionThrown();
1645 }
1646
1647 /*
1648 * The JIT needs dvmDexGetResolvedMethod() to return non-null.
1649 * Since we use the portable interpreter to build the trace, this extra
1650 * check is not needed for mterp.
1651 */
1652 if (dvmDexGetResolvedMethod(methodClassDex, ref) == NULL) {
1653 /* Class initialization is still ongoing */
1654 ABORT_JIT_TSELECT();
1655 }
1656 }
1657 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1658 GOTO_TARGET_END
1659
GOTO_TARGET(invokeVirtualQuick,bool methodCallRange)1660 GOTO_TARGET(invokeVirtualQuick, bool methodCallRange)
1661 {
1662 Object* thisPtr;
1663
1664 EXPORT_PC();
1665
1666 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1667 ref = FETCH(1); /* vtable index */
1668 vdst = FETCH(2); /* 4 regs -or- first reg */
1669
1670 /*
1671 * The object against which we are executing a method is always
1672 * in the first argument.
1673 */
1674 if (methodCallRange) {
1675 assert(vsrc1 > 0);
1676 ILOGV("|invoke-virtual-quick-range args=%d @0x%04x {regs=v%d-v%d}",
1677 vsrc1, ref, vdst, vdst+vsrc1-1);
1678 thisPtr = (Object*) GET_REGISTER(vdst);
1679 } else {
1680 assert((vsrc1>>4) > 0);
1681 ILOGV("|invoke-virtual-quick args=%d @0x%04x {regs=0x%04x %x}",
1682 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1683 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f);
1684 }
1685
1686 if (!checkForNull(thisPtr))
1687 GOTO_exceptionThrown();
1688
1689 #if defined(WITH_JIT) && (INTERP_TYPE == INTERP_DBG)
1690 callsiteClass = thisPtr->clazz;
1691 #endif
1692
1693 /*
1694 * Combine the object we found with the vtable offset in the
1695 * method.
1696 */
1697 assert(ref < thisPtr->clazz->vtableCount);
1698 methodToCall = thisPtr->clazz->vtable[ref];
1699
1700 #if 0
1701 if (dvmIsAbstractMethod(methodToCall)) {
1702 dvmThrowException("Ljava/lang/AbstractMethodError;",
1703 "abstract method not implemented");
1704 GOTO_exceptionThrown();
1705 }
1706 #else
1707 assert(!dvmIsAbstractMethod(methodToCall) ||
1708 methodToCall->nativeFunc != NULL);
1709 #endif
1710
1711 LOGVV("+++ virtual[%d]=%s.%s\n",
1712 ref, methodToCall->clazz->descriptor, methodToCall->name);
1713 assert(methodToCall != NULL);
1714
1715 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1716 }
1717 GOTO_TARGET_END
1718
GOTO_TARGET(invokeSuperQuick,bool methodCallRange)1719 GOTO_TARGET(invokeSuperQuick, bool methodCallRange)
1720 {
1721 u2 thisReg;
1722
1723 EXPORT_PC();
1724
1725 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1726 ref = FETCH(1); /* vtable index */
1727 vdst = FETCH(2); /* 4 regs -or- first reg */
1728
1729 if (methodCallRange) {
1730 ILOGV("|invoke-super-quick-range args=%d @0x%04x {regs=v%d-v%d}",
1731 vsrc1, ref, vdst, vdst+vsrc1-1);
1732 thisReg = vdst;
1733 } else {
1734 ILOGV("|invoke-super-quick args=%d @0x%04x {regs=0x%04x %x}",
1735 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1736 thisReg = vdst & 0x0f;
1737 }
1738 /* impossible in well-formed code, but we must check nevertheless */
1739 if (!checkForNull((Object*) GET_REGISTER(thisReg)))
1740 GOTO_exceptionThrown();
1741
1742 #if 0 /* impossible in optimized + verified code */
1743 if (ref >= curMethod->clazz->super->vtableCount) {
1744 dvmThrowException("Ljava/lang/NoSuchMethodError;", NULL);
1745 GOTO_exceptionThrown();
1746 }
1747 #else
1748 assert(ref < curMethod->clazz->super->vtableCount);
1749 #endif
1750
1751 /*
1752 * Combine the object we found with the vtable offset in the
1753 * method's class.
1754 *
1755 * We're using the current method's class' superclass, not the
1756 * superclass of "this". This is because we might be executing
1757 * in a method inherited from a superclass, and we want to run
1758 * in the method's class' superclass.
1759 */
1760 methodToCall = curMethod->clazz->super->vtable[ref];
1761
1762 #if 0
1763 if (dvmIsAbstractMethod(methodToCall)) {
1764 dvmThrowException("Ljava/lang/AbstractMethodError;",
1765 "abstract method not implemented");
1766 GOTO_exceptionThrown();
1767 }
1768 #else
1769 assert(!dvmIsAbstractMethod(methodToCall) ||
1770 methodToCall->nativeFunc != NULL);
1771 #endif
1772 LOGVV("+++ super-virtual[%d]=%s.%s\n",
1773 ref, methodToCall->clazz->descriptor, methodToCall->name);
1774 assert(methodToCall != NULL);
1775
1776 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1777 }
1778 GOTO_TARGET_END
1779
1780
1781 /*
1782 * General handling for return-void, return, and return-wide. Put the
1783 * return value in "retval" before jumping here.
1784 */
GOTO_TARGET(returnFromMethod)1785 GOTO_TARGET(returnFromMethod)
1786 {
1787 StackSaveArea* saveArea;
1788
1789 /*
1790 * We must do this BEFORE we pop the previous stack frame off, so
1791 * that the GC can see the return value (if any) in the local vars.
1792 *
1793 * Since this is now an interpreter switch point, we must do it before
1794 * we do anything at all.
1795 */
1796 PERIODIC_CHECKS(kInterpEntryReturn, 0);
1797
1798 ILOGV("> retval=0x%llx (leaving %s.%s %s)",
1799 retval.j, curMethod->clazz->descriptor, curMethod->name,
1800 curMethod->shorty);
1801 //DUMP_REGS(curMethod, fp);
1802
1803 saveArea = SAVEAREA_FROM_FP(fp);
1804
1805 #ifdef EASY_GDB
1806 debugSaveArea = saveArea;
1807 #endif
1808 #if (INTERP_TYPE == INTERP_DBG)
1809 TRACE_METHOD_EXIT(self, curMethod);
1810 #endif
1811
1812 /* back up to previous frame and see if we hit a break */
1813 fp = saveArea->prevFrame;
1814 assert(fp != NULL);
1815 if (dvmIsBreakFrame(fp)) {
1816 /* bail without popping the method frame from stack */
1817 LOGVV("+++ returned into break frame\n");
1818 #if defined(WITH_JIT)
1819 /* Let the Jit know the return is terminating normally */
1820 CHECK_JIT_VOID();
1821 #endif
1822 GOTO_bail();
1823 }
1824
1825 /* update thread FP, and reset local variables */
1826 self->curFrame = fp;
1827 curMethod = SAVEAREA_FROM_FP(fp)->method;
1828 //methodClass = curMethod->clazz;
1829 methodClassDex = curMethod->clazz->pDvmDex;
1830 pc = saveArea->savedPc;
1831 ILOGD("> (return to %s.%s %s)", curMethod->clazz->descriptor,
1832 curMethod->name, curMethod->shorty);
1833
1834 /* use FINISH on the caller's invoke instruction */
1835 //u2 invokeInstr = INST_INST(FETCH(0));
1836 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL &&
1837 invokeInstr <= OP_INVOKE_INTERFACE*/)
1838 {
1839 FINISH(3);
1840 } else {
1841 //LOGE("Unknown invoke instr %02x at %d\n",
1842 // invokeInstr, (int) (pc - curMethod->insns));
1843 assert(false);
1844 }
1845 }
1846 GOTO_TARGET_END
1847
1848
1849 /*
1850 * Jump here when the code throws an exception.
1851 *
1852 * By the time we get here, the Throwable has been created and the stack
1853 * trace has been saved off.
1854 */
GOTO_TARGET(exceptionThrown)1855 GOTO_TARGET(exceptionThrown)
1856 {
1857 Object* exception;
1858 int catchRelPc;
1859
1860 /*
1861 * Since this is now an interpreter switch point, we must do it before
1862 * we do anything at all.
1863 */
1864 PERIODIC_CHECKS(kInterpEntryThrow, 0);
1865
1866 #if defined(WITH_JIT)
1867 // Something threw during trace selection - abort the current trace
1868 ABORT_JIT_TSELECT();
1869 #endif
1870 /*
1871 * We save off the exception and clear the exception status. While
1872 * processing the exception we might need to load some Throwable
1873 * classes, and we don't want class loader exceptions to get
1874 * confused with this one.
1875 */
1876 assert(dvmCheckException(self));
1877 exception = dvmGetException(self);
1878 dvmAddTrackedAlloc(exception, self);
1879 dvmClearException(self);
1880
1881 LOGV("Handling exception %s at %s:%d\n",
1882 exception->clazz->descriptor, curMethod->name,
1883 dvmLineNumFromPC(curMethod, pc - curMethod->insns));
1884
1885 #if (INTERP_TYPE == INTERP_DBG)
1886 /*
1887 * Tell the debugger about it.
1888 *
1889 * TODO: if the exception was thrown by interpreted code, control
1890 * fell through native, and then back to us, we will report the
1891 * exception at the point of the throw and again here. We can avoid
1892 * this by not reporting exceptions when we jump here directly from
1893 * the native call code above, but then we won't report exceptions
1894 * that were thrown *from* the JNI code (as opposed to *through* it).
1895 *
1896 * The correct solution is probably to ignore from-native exceptions
1897 * here, and have the JNI exception code do the reporting to the
1898 * debugger.
1899 */
1900 if (gDvm.debuggerActive) {
1901 void* catchFrame;
1902 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns,
1903 exception, true, &catchFrame);
1904 dvmDbgPostException(fp, pc - curMethod->insns, catchFrame,
1905 catchRelPc, exception);
1906 }
1907 #endif
1908
1909 /*
1910 * We need to unroll to the catch block or the nearest "break"
1911 * frame.
1912 *
1913 * A break frame could indicate that we have reached an intermediate
1914 * native call, or have gone off the top of the stack and the thread
1915 * needs to exit. Either way, we return from here, leaving the
1916 * exception raised.
1917 *
1918 * If we do find a catch block, we want to transfer execution to
1919 * that point.
1920 *
1921 * Note this can cause an exception while resolving classes in
1922 * the "catch" blocks.
1923 */
1924 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns,
1925 exception, false, (void*)&fp);
1926
1927 /*
1928 * Restore the stack bounds after an overflow. This isn't going to
1929 * be correct in all circumstances, e.g. if JNI code devours the
1930 * exception this won't happen until some other exception gets
1931 * thrown. If the code keeps pushing the stack bounds we'll end
1932 * up aborting the VM.
1933 *
1934 * Note we want to do this *after* the call to dvmFindCatchBlock,
1935 * because that may need extra stack space to resolve exception
1936 * classes (e.g. through a class loader).
1937 *
1938 * It's possible for the stack overflow handling to cause an
1939 * exception (specifically, class resolution in a "catch" block
1940 * during the call above), so we could see the thread's overflow
1941 * flag raised but actually be running in a "nested" interpreter
1942 * frame. We don't allow doubled-up StackOverflowErrors, so
1943 * we can check for this by just looking at the exception type
1944 * in the cleanup function. Also, we won't unroll past the SOE
1945 * point because the more-recent exception will hit a break frame
1946 * as it unrolls to here.
1947 */
1948 if (self->stackOverflowed)
1949 dvmCleanupStackOverflow(self, exception);
1950
1951 if (catchRelPc < 0) {
1952 /* falling through to JNI code or off the bottom of the stack */
1953 #if DVM_SHOW_EXCEPTION >= 2
1954 LOGD("Exception %s from %s:%d not caught locally\n",
1955 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod),
1956 dvmLineNumFromPC(curMethod, pc - curMethod->insns));
1957 #endif
1958 dvmSetException(self, exception);
1959 dvmReleaseTrackedAlloc(exception, self);
1960 GOTO_bail();
1961 }
1962
1963 #if DVM_SHOW_EXCEPTION >= 3
1964 {
1965 const Method* catchMethod = SAVEAREA_FROM_FP(fp)->method;
1966 LOGD("Exception %s thrown from %s:%d to %s:%d\n",
1967 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod),
1968 dvmLineNumFromPC(curMethod, pc - curMethod->insns),
1969 dvmGetMethodSourceFile(catchMethod),
1970 dvmLineNumFromPC(catchMethod, catchRelPc));
1971 }
1972 #endif
1973
1974 /*
1975 * Adjust local variables to match self->curFrame and the
1976 * updated PC.
1977 */
1978 //fp = (u4*) self->curFrame;
1979 curMethod = SAVEAREA_FROM_FP(fp)->method;
1980 //methodClass = curMethod->clazz;
1981 methodClassDex = curMethod->clazz->pDvmDex;
1982 pc = curMethod->insns + catchRelPc;
1983 ILOGV("> pc <-- %s.%s %s", curMethod->clazz->descriptor,
1984 curMethod->name, curMethod->shorty);
1985 DUMP_REGS(curMethod, fp, false); // show all regs
1986
1987 /*
1988 * Restore the exception if the handler wants it.
1989 *
1990 * The Dalvik spec mandates that, if an exception handler wants to
1991 * do something with the exception, the first instruction executed
1992 * must be "move-exception". We can pass the exception along
1993 * through the thread struct, and let the move-exception instruction
1994 * clear it for us.
1995 *
1996 * If the handler doesn't call move-exception, we don't want to
1997 * finish here with an exception still pending.
1998 */
1999 if (INST_INST(FETCH(0)) == OP_MOVE_EXCEPTION)
2000 dvmSetException(self, exception);
2001
2002 dvmReleaseTrackedAlloc(exception, self);
2003 FINISH(0);
2004 }
2005 GOTO_TARGET_END
2006
2007
2008
2009 /*
2010 * General handling for invoke-{virtual,super,direct,static,interface},
2011 * including "quick" variants.
2012 *
2013 * Set "methodToCall" to the Method we're calling, and "methodCallRange"
2014 * depending on whether this is a "/range" instruction.
2015 *
2016 * For a range call:
2017 * "vsrc1" holds the argument count (8 bits)
2018 * "vdst" holds the first argument in the range
2019 * For a non-range call:
2020 * "vsrc1" holds the argument count (4 bits) and the 5th argument index
2021 * "vdst" holds four 4-bit register indices
2022 *
2023 * The caller must EXPORT_PC before jumping here, because any method
2024 * call can throw a stack overflow exception.
2025 */
GOTO_TARGET(invokeMethod,bool methodCallRange,const Method * _methodToCall,u2 count,u2 regs)2026 GOTO_TARGET(invokeMethod, bool methodCallRange, const Method* _methodToCall,
2027 u2 count, u2 regs)
2028 {
2029 STUB_HACK(vsrc1 = count; vdst = regs; methodToCall = _methodToCall;);
2030
2031 //printf("range=%d call=%p count=%d regs=0x%04x\n",
2032 // methodCallRange, methodToCall, count, regs);
2033 //printf(" --> %s.%s %s\n", methodToCall->clazz->descriptor,
2034 // methodToCall->name, methodToCall->shorty);
2035
2036 u4* outs;
2037 int i;
2038
2039 /*
2040 * Copy args. This may corrupt vsrc1/vdst.
2041 */
2042 if (methodCallRange) {
2043 // could use memcpy or a "Duff's device"; most functions have
2044 // so few args it won't matter much
2045 assert(vsrc1 <= curMethod->outsSize);
2046 assert(vsrc1 == methodToCall->insSize);
2047 outs = OUTS_FROM_FP(fp, vsrc1);
2048 for (i = 0; i < vsrc1; i++)
2049 outs[i] = GET_REGISTER(vdst+i);
2050 } else {
2051 u4 count = vsrc1 >> 4;
2052
2053 assert(count <= curMethod->outsSize);
2054 assert(count == methodToCall->insSize);
2055 assert(count <= 5);
2056
2057 outs = OUTS_FROM_FP(fp, count);
2058 #if 0
2059 if (count == 5) {
2060 outs[4] = GET_REGISTER(vsrc1 & 0x0f);
2061 count--;
2062 }
2063 for (i = 0; i < (int) count; i++) {
2064 outs[i] = GET_REGISTER(vdst & 0x0f);
2065 vdst >>= 4;
2066 }
2067 #else
2068 // This version executes fewer instructions but is larger
2069 // overall. Seems to be a teensy bit faster.
2070 assert((vdst >> 16) == 0); // 16 bits -or- high 16 bits clear
2071 switch (count) {
2072 case 5:
2073 outs[4] = GET_REGISTER(vsrc1 & 0x0f);
2074 case 4:
2075 outs[3] = GET_REGISTER(vdst >> 12);
2076 case 3:
2077 outs[2] = GET_REGISTER((vdst & 0x0f00) >> 8);
2078 case 2:
2079 outs[1] = GET_REGISTER((vdst & 0x00f0) >> 4);
2080 case 1:
2081 outs[0] = GET_REGISTER(vdst & 0x0f);
2082 default:
2083 ;
2084 }
2085 #endif
2086 }
2087 }
2088
2089 /*
2090 * (This was originally a "goto" target; I've kept it separate from the
2091 * stuff above in case we want to refactor things again.)
2092 *
2093 * At this point, we have the arguments stored in the "outs" area of
2094 * the current method's stack frame, and the method to call in
2095 * "methodToCall". Push a new stack frame.
2096 */
2097 {
2098 StackSaveArea* newSaveArea;
2099 u4* newFp;
2100
2101 ILOGV("> %s%s.%s %s",
2102 dvmIsNativeMethod(methodToCall) ? "(NATIVE) " : "",
2103 methodToCall->clazz->descriptor, methodToCall->name,
2104 methodToCall->shorty);
2105
2106 newFp = (u4*) SAVEAREA_FROM_FP(fp) - methodToCall->registersSize;
2107 newSaveArea = SAVEAREA_FROM_FP(newFp);
2108
2109 /* verify that we have enough space */
2110 if (true) {
2111 u1* bottom;
2112 bottom = (u1*) newSaveArea - methodToCall->outsSize * sizeof(u4);
2113 if (bottom < self->interpStackEnd) {
2114 /* stack overflow */
2115 LOGV("Stack overflow on method call (start=%p end=%p newBot=%p(%d) size=%d '%s')\n",
2116 self->interpStackStart, self->interpStackEnd, bottom,
2117 (u1*) fp - bottom, self->interpStackSize,
2118 methodToCall->name);
2119 dvmHandleStackOverflow(self, methodToCall);
2120 assert(dvmCheckException(self));
2121 GOTO_exceptionThrown();
2122 }
2123 //LOGD("+++ fp=%p newFp=%p newSave=%p bottom=%p\n",
2124 // fp, newFp, newSaveArea, bottom);
2125 }
2126
2127 #ifdef LOG_INSTR
2128 if (methodToCall->registersSize > methodToCall->insSize) {
2129 /*
2130 * This makes valgrind quiet when we print registers that
2131 * haven't been initialized. Turn it off when the debug
2132 * messages are disabled -- we want valgrind to report any
2133 * used-before-initialized issues.
2134 */
2135 memset(newFp, 0xcc,
2136 (methodToCall->registersSize - methodToCall->insSize) * 4);
2137 }
2138 #endif
2139
2140 #ifdef EASY_GDB
2141 newSaveArea->prevSave = SAVEAREA_FROM_FP(fp);
2142 #endif
2143 newSaveArea->prevFrame = fp;
2144 newSaveArea->savedPc = pc;
2145 #if defined(WITH_JIT)
2146 newSaveArea->returnAddr = 0;
2147 #endif
2148 newSaveArea->method = methodToCall;
2149
2150 if (!dvmIsNativeMethod(methodToCall)) {
2151 /*
2152 * "Call" interpreted code. Reposition the PC, update the
2153 * frame pointer and other local state, and continue.
2154 */
2155 curMethod = methodToCall;
2156 methodClassDex = curMethod->clazz->pDvmDex;
2157 pc = methodToCall->insns;
2158 fp = self->curFrame = newFp;
2159 #ifdef EASY_GDB
2160 debugSaveArea = SAVEAREA_FROM_FP(newFp);
2161 #endif
2162 #if INTERP_TYPE == INTERP_DBG
2163 debugIsMethodEntry = true; // profiling, debugging
2164 #endif
2165 ILOGD("> pc <-- %s.%s %s", curMethod->clazz->descriptor,
2166 curMethod->name, curMethod->shorty);
2167 DUMP_REGS(curMethod, fp, true); // show input args
2168 FINISH(0); // jump to method start
2169 } else {
2170 /* set this up for JNI locals, even if not a JNI native */
2171 #ifdef USE_INDIRECT_REF
2172 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.segmentState.all;
2173 #else
2174 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.nextEntry;
2175 #endif
2176
2177 self->curFrame = newFp;
2178
2179 DUMP_REGS(methodToCall, newFp, true); // show input args
2180
2181 #if (INTERP_TYPE == INTERP_DBG)
2182 if (gDvm.debuggerActive) {
2183 dvmDbgPostLocationEvent(methodToCall, -1,
2184 dvmGetThisPtr(curMethod, fp), DBG_METHOD_ENTRY);
2185 }
2186 #endif
2187 #if (INTERP_TYPE == INTERP_DBG)
2188 TRACE_METHOD_ENTER(self, methodToCall);
2189 #endif
2190
2191 {
2192 ILOGD("> native <-- %s.%s %s", methodToCall->clazz->descriptor,
2193 methodToCall->name, methodToCall->shorty);
2194 }
2195
2196 #if defined(WITH_JIT)
2197 /* Allow the Jit to end any pending trace building */
2198 CHECK_JIT_VOID();
2199 #endif
2200
2201 /*
2202 * Jump through native call bridge. Because we leave no
2203 * space for locals on native calls, "newFp" points directly
2204 * to the method arguments.
2205 */
2206 (*methodToCall->nativeFunc)(newFp, &retval, methodToCall, self);
2207
2208 #if (INTERP_TYPE == INTERP_DBG)
2209 if (gDvm.debuggerActive) {
2210 dvmDbgPostLocationEvent(methodToCall, -1,
2211 dvmGetThisPtr(curMethod, fp), DBG_METHOD_EXIT);
2212 }
2213 #endif
2214 #if (INTERP_TYPE == INTERP_DBG)
2215 TRACE_METHOD_EXIT(self, methodToCall);
2216 #endif
2217
2218 /* pop frame off */
2219 dvmPopJniLocals(self, newSaveArea);
2220 self->curFrame = fp;
2221
2222 /*
2223 * If the native code threw an exception, or interpreted code
2224 * invoked by the native call threw one and nobody has cleared
2225 * it, jump to our local exception handling.
2226 */
2227 if (dvmCheckException(self)) {
2228 LOGV("Exception thrown by/below native code\n");
2229 GOTO_exceptionThrown();
2230 }
2231
2232 ILOGD("> retval=0x%llx (leaving native)", retval.j);
2233 ILOGD("> (return from native %s.%s to %s.%s %s)",
2234 methodToCall->clazz->descriptor, methodToCall->name,
2235 curMethod->clazz->descriptor, curMethod->name,
2236 curMethod->shorty);
2237
2238 //u2 invokeInstr = INST_INST(FETCH(0));
2239 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL &&
2240 invokeInstr <= OP_INVOKE_INTERFACE*/)
2241 {
2242 FINISH(3);
2243 } else {
2244 //LOGE("Unknown invoke instr %02x at %d\n",
2245 // invokeInstr, (int) (pc - curMethod->insns));
2246 assert(false);
2247 }
2248 }
2249 }
2250 assert(false); // should not get here
2251 GOTO_TARGET_END
2252
2253 /* File: cstubs/enddefs.c */
2254
2255 /* undefine "magic" name remapping */
2256 #undef retval
2257 #undef pc
2258 #undef fp
2259 #undef curMethod
2260 #undef methodClassDex
2261 #undef self
2262 #undef debugTrackedRefStart
2263
2264