• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 /**
12    @file noekeon.c
13    Implementation of the Noekeon block cipher by Tom St Denis
14 */
15 #include "tomcrypt.h"
16 
17 #ifdef NOEKEON
18 
19 const struct ltc_cipher_descriptor noekeon_desc =
20 {
21     "noekeon",
22     16,
23     16, 16, 16, 16,
24     &noekeon_setup,
25     &noekeon_ecb_encrypt,
26     &noekeon_ecb_decrypt,
27     &noekeon_test,
28     &noekeon_done,
29     &noekeon_keysize,
30     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
31 };
32 
33 static const ulong32 RC[] = {
34    0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
35    0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
36    0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
37    0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
38    0x000000d4UL
39 };
40 
41 #define kTHETA(a, b, c, d)                                 \
42     temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
43     b ^= temp; d ^= temp;                                  \
44     temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
45     a ^= temp; c ^= temp;
46 
47 #define THETA(k, a, b, c, d)                               \
48     temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
49     b ^= temp ^ k[1]; d ^= temp ^ k[3];                    \
50     temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
51     a ^= temp ^ k[0]; c ^= temp ^ k[2];
52 
53 #define GAMMA(a, b, c, d)     \
54     b ^= ~(d|c);              \
55     a ^= c&b;                 \
56     temp = d; d = a; a = temp;\
57     c ^= a ^ b ^ d;           \
58     b ^= ~(d|c);              \
59     a ^= c&b;
60 
61 #define PI1(a, b, c, d) \
62     a = ROLc(a, 1); c = ROLc(c, 5); d = ROLc(d, 2);
63 
64 #define PI2(a, b, c, d) \
65     a = RORc(a, 1); c = RORc(c, 5); d = RORc(d, 2);
66 
67  /**
68     Initialize the Noekeon block cipher
69     @param key The symmetric key you wish to pass
70     @param keylen The key length in bytes
71     @param num_rounds The number of rounds desired (0 for default)
72     @param skey The key in as scheduled by this function.
73     @return CRYPT_OK if successful
74  */
noekeon_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)75 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
76 {
77    ulong32 temp;
78 
79    LTC_ARGCHK(key != NULL);
80    LTC_ARGCHK(skey != NULL);
81 
82    if (keylen != 16) {
83       return CRYPT_INVALID_KEYSIZE;
84    }
85 
86    if (num_rounds != 16 && num_rounds != 0) {
87       return CRYPT_INVALID_ROUNDS;
88    }
89 
90    LOAD32H(skey->noekeon.K[0],&key[0]);
91    LOAD32H(skey->noekeon.K[1],&key[4]);
92    LOAD32H(skey->noekeon.K[2],&key[8]);
93    LOAD32H(skey->noekeon.K[3],&key[12]);
94 
95    LOAD32H(skey->noekeon.dK[0],&key[0]);
96    LOAD32H(skey->noekeon.dK[1],&key[4]);
97    LOAD32H(skey->noekeon.dK[2],&key[8]);
98    LOAD32H(skey->noekeon.dK[3],&key[12]);
99 
100    kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
101 
102    return CRYPT_OK;
103 }
104 
105 /**
106   Encrypts a block of text with Noekeon
107   @param pt The input plaintext (16 bytes)
108   @param ct The output ciphertext (16 bytes)
109   @param skey The key as scheduled
110   @return CRYPT_OK if successful
111 */
112 #ifdef LTC_CLEAN_STACK
_noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)113 static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
114 #else
115 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
116 #endif
117 {
118    ulong32 a,b,c,d,temp;
119    int r;
120 
121    LTC_ARGCHK(skey != NULL);
122    LTC_ARGCHK(pt   != NULL);
123    LTC_ARGCHK(ct   != NULL);
124 
125    LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
126    LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
127 
128 #define ROUND(i) \
129        a ^= RC[i]; \
130        THETA(skey->noekeon.K, a,b,c,d); \
131        PI1(a,b,c,d); \
132        GAMMA(a,b,c,d); \
133        PI2(a,b,c,d);
134 
135    for (r = 0; r < 16; ++r) {
136        ROUND(r);
137    }
138 
139 #undef ROUND
140 
141    a ^= RC[16];
142    THETA(skey->noekeon.K, a, b, c, d);
143 
144    STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
145    STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
146 
147    return CRYPT_OK;
148 }
149 
150 #ifdef LTC_CLEAN_STACK
noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)151 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
152 {
153    int err = _noekeon_ecb_encrypt(pt, ct, skey);
154    burn_stack(sizeof(ulong32) * 5 + sizeof(int));
155    return CRYPT_OK;
156 }
157 #endif
158 
159 /**
160   Decrypts a block of text with Noekeon
161   @param ct The input ciphertext (16 bytes)
162   @param pt The output plaintext (16 bytes)
163   @param skey The key as scheduled
164   @return CRYPT_OK if successful
165 */
166 #ifdef LTC_CLEAN_STACK
_noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)167 static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
168 #else
169 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
170 #endif
171 {
172    ulong32 a,b,c,d, temp;
173    int r;
174 
175    LTC_ARGCHK(skey != NULL);
176    LTC_ARGCHK(pt   != NULL);
177    LTC_ARGCHK(ct   != NULL);
178 
179    LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
180    LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
181 
182 
183 #define ROUND(i) \
184        THETA(skey->noekeon.dK, a,b,c,d); \
185        a ^= RC[i]; \
186        PI1(a,b,c,d); \
187        GAMMA(a,b,c,d); \
188        PI2(a,b,c,d);
189 
190    for (r = 16; r > 0; --r) {
191        ROUND(r);
192    }
193 
194 #undef ROUND
195 
196    THETA(skey->noekeon.dK, a,b,c,d);
197    a ^= RC[0];
198    STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
199    STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
200    return CRYPT_OK;
201 }
202 
203 #ifdef LTC_CLEAN_STACK
noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)204 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
205 {
206    int err = _noekeon_ecb_decrypt(ct, pt, skey);
207    burn_stack(sizeof(ulong32) * 5 + sizeof(int));
208    return err;
209 }
210 #endif
211 
212 /**
213   Performs a self-test of the Noekeon block cipher
214   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
215 */
noekeon_test(void)216 int noekeon_test(void)
217 {
218  #ifndef LTC_TEST
219     return CRYPT_NOP;
220  #else
221  static const struct {
222      int keylen;
223      unsigned char key[16], pt[16], ct[16];
224  } tests[] = {
225    {
226       16,
227       { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
228       { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
229       { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
230         0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
231    }
232  };
233  symmetric_key key;
234  unsigned char tmp[2][16];
235  int err, i, y;
236 
237  for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
238     zeromem(&key, sizeof(key));
239     if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
240        return err;
241     }
242 
243     noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
244     noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
245     if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) {
246 #if 0
247        printf("\n\nTest %d failed\n", i);
248        if (XMEMCMP(tmp[0], tests[i].ct, 16)) {
249           printf("CT: ");
250           for (i = 0; i < 16; i++) {
251              printf("%02x ", tmp[0][i]);
252           }
253           printf("\n");
254        } else {
255           printf("PT: ");
256           for (i = 0; i < 16; i++) {
257              printf("%02x ", tmp[1][i]);
258           }
259           printf("\n");
260        }
261 #endif
262         return CRYPT_FAIL_TESTVECTOR;
263     }
264 
265       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
266       for (y = 0; y < 16; y++) tmp[0][y] = 0;
267       for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
268       for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
269       for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
270  }
271  return CRYPT_OK;
272  #endif
273 }
274 
275 /** Terminate the context
276    @param skey    The scheduled key
277 */
noekeon_done(symmetric_key * skey)278 void noekeon_done(symmetric_key *skey)
279 {
280 }
281 
282 /**
283   Gets suitable key size
284   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
285   @return CRYPT_OK if the input key size is acceptable.
286 */
noekeon_keysize(int * keysize)287 int noekeon_keysize(int *keysize)
288 {
289    LTC_ARGCHK(keysize != NULL);
290    if (*keysize < 16) {
291       return CRYPT_INVALID_KEYSIZE;
292    } else {
293       *keysize = 16;
294       return CRYPT_OK;
295    }
296 }
297 
298 #endif
299 
300 
301 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/noekeon.c,v $ */
302 /* $Revision: 1.12 $ */
303 /* $Date: 2006/11/08 23:01:06 $ */
304