• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_pump_glib.h"
6 
7 #include <fcntl.h>
8 #include <math.h>
9 
10 #include <gtk/gtk.h>
11 #include <glib.h>
12 
13 #include "base/eintr_wrapper.h"
14 #include "base/logging.h"
15 #include "base/platform_thread.h"
16 
17 namespace {
18 
19 // We send a byte across a pipe to wakeup the event loop.
20 const char kWorkScheduled = '\0';
21 
22 // Return a timeout suitable for the glib loop, -1 to block forever,
23 // 0 to return right away, or a timeout in milliseconds from now.
GetTimeIntervalMilliseconds(base::Time from)24 int GetTimeIntervalMilliseconds(base::Time from) {
25   if (from.is_null())
26     return -1;
27 
28   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
29   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
30   // 6?  It should be 6 to avoid executing delayed work too early.
31   int delay = static_cast<int>(
32       ceil((from - base::Time::Now()).InMillisecondsF()));
33 
34   // If this value is negative, then we need to run delayed work soon.
35   return delay < 0 ? 0 : delay;
36 }
37 
38 // A brief refresher on GLib:
39 //     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40 // On each iteration of the GLib pump, it calls each source's Prepare function.
41 // This function should return TRUE if it wants GLib to call its Dispatch, and
42 // FALSE otherwise.  It can also set a timeout in this case for the next time
43 // Prepare should be called again (it may be called sooner).
44 //     After the Prepare calls, GLib does a poll to check for events from the
45 // system.  File descriptors can be attached to the sources.  The poll may block
46 // if none of the Prepare calls returned TRUE.  It will block indefinitely, or
47 // by the minimum time returned by a source in Prepare.
48 //     After the poll, GLib calls Check for each source that returned FALSE
49 // from Prepare.  The return value of Check has the same meaning as for Prepare,
50 // making Check a second chance to tell GLib we are ready for Dispatch.
51 //     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
52 // returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
53 // (i.e., you can call Run from them), but Prepare and Check cannot.
54 //     Finalize is called when the source is destroyed.
55 // NOTE: It is common for subsytems to want to process pending events while
56 // doing intensive work, for example the flash plugin. They usually use the
57 // following pattern (recommended by the GTK docs):
58 // while (gtk_events_pending()) {
59 //   gtk_main_iteration();
60 // }
61 //
62 // gtk_events_pending just calls g_main_context_pending, which does the
63 // following:
64 // - Call prepare on all the sources.
65 // - Do the poll with a timeout of 0 (not blocking).
66 // - Call check on all the sources.
67 // - *Does not* call dispatch on the sources.
68 // - Return true if any of prepare() or check() returned true.
69 //
70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
71 // thing, respecting the timeout for the poll (and block, although it is
72 // expected not to if gtk_events_pending returned true), and call dispatch.
73 //
74 // Thus it is important to only return true from prepare or check if we
75 // actually have events or work to do. We also need to make sure we keep
76 // internal state consistent so that if prepare/check return true when called
77 // from gtk_events_pending, they will still return true when called right
78 // after, from gtk_main_iteration.
79 //
80 // For the GLib pump we try to follow the Windows UI pump model:
81 // - Whenever we receive a wakeup event or the timer for delayed work expires,
82 // we run DoWork and/or DoDelayedWork. That part will also run in the other
83 // event pumps.
84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85 // loop, around event handling.
86 
87 struct WorkSource : public GSource {
88   base::MessagePumpForUI* pump;
89 };
90 
WorkSourcePrepare(GSource * source,gint * timeout_ms)91 gboolean WorkSourcePrepare(GSource* source,
92                            gint* timeout_ms) {
93   *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94   // We always return FALSE, so that our timeout is honored.  If we were
95   // to return TRUE, the timeout would be considered to be 0 and the poll
96   // would never block.  Once the poll is finished, Check will be called.
97   return FALSE;
98 }
99 
WorkSourceCheck(GSource * source)100 gboolean WorkSourceCheck(GSource* source) {
101   // Only return TRUE if Dispatch should be called.
102   return static_cast<WorkSource*>(source)->pump->HandleCheck();
103 }
104 
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)105 gboolean WorkSourceDispatch(GSource* source,
106                             GSourceFunc unused_func,
107                             gpointer unused_data) {
108 
109   static_cast<WorkSource*>(source)->pump->HandleDispatch();
110   // Always return TRUE so our source stays registered.
111   return TRUE;
112 }
113 
114 // I wish these could be const, but g_source_new wants non-const.
115 GSourceFuncs WorkSourceFuncs = {
116   WorkSourcePrepare,
117   WorkSourceCheck,
118   WorkSourceDispatch,
119   NULL
120 };
121 
122 }  // namespace
123 
124 
125 namespace base {
126 
MessagePumpForUI()127 MessagePumpForUI::MessagePumpForUI()
128     : state_(NULL),
129       context_(g_main_context_default()),
130       wakeup_gpollfd_(new GPollFD) {
131   // Create our wakeup pipe, which is used to flag when work was scheduled.
132   int fds[2];
133   CHECK(pipe(fds) == 0);
134   wakeup_pipe_read_  = fds[0];
135   wakeup_pipe_write_ = fds[1];
136   wakeup_gpollfd_->fd = wakeup_pipe_read_;
137   wakeup_gpollfd_->events = G_IO_IN;
138 
139   work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
140   static_cast<WorkSource*>(work_source_)->pump = this;
141   g_source_add_poll(work_source_, wakeup_gpollfd_.get());
142   // Use a low priority so that we let other events in the queue go first.
143   g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
144   // This is needed to allow Run calls inside Dispatch.
145   g_source_set_can_recurse(work_source_, TRUE);
146   g_source_attach(work_source_, context_);
147   gdk_event_handler_set(&EventDispatcher, this, NULL);
148 }
149 
~MessagePumpForUI()150 MessagePumpForUI::~MessagePumpForUI() {
151   gdk_event_handler_set(reinterpret_cast<GdkEventFunc>(gtk_main_do_event),
152                         this, NULL);
153   g_source_destroy(work_source_);
154   g_source_unref(work_source_);
155   close(wakeup_pipe_read_);
156   close(wakeup_pipe_write_);
157 }
158 
RunWithDispatcher(Delegate * delegate,Dispatcher * dispatcher)159 void MessagePumpForUI::RunWithDispatcher(Delegate* delegate,
160                                          Dispatcher* dispatcher) {
161 #ifndef NDEBUG
162   // Make sure we only run this on one thread.  GTK only has one message pump
163   // so we can only have one UI loop per process.
164   static PlatformThreadId thread_id = PlatformThread::CurrentId();
165   DCHECK(thread_id == PlatformThread::CurrentId()) <<
166       "Running MessagePumpForUI on two different threads; "
167       "this is unsupported by GLib!";
168 #endif
169 
170   RunState state;
171   state.delegate = delegate;
172   state.dispatcher = dispatcher;
173   state.should_quit = false;
174   state.run_depth = state_ ? state_->run_depth + 1 : 1;
175   state.has_work = false;
176 
177   RunState* previous_state = state_;
178   state_ = &state;
179 
180   // We really only do a single task for each iteration of the loop.  If we
181   // have done something, assume there is likely something more to do.  This
182   // will mean that we don't block on the message pump until there was nothing
183   // more to do.  We also set this to true to make sure not to block on the
184   // first iteration of the loop, so RunAllPending() works correctly.
185   bool more_work_is_plausible = true;
186 
187   // We run our own loop instead of using g_main_loop_quit in one of the
188   // callbacks.  This is so we only quit our own loops, and we don't quit
189   // nested loops run by others.  TODO(deanm): Is this what we want?
190   for (;;) {
191     // Don't block if we think we have more work to do.
192     bool block = !more_work_is_plausible;
193 
194     // g_main_context_iteration returns true if events have been dispatched.
195     more_work_is_plausible = g_main_context_iteration(context_, block);
196     if (state_->should_quit)
197       break;
198 
199     more_work_is_plausible |= state_->delegate->DoWork();
200     if (state_->should_quit)
201       break;
202 
203     more_work_is_plausible |=
204         state_->delegate->DoDelayedWork(&delayed_work_time_);
205     if (state_->should_quit)
206       break;
207 
208     if (more_work_is_plausible)
209       continue;
210 
211     more_work_is_plausible = state_->delegate->DoIdleWork();
212     if (state_->should_quit)
213       break;
214   }
215 
216   state_ = previous_state;
217 }
218 
219 // Return the timeout we want passed to poll.
HandlePrepare()220 int MessagePumpForUI::HandlePrepare() {
221   // We know we have work, but we haven't called HandleDispatch yet. Don't let
222   // the pump block so that we can do some processing.
223   if (state_ &&  // state_ may be null during tests.
224       state_->has_work)
225     return 0;
226 
227   // We don't think we have work to do, but make sure not to block
228   // longer than the next time we need to run delayed work.
229   return GetTimeIntervalMilliseconds(delayed_work_time_);
230 }
231 
HandleCheck()232 bool MessagePumpForUI::HandleCheck() {
233   if (!state_)  // state_ may be null during tests.
234     return false;
235 
236   // We should only ever have a single message on the wakeup pipe, since we
237   // are only signaled when the queue went from empty to non-empty.  The glib
238   // poll will tell us whether there was data, so this read shouldn't block.
239   if (wakeup_gpollfd_->revents & G_IO_IN) {
240     char msg;
241     if (HANDLE_EINTR(read(wakeup_pipe_read_, &msg, 1)) != 1 || msg != '!') {
242       NOTREACHED() << "Error reading from the wakeup pipe.";
243     }
244     // Since we ate the message, we need to record that we have more work,
245     // because HandleCheck() may be called without HandleDispatch being called
246     // afterwards.
247     state_->has_work = true;
248   }
249 
250   if (state_->has_work)
251     return true;
252 
253   if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
254     // The timer has expired. That condition will stay true until we process
255     // that delayed work, so we don't need to record this differently.
256     return true;
257   }
258 
259   return false;
260 }
261 
HandleDispatch()262 void MessagePumpForUI::HandleDispatch() {
263   state_->has_work = false;
264   if (state_->delegate->DoWork()) {
265     // NOTE: on Windows at this point we would call ScheduleWork (see
266     // MessagePumpForUI::HandleWorkMessage in message_pump_win.cc). But here,
267     // instead of posting a message on the wakeup pipe, we can avoid the
268     // syscalls and just signal that we have more work.
269     state_->has_work = true;
270   }
271 
272   if (state_->should_quit)
273     return;
274 
275   state_->delegate->DoDelayedWork(&delayed_work_time_);
276 }
277 
AddObserver(Observer * observer)278 void MessagePumpForUI::AddObserver(Observer* observer) {
279   observers_.AddObserver(observer);
280 }
281 
RemoveObserver(Observer * observer)282 void MessagePumpForUI::RemoveObserver(Observer* observer) {
283   observers_.RemoveObserver(observer);
284 }
285 
WillProcessEvent(GdkEvent * event)286 void MessagePumpForUI::WillProcessEvent(GdkEvent* event) {
287   FOR_EACH_OBSERVER(Observer, observers_, WillProcessEvent(event));
288 }
289 
DidProcessEvent(GdkEvent * event)290 void MessagePumpForUI::DidProcessEvent(GdkEvent* event) {
291   FOR_EACH_OBSERVER(Observer, observers_, DidProcessEvent(event));
292 }
293 
Quit()294 void MessagePumpForUI::Quit() {
295   if (state_) {
296     state_->should_quit = true;
297   } else {
298     NOTREACHED() << "Quit called outside Run!";
299   }
300 }
301 
ScheduleWork()302 void MessagePumpForUI::ScheduleWork() {
303   // This can be called on any thread, so we don't want to touch any state
304   // variables as we would then need locks all over.  This ensures that if
305   // we are sleeping in a poll that we will wake up.
306   char msg = '!';
307   if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
308     NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
309   }
310 }
311 
ScheduleDelayedWork(const Time & delayed_work_time)312 void MessagePumpForUI::ScheduleDelayedWork(const Time& delayed_work_time) {
313   // We need to wake up the loop in case the poll timeout needs to be
314   // adjusted.  This will cause us to try to do work, but that's ok.
315   delayed_work_time_ = delayed_work_time;
316   ScheduleWork();
317 }
318 
319 // static
EventDispatcher(GdkEvent * event,gpointer data)320 void MessagePumpForUI::EventDispatcher(GdkEvent* event, gpointer data) {
321   MessagePumpForUI* message_pump = reinterpret_cast<MessagePumpForUI*>(data);
322 
323   message_pump->WillProcessEvent(event);
324   if (message_pump->state_ &&  // state_ may be null during tests.
325       message_pump->state_->dispatcher) {
326     if (!message_pump->state_->dispatcher->Dispatch(event))
327       message_pump->state_->should_quit = true;
328   } else {
329     gtk_main_do_event(event);
330   }
331   message_pump->DidProcessEvent(event);
332 }
333 
334 }  // namespace base
335