1 // Copyright (c) 2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/message_pump_glib.h"
6
7 #include <fcntl.h>
8 #include <math.h>
9
10 #include <gtk/gtk.h>
11 #include <glib.h>
12
13 #include "base/eintr_wrapper.h"
14 #include "base/logging.h"
15 #include "base/platform_thread.h"
16
17 namespace {
18
19 // We send a byte across a pipe to wakeup the event loop.
20 const char kWorkScheduled = '\0';
21
22 // Return a timeout suitable for the glib loop, -1 to block forever,
23 // 0 to return right away, or a timeout in milliseconds from now.
GetTimeIntervalMilliseconds(base::Time from)24 int GetTimeIntervalMilliseconds(base::Time from) {
25 if (from.is_null())
26 return -1;
27
28 // Be careful here. TimeDelta has a precision of microseconds, but we want a
29 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
30 // 6? It should be 6 to avoid executing delayed work too early.
31 int delay = static_cast<int>(
32 ceil((from - base::Time::Now()).InMillisecondsF()));
33
34 // If this value is negative, then we need to run delayed work soon.
35 return delay < 0 ? 0 : delay;
36 }
37
38 // A brief refresher on GLib:
39 // GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40 // On each iteration of the GLib pump, it calls each source's Prepare function.
41 // This function should return TRUE if it wants GLib to call its Dispatch, and
42 // FALSE otherwise. It can also set a timeout in this case for the next time
43 // Prepare should be called again (it may be called sooner).
44 // After the Prepare calls, GLib does a poll to check for events from the
45 // system. File descriptors can be attached to the sources. The poll may block
46 // if none of the Prepare calls returned TRUE. It will block indefinitely, or
47 // by the minimum time returned by a source in Prepare.
48 // After the poll, GLib calls Check for each source that returned FALSE
49 // from Prepare. The return value of Check has the same meaning as for Prepare,
50 // making Check a second chance to tell GLib we are ready for Dispatch.
51 // Finally, GLib calls Dispatch for each source that is ready. If Dispatch
52 // returns FALSE, GLib will destroy the source. Dispatch calls may be recursive
53 // (i.e., you can call Run from them), but Prepare and Check cannot.
54 // Finalize is called when the source is destroyed.
55 // NOTE: It is common for subsytems to want to process pending events while
56 // doing intensive work, for example the flash plugin. They usually use the
57 // following pattern (recommended by the GTK docs):
58 // while (gtk_events_pending()) {
59 // gtk_main_iteration();
60 // }
61 //
62 // gtk_events_pending just calls g_main_context_pending, which does the
63 // following:
64 // - Call prepare on all the sources.
65 // - Do the poll with a timeout of 0 (not blocking).
66 // - Call check on all the sources.
67 // - *Does not* call dispatch on the sources.
68 // - Return true if any of prepare() or check() returned true.
69 //
70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
71 // thing, respecting the timeout for the poll (and block, although it is
72 // expected not to if gtk_events_pending returned true), and call dispatch.
73 //
74 // Thus it is important to only return true from prepare or check if we
75 // actually have events or work to do. We also need to make sure we keep
76 // internal state consistent so that if prepare/check return true when called
77 // from gtk_events_pending, they will still return true when called right
78 // after, from gtk_main_iteration.
79 //
80 // For the GLib pump we try to follow the Windows UI pump model:
81 // - Whenever we receive a wakeup event or the timer for delayed work expires,
82 // we run DoWork and/or DoDelayedWork. That part will also run in the other
83 // event pumps.
84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85 // loop, around event handling.
86
87 struct WorkSource : public GSource {
88 base::MessagePumpForUI* pump;
89 };
90
WorkSourcePrepare(GSource * source,gint * timeout_ms)91 gboolean WorkSourcePrepare(GSource* source,
92 gint* timeout_ms) {
93 *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94 // We always return FALSE, so that our timeout is honored. If we were
95 // to return TRUE, the timeout would be considered to be 0 and the poll
96 // would never block. Once the poll is finished, Check will be called.
97 return FALSE;
98 }
99
WorkSourceCheck(GSource * source)100 gboolean WorkSourceCheck(GSource* source) {
101 // Only return TRUE if Dispatch should be called.
102 return static_cast<WorkSource*>(source)->pump->HandleCheck();
103 }
104
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)105 gboolean WorkSourceDispatch(GSource* source,
106 GSourceFunc unused_func,
107 gpointer unused_data) {
108
109 static_cast<WorkSource*>(source)->pump->HandleDispatch();
110 // Always return TRUE so our source stays registered.
111 return TRUE;
112 }
113
114 // I wish these could be const, but g_source_new wants non-const.
115 GSourceFuncs WorkSourceFuncs = {
116 WorkSourcePrepare,
117 WorkSourceCheck,
118 WorkSourceDispatch,
119 NULL
120 };
121
122 } // namespace
123
124
125 namespace base {
126
MessagePumpForUI()127 MessagePumpForUI::MessagePumpForUI()
128 : state_(NULL),
129 context_(g_main_context_default()),
130 wakeup_gpollfd_(new GPollFD) {
131 // Create our wakeup pipe, which is used to flag when work was scheduled.
132 int fds[2];
133 CHECK(pipe(fds) == 0);
134 wakeup_pipe_read_ = fds[0];
135 wakeup_pipe_write_ = fds[1];
136 wakeup_gpollfd_->fd = wakeup_pipe_read_;
137 wakeup_gpollfd_->events = G_IO_IN;
138
139 work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
140 static_cast<WorkSource*>(work_source_)->pump = this;
141 g_source_add_poll(work_source_, wakeup_gpollfd_.get());
142 // Use a low priority so that we let other events in the queue go first.
143 g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
144 // This is needed to allow Run calls inside Dispatch.
145 g_source_set_can_recurse(work_source_, TRUE);
146 g_source_attach(work_source_, context_);
147 gdk_event_handler_set(&EventDispatcher, this, NULL);
148 }
149
~MessagePumpForUI()150 MessagePumpForUI::~MessagePumpForUI() {
151 gdk_event_handler_set(reinterpret_cast<GdkEventFunc>(gtk_main_do_event),
152 this, NULL);
153 g_source_destroy(work_source_);
154 g_source_unref(work_source_);
155 close(wakeup_pipe_read_);
156 close(wakeup_pipe_write_);
157 }
158
RunWithDispatcher(Delegate * delegate,Dispatcher * dispatcher)159 void MessagePumpForUI::RunWithDispatcher(Delegate* delegate,
160 Dispatcher* dispatcher) {
161 #ifndef NDEBUG
162 // Make sure we only run this on one thread. GTK only has one message pump
163 // so we can only have one UI loop per process.
164 static PlatformThreadId thread_id = PlatformThread::CurrentId();
165 DCHECK(thread_id == PlatformThread::CurrentId()) <<
166 "Running MessagePumpForUI on two different threads; "
167 "this is unsupported by GLib!";
168 #endif
169
170 RunState state;
171 state.delegate = delegate;
172 state.dispatcher = dispatcher;
173 state.should_quit = false;
174 state.run_depth = state_ ? state_->run_depth + 1 : 1;
175 state.has_work = false;
176
177 RunState* previous_state = state_;
178 state_ = &state;
179
180 // We really only do a single task for each iteration of the loop. If we
181 // have done something, assume there is likely something more to do. This
182 // will mean that we don't block on the message pump until there was nothing
183 // more to do. We also set this to true to make sure not to block on the
184 // first iteration of the loop, so RunAllPending() works correctly.
185 bool more_work_is_plausible = true;
186
187 // We run our own loop instead of using g_main_loop_quit in one of the
188 // callbacks. This is so we only quit our own loops, and we don't quit
189 // nested loops run by others. TODO(deanm): Is this what we want?
190 for (;;) {
191 // Don't block if we think we have more work to do.
192 bool block = !more_work_is_plausible;
193
194 // g_main_context_iteration returns true if events have been dispatched.
195 more_work_is_plausible = g_main_context_iteration(context_, block);
196 if (state_->should_quit)
197 break;
198
199 more_work_is_plausible |= state_->delegate->DoWork();
200 if (state_->should_quit)
201 break;
202
203 more_work_is_plausible |=
204 state_->delegate->DoDelayedWork(&delayed_work_time_);
205 if (state_->should_quit)
206 break;
207
208 if (more_work_is_plausible)
209 continue;
210
211 more_work_is_plausible = state_->delegate->DoIdleWork();
212 if (state_->should_quit)
213 break;
214 }
215
216 state_ = previous_state;
217 }
218
219 // Return the timeout we want passed to poll.
HandlePrepare()220 int MessagePumpForUI::HandlePrepare() {
221 // We know we have work, but we haven't called HandleDispatch yet. Don't let
222 // the pump block so that we can do some processing.
223 if (state_ && // state_ may be null during tests.
224 state_->has_work)
225 return 0;
226
227 // We don't think we have work to do, but make sure not to block
228 // longer than the next time we need to run delayed work.
229 return GetTimeIntervalMilliseconds(delayed_work_time_);
230 }
231
HandleCheck()232 bool MessagePumpForUI::HandleCheck() {
233 if (!state_) // state_ may be null during tests.
234 return false;
235
236 // We should only ever have a single message on the wakeup pipe, since we
237 // are only signaled when the queue went from empty to non-empty. The glib
238 // poll will tell us whether there was data, so this read shouldn't block.
239 if (wakeup_gpollfd_->revents & G_IO_IN) {
240 char msg;
241 if (HANDLE_EINTR(read(wakeup_pipe_read_, &msg, 1)) != 1 || msg != '!') {
242 NOTREACHED() << "Error reading from the wakeup pipe.";
243 }
244 // Since we ate the message, we need to record that we have more work,
245 // because HandleCheck() may be called without HandleDispatch being called
246 // afterwards.
247 state_->has_work = true;
248 }
249
250 if (state_->has_work)
251 return true;
252
253 if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
254 // The timer has expired. That condition will stay true until we process
255 // that delayed work, so we don't need to record this differently.
256 return true;
257 }
258
259 return false;
260 }
261
HandleDispatch()262 void MessagePumpForUI::HandleDispatch() {
263 state_->has_work = false;
264 if (state_->delegate->DoWork()) {
265 // NOTE: on Windows at this point we would call ScheduleWork (see
266 // MessagePumpForUI::HandleWorkMessage in message_pump_win.cc). But here,
267 // instead of posting a message on the wakeup pipe, we can avoid the
268 // syscalls and just signal that we have more work.
269 state_->has_work = true;
270 }
271
272 if (state_->should_quit)
273 return;
274
275 state_->delegate->DoDelayedWork(&delayed_work_time_);
276 }
277
AddObserver(Observer * observer)278 void MessagePumpForUI::AddObserver(Observer* observer) {
279 observers_.AddObserver(observer);
280 }
281
RemoveObserver(Observer * observer)282 void MessagePumpForUI::RemoveObserver(Observer* observer) {
283 observers_.RemoveObserver(observer);
284 }
285
WillProcessEvent(GdkEvent * event)286 void MessagePumpForUI::WillProcessEvent(GdkEvent* event) {
287 FOR_EACH_OBSERVER(Observer, observers_, WillProcessEvent(event));
288 }
289
DidProcessEvent(GdkEvent * event)290 void MessagePumpForUI::DidProcessEvent(GdkEvent* event) {
291 FOR_EACH_OBSERVER(Observer, observers_, DidProcessEvent(event));
292 }
293
Quit()294 void MessagePumpForUI::Quit() {
295 if (state_) {
296 state_->should_quit = true;
297 } else {
298 NOTREACHED() << "Quit called outside Run!";
299 }
300 }
301
ScheduleWork()302 void MessagePumpForUI::ScheduleWork() {
303 // This can be called on any thread, so we don't want to touch any state
304 // variables as we would then need locks all over. This ensures that if
305 // we are sleeping in a poll that we will wake up.
306 char msg = '!';
307 if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
308 NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
309 }
310 }
311
ScheduleDelayedWork(const Time & delayed_work_time)312 void MessagePumpForUI::ScheduleDelayedWork(const Time& delayed_work_time) {
313 // We need to wake up the loop in case the poll timeout needs to be
314 // adjusted. This will cause us to try to do work, but that's ok.
315 delayed_work_time_ = delayed_work_time;
316 ScheduleWork();
317 }
318
319 // static
EventDispatcher(GdkEvent * event,gpointer data)320 void MessagePumpForUI::EventDispatcher(GdkEvent* event, gpointer data) {
321 MessagePumpForUI* message_pump = reinterpret_cast<MessagePumpForUI*>(data);
322
323 message_pump->WillProcessEvent(event);
324 if (message_pump->state_ && // state_ may be null during tests.
325 message_pump->state_->dispatcher) {
326 if (!message_pump->state_->dispatcher->Dispatch(event))
327 message_pump->state_->should_quit = true;
328 } else {
329 gtk_main_do_event(event);
330 }
331 message_pump->DidProcessEvent(event);
332 }
333
334 } // namespace base
335