1 // The original file was copied from sqlite, and was in the public domain.
2 // Modifications Copyright 2006 Google Inc. All Rights Reserved
3
4 /*
5 * This code implements the MD5 message-digest algorithm.
6 * The algorithm is due to Ron Rivest. This code was
7 * written by Colin Plumb in 1993, no copyright is claimed.
8 * This code is in the public domain; do with it what you wish.
9 *
10 * Equivalent code is available from RSA Data Security, Inc.
11 * This code has been tested against that, and is equivalent,
12 * except that you don't need to include two pages of legalese
13 * with every copy.
14 *
15 * To compute the message digest of a chunk of bytes, declare an
16 * MD5Context structure, pass it to MD5Init, call MD5Update as
17 * needed on buffers full of bytes, and then call MD5Final, which
18 * will fill a supplied 16-byte array with the digest.
19 */
20
21 #include <string>
22
23 #include "base/md5.h"
24
25 #include "base/basictypes.h"
26
27 struct Context {
28 uint32 buf[4];
29 uint32 bits[2];
30 unsigned char in[64];
31 };
32
33 /*
34 * Note: this code is harmless on little-endian machines.
35 */
byteReverse(unsigned char * buf,unsigned longs)36 static void byteReverse(unsigned char *buf, unsigned longs){
37 uint32 t;
38 do {
39 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
40 ((unsigned)buf[1]<<8 | buf[0]);
41 *(uint32 *)buf = t;
42 buf += 4;
43 } while (--longs);
44 }
45 /* The four core functions - F1 is optimized somewhat */
46
47 /* #define F1(x, y, z) (x & y | ~x & z) */
48 #define F1(x, y, z) (z ^ (x & (y ^ z)))
49 #define F2(x, y, z) F1(z, x, y)
50 #define F3(x, y, z) (x ^ y ^ z)
51 #define F4(x, y, z) (y ^ (x | ~z))
52
53 /* This is the central step in the MD5 algorithm. */
54 #define MD5STEP(f, w, x, y, z, data, s) \
55 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
56
57 /*
58 * The core of the MD5 algorithm, this alters an existing MD5 hash to
59 * reflect the addition of 16 longwords of new data. MD5Update blocks
60 * the data and converts bytes into longwords for this routine.
61 */
MD5Transform(uint32 buf[4],const uint32 in[16])62 static void MD5Transform(uint32 buf[4], const uint32 in[16]){
63 register uint32 a, b, c, d;
64
65 a = buf[0];
66 b = buf[1];
67 c = buf[2];
68 d = buf[3];
69
70 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
71 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
72 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
73 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
74 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
75 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
76 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
77 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
78 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
79 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
80 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
81 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
82 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
83 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
84 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
85 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
86
87 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
88 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
89 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
90 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
91 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
92 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
93 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
94 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
95 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
96 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
97 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
98 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
99 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
100 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
101 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
102 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
103
104 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
105 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
106 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
107 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
108 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
109 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
110 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
111 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
112 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
113 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
114 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
115 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
116 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
117 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
118 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
119 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
120
121 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
122 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
123 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
124 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
125 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
126 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
127 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
128 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
129 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
130 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
131 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
132 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
133 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
134 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
135 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
136 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
137
138 buf[0] += a;
139 buf[1] += b;
140 buf[2] += c;
141 buf[3] += d;
142 }
143
144 /*
145 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
146 * initialization constants.
147 */
MD5Init(MD5Context * pCtx)148 void MD5Init(MD5Context *pCtx){
149 struct Context *ctx = (struct Context *)pCtx;
150 ctx->buf[0] = 0x67452301;
151 ctx->buf[1] = 0xefcdab89;
152 ctx->buf[2] = 0x98badcfe;
153 ctx->buf[3] = 0x10325476;
154 ctx->bits[0] = 0;
155 ctx->bits[1] = 0;
156 }
157
158 /*
159 * Update context to reflect the concatenation of another buffer full
160 * of bytes.
161 */
MD5Update(MD5Context * pCtx,const void * inbuf,size_t len)162 void MD5Update(MD5Context *pCtx, const void *inbuf, size_t len){
163 struct Context *ctx = (struct Context *)pCtx;
164 const unsigned char* buf = (const unsigned char*)inbuf;
165 uint32 t;
166
167 /* Update bitcount */
168
169 t = ctx->bits[0];
170 if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
171 ctx->bits[1]++; /* Carry from low to high */
172 ctx->bits[1] += static_cast<uint32>(len >> 29);
173
174 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
175
176 /* Handle any leading odd-sized chunks */
177
178 if (t) {
179 unsigned char *p = (unsigned char *)ctx->in + t;
180
181 t = 64-t;
182 if (len < t) {
183 memcpy(p, buf, len);
184 return;
185 }
186 memcpy(p, buf, t);
187 byteReverse(ctx->in, 16);
188 MD5Transform(ctx->buf, (uint32 *)ctx->in);
189 buf += t;
190 len -= t;
191 }
192
193 /* Process data in 64-byte chunks */
194
195 while (len >= 64) {
196 memcpy(ctx->in, buf, 64);
197 byteReverse(ctx->in, 16);
198 MD5Transform(ctx->buf, (uint32 *)ctx->in);
199 buf += 64;
200 len -= 64;
201 }
202
203 /* Handle any remaining bytes of data. */
204
205 memcpy(ctx->in, buf, len);
206 }
207
208 /*
209 * Final wrapup - pad to 64-byte boundary with the bit pattern
210 * 1 0* (64-bit count of bits processed, MSB-first)
211 */
MD5Final(MD5Digest * digest,MD5Context * pCtx)212 void MD5Final(MD5Digest* digest, MD5Context *pCtx){
213 struct Context *ctx = (struct Context *)pCtx;
214 unsigned count;
215 unsigned char *p;
216
217 /* Compute number of bytes mod 64 */
218 count = (ctx->bits[0] >> 3) & 0x3F;
219
220 /* Set the first char of padding to 0x80. This is safe since there is
221 always at least one byte free */
222 p = ctx->in + count;
223 *p++ = 0x80;
224
225 /* Bytes of padding needed to make 64 bytes */
226 count = 64 - 1 - count;
227
228 /* Pad out to 56 mod 64 */
229 if (count < 8) {
230 /* Two lots of padding: Pad the first block to 64 bytes */
231 memset(p, 0, count);
232 byteReverse(ctx->in, 16);
233 MD5Transform(ctx->buf, (uint32 *)ctx->in);
234
235 /* Now fill the next block with 56 bytes */
236 memset(ctx->in, 0, 56);
237 } else {
238 /* Pad block to 56 bytes */
239 memset(p, 0, count-8);
240 }
241 byteReverse(ctx->in, 14);
242
243 /* Append length in bits and transform */
244 ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
245 ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
246
247 MD5Transform(ctx->buf, (uint32 *)ctx->in);
248 byteReverse((unsigned char *)ctx->buf, 4);
249 memcpy(digest->a, ctx->buf, 16);
250 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
251 }
252
MD5DigestToBase16(const MD5Digest & digest)253 std::string MD5DigestToBase16(const MD5Digest& digest){
254 static char const zEncode[] = "0123456789abcdef";
255
256 std::string ret;
257 ret.resize(32);
258
259 int j = 0;
260 for (int i = 0; i < 16; i ++) {
261 int a = digest.a[i];
262 ret[j++] = zEncode[(a>>4)&0xf];
263 ret[j++] = zEncode[a & 0xf];
264 }
265 return ret;
266 }
267
MD5Sum(const void * data,size_t length,MD5Digest * digest)268 void MD5Sum(const void* data, size_t length, MD5Digest* digest) {
269 MD5Context ctx;
270 MD5Init(&ctx);
271 MD5Update(&ctx, static_cast<const unsigned char*>(data), length);
272 MD5Final(digest, &ctx);
273 }
274
MD5String(const std::string & str)275 std::string MD5String(const std::string& str) {
276 MD5Digest digest;
277 MD5Sum(str.data(), str.length(), &digest);
278 return MD5DigestToBase16(digest);
279 }
280