• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <tommath.h>
2 #ifdef BN_MP_PRIME_NEXT_PRIME_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4  *
5  * LibTomMath is a library that provides multiple-precision
6  * integer arithmetic as well as number theoretic functionality.
7  *
8  * The library was designed directly after the MPI library by
9  * Michael Fromberger but has been written from scratch with
10  * additional optimizations in place.
11  *
12  * The library is free for all purposes without any express
13  * guarantee it works.
14  *
15  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
16  */
17 
18 /* finds the next prime after the number "a" using "t" trials
19  * of Miller-Rabin.
20  *
21  * bbs_style = 1 means the prime must be congruent to 3 mod 4
22  */
mp_prime_next_prime(mp_int * a,int t,int bbs_style)23 int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
24 {
25    int      err, res, x, y;
26    mp_digit res_tab[PRIME_SIZE], step, kstep;
27    mp_int   b;
28 
29    /* ensure t is valid */
30    if (t <= 0 || t > PRIME_SIZE) {
31       return MP_VAL;
32    }
33 
34    /* force positive */
35    a->sign = MP_ZPOS;
36 
37    /* simple algo if a is less than the largest prime in the table */
38    if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
39       /* find which prime it is bigger than */
40       for (x = PRIME_SIZE - 2; x >= 0; x--) {
41           if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
42              if (bbs_style == 1) {
43                 /* ok we found a prime smaller or
44                  * equal [so the next is larger]
45                  *
46                  * however, the prime must be
47                  * congruent to 3 mod 4
48                  */
49                 if ((ltm_prime_tab[x + 1] & 3) != 3) {
50                    /* scan upwards for a prime congruent to 3 mod 4 */
51                    for (y = x + 1; y < PRIME_SIZE; y++) {
52                        if ((ltm_prime_tab[y] & 3) == 3) {
53                           mp_set(a, ltm_prime_tab[y]);
54                           return MP_OKAY;
55                        }
56                    }
57                 }
58              } else {
59                 mp_set(a, ltm_prime_tab[x + 1]);
60                 return MP_OKAY;
61              }
62           }
63       }
64       /* at this point a maybe 1 */
65       if (mp_cmp_d(a, 1) == MP_EQ) {
66          mp_set(a, 2);
67          return MP_OKAY;
68       }
69       /* fall through to the sieve */
70    }
71 
72    /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
73    if (bbs_style == 1) {
74       kstep   = 4;
75    } else {
76       kstep   = 2;
77    }
78 
79    /* at this point we will use a combination of a sieve and Miller-Rabin */
80 
81    if (bbs_style == 1) {
82       /* if a mod 4 != 3 subtract the correct value to make it so */
83       if ((a->dp[0] & 3) != 3) {
84          if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
85       }
86    } else {
87       if (mp_iseven(a) == 1) {
88          /* force odd */
89          if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
90             return err;
91          }
92       }
93    }
94 
95    /* generate the restable */
96    for (x = 1; x < PRIME_SIZE; x++) {
97       if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
98          return err;
99       }
100    }
101 
102    /* init temp used for Miller-Rabin Testing */
103    if ((err = mp_init(&b)) != MP_OKAY) {
104       return err;
105    }
106 
107    for (;;) {
108       /* skip to the next non-trivially divisible candidate */
109       step = 0;
110       do {
111          /* y == 1 if any residue was zero [e.g. cannot be prime] */
112          y     =  0;
113 
114          /* increase step to next candidate */
115          step += kstep;
116 
117          /* compute the new residue without using division */
118          for (x = 1; x < PRIME_SIZE; x++) {
119              /* add the step to each residue */
120              res_tab[x] += kstep;
121 
122              /* subtract the modulus [instead of using division] */
123              if (res_tab[x] >= ltm_prime_tab[x]) {
124                 res_tab[x]  -= ltm_prime_tab[x];
125              }
126 
127              /* set flag if zero */
128              if (res_tab[x] == 0) {
129                 y = 1;
130              }
131          }
132       } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
133 
134       /* add the step */
135       if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
136          goto LBL_ERR;
137       }
138 
139       /* if didn't pass sieve and step == MAX then skip test */
140       if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
141          continue;
142       }
143 
144       /* is this prime? */
145       for (x = 0; x < t; x++) {
146           mp_set(&b, ltm_prime_tab[t]);
147           if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
148              goto LBL_ERR;
149           }
150           if (res == MP_NO) {
151              break;
152           }
153       }
154 
155       if (res == MP_YES) {
156          break;
157       }
158    }
159 
160    err = MP_OKAY;
161 LBL_ERR:
162    mp_clear(&b);
163    return err;
164 }
165 
166 #endif
167 
168 /* $Source: /cvs/libtom/libtommath/bn_mp_prime_next_prime.c,v $ */
169 /* $Revision: 1.3 $ */
170 /* $Date: 2006/03/31 14:18:44 $ */
171