• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *****************************************************************************
3  * Copyright (C) 1996-2010, International Business Machines Corporation and  *
4  * others. All Rights Reserved.                                              *
5  *****************************************************************************
6  */
7 
8 #include "unicode/utypes.h"
9 
10 #if !UCONFIG_NO_NORMALIZATION
11 
12 #include "unicode/uset.h"
13 #include "unicode/ustring.h"
14 #include "hash.h"
15 #include "normalizer2impl.h"
16 #include "unormimp.h"
17 #include "unicode/caniter.h"
18 #include "unicode/normlzr.h"
19 #include "unicode/uchar.h"
20 #include "cmemory.h"
21 
22 /**
23  * This class allows one to iterate through all the strings that are canonically equivalent to a given
24  * string. For example, here are some sample results:
25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
26 1: \u0041\u030A\u0064\u0307\u0327
27  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
28 2: \u0041\u030A\u0064\u0327\u0307
29  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
30 3: \u0041\u030A\u1E0B\u0327
31  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
32 4: \u0041\u030A\u1E11\u0307
33  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
34 5: \u00C5\u0064\u0307\u0327
35  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
36 6: \u00C5\u0064\u0327\u0307
37  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
38 7: \u00C5\u1E0B\u0327
39  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
40 8: \u00C5\u1E11\u0307
41  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
42 9: \u212B\u0064\u0307\u0327
43  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
44 10: \u212B\u0064\u0327\u0307
45  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
46 11: \u212B\u1E0B\u0327
47  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
48 12: \u212B\u1E11\u0307
49  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
50  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
51  * since it has not been optimized for that situation.
52  *@author M. Davis
53  *@draft
54  */
55 
56 // public
57 
58 U_NAMESPACE_BEGIN
59 
60 // TODO: add boilerplate methods.
61 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
63 
64 /**
65  *@param source string to get results for
66  */
67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
68     pieces(NULL),
69     pieces_length(0),
70     pieces_lengths(NULL),
71     current(NULL),
72     current_length(0),
73     nfd(*Normalizer2Factory::getNFDInstance(status))
74 {
75     if(U_SUCCESS(status)) {
76       setSource(sourceStr, status);
77     }
78 }
79 
~CanonicalIterator()80 CanonicalIterator::~CanonicalIterator() {
81   cleanPieces();
82 }
83 
cleanPieces()84 void CanonicalIterator::cleanPieces() {
85     int32_t i = 0;
86     if(pieces != NULL) {
87         for(i = 0; i < pieces_length; i++) {
88             if(pieces[i] != NULL) {
89                 delete[] pieces[i];
90             }
91         }
92         uprv_free(pieces);
93         pieces = NULL;
94         pieces_length = 0;
95     }
96     if(pieces_lengths != NULL) {
97         uprv_free(pieces_lengths);
98         pieces_lengths = NULL;
99     }
100     if(current != NULL) {
101         uprv_free(current);
102         current = NULL;
103         current_length = 0;
104     }
105 }
106 
107 /**
108  *@return gets the source: NOTE: it is the NFD form of source
109  */
getSource()110 UnicodeString CanonicalIterator::getSource() {
111   return source;
112 }
113 
114 /**
115  * Resets the iterator so that one can start again from the beginning.
116  */
reset()117 void CanonicalIterator::reset() {
118     done = FALSE;
119     for (int i = 0; i < current_length; ++i) {
120         current[i] = 0;
121     }
122 }
123 
124 /**
125  *@return the next string that is canonically equivalent. The value null is returned when
126  * the iteration is done.
127  */
next()128 UnicodeString CanonicalIterator::next() {
129     int32_t i = 0;
130 
131     if (done) {
132       buffer.setToBogus();
133       return buffer;
134     }
135 
136     // delete old contents
137     buffer.remove();
138 
139     // construct return value
140 
141     for (i = 0; i < pieces_length; ++i) {
142         buffer.append(pieces[i][current[i]]);
143     }
144     //String result = buffer.toString(); // not needed
145 
146     // find next value for next time
147 
148     for (i = current_length - 1; ; --i) {
149         if (i < 0) {
150             done = TRUE;
151             break;
152         }
153         current[i]++;
154         if (current[i] < pieces_lengths[i]) break; // got sequence
155         current[i] = 0;
156     }
157     return buffer;
158 }
159 
160 /**
161  *@param set the source string to iterate against. This allows the same iterator to be used
162  * while changing the source string, saving object creation.
163  */
setSource(const UnicodeString & newSource,UErrorCode & status)164 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
165     int32_t list_length = 0;
166     UChar32 cp = 0;
167     int32_t start = 0;
168     int32_t i = 0;
169     UnicodeString *list = NULL;
170 
171     Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
172     if(U_FAILURE(status)) {
173       return;
174     }
175     done = FALSE;
176 
177     cleanPieces();
178 
179     // catch degenerate case
180     if (newSource.length() == 0) {
181         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
182         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
183         pieces_length = 1;
184         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
185         current_length = 1;
186         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
187             status = U_MEMORY_ALLOCATION_ERROR;
188             goto CleanPartialInitialization;
189         }
190         current[0] = 0;
191         pieces[0] = new UnicodeString[1];
192         pieces_lengths[0] = 1;
193         if (pieces[0] == 0) {
194             status = U_MEMORY_ALLOCATION_ERROR;
195             goto CleanPartialInitialization;
196         }
197         return;
198     }
199 
200 
201     list = new UnicodeString[source.length()];
202     if (list == 0) {
203         status = U_MEMORY_ALLOCATION_ERROR;
204         goto CleanPartialInitialization;
205     }
206 
207     // i should initialy be the number of code units at the
208     // start of the string
209     i = UTF16_CHAR_LENGTH(source.char32At(0));
210     //int32_t i = 1;
211     // find the segments
212     // This code iterates through the source string and
213     // extracts segments that end up on a codepoint that
214     // doesn't start any decompositions. (Analysis is done
215     // on the NFD form - see above).
216     for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
217         cp = source.char32At(i);
218         if (unorm_isCanonSafeStart(cp)) {
219             source.extract(start, i-start, list[list_length++]); // add up to i
220             start = i;
221         }
222     }
223     source.extract(start, i-start, list[list_length++]); // add last one
224 
225 
226     // allocate the arrays, and find the strings that are CE to each segment
227     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
228     pieces_length = list_length;
229     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
230     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
231     current_length = list_length;
232     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
233         status = U_MEMORY_ALLOCATION_ERROR;
234         goto CleanPartialInitialization;
235     }
236 
237     for (i = 0; i < current_length; i++) {
238         current[i] = 0;
239     }
240     // for each segment, get all the combinations that can produce
241     // it after NFD normalization
242     for (i = 0; i < pieces_length; ++i) {
243         //if (PROGRESS) printf("SEGMENT\n");
244         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
245     }
246 
247     delete[] list;
248     return;
249 // Common section to cleanup all local variables and reset object variables.
250 CleanPartialInitialization:
251     if (list != NULL) {
252         delete[] list;
253     }
254     cleanPieces();
255 }
256 
257 /**
258  * Dumb recursive implementation of permutation.
259  * TODO: optimize
260  * @param source the string to find permutations for
261  * @return the results in a set.
262  */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status)263 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
264     if(U_FAILURE(status)) {
265         return;
266     }
267     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
268     int32_t i = 0;
269 
270     // optimization:
271     // if zero or one character, just return a set with it
272     // we check for length < 2 to keep from counting code points all the time
273     if (source.length() <= 2 && source.countChar32() <= 1) {
274         UnicodeString *toPut = new UnicodeString(source);
275         /* test for NULL */
276         if (toPut == 0) {
277             status = U_MEMORY_ALLOCATION_ERROR;
278             return;
279         }
280         result->put(source, toPut, status);
281         return;
282     }
283 
284     // otherwise iterate through the string, and recursively permute all the other characters
285     UChar32 cp;
286     Hashtable subpermute(status);
287     if(U_FAILURE(status)) {
288         return;
289     }
290     subpermute.setValueDeleter(uhash_deleteUnicodeString);
291 
292     for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
293         cp = source.char32At(i);
294         const UHashElement *ne = NULL;
295         int32_t el = -1;
296         UnicodeString subPermuteString = source;
297 
298         // optimization:
299         // if the character is canonical combining class zero,
300         // don't permute it
301         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
302             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
303             continue;
304         }
305 
306         subpermute.removeAll();
307 
308         // see what the permutations of the characters before and after this one are
309         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
310         permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
311         /* Test for buffer overflows */
312         if(U_FAILURE(status)) {
313             return;
314         }
315         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
316         // of source at this point.
317 
318         // prefix this character to all of them
319         ne = subpermute.nextElement(el);
320         while (ne != NULL) {
321             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
322             UnicodeString *chStr = new UnicodeString(cp);
323             //test for  NULL
324             if (chStr == NULL) {
325                 status = U_MEMORY_ALLOCATION_ERROR;
326                 return;
327             }
328             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
329             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
330             result->put(*chStr, chStr, status);
331             ne = subpermute.nextElement(el);
332         }
333     }
334     //return result;
335 }
336 
337 // privates
338 
339 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)340 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
341     Hashtable result(status);
342     Hashtable permutations(status);
343     Hashtable basic(status);
344     if (U_FAILURE(status)) {
345         return 0;
346     }
347     result.setValueDeleter(uhash_deleteUnicodeString);
348     permutations.setValueDeleter(uhash_deleteUnicodeString);
349     basic.setValueDeleter(uhash_deleteUnicodeString);
350 
351     UChar USeg[256];
352     int32_t segLen = segment.extract(USeg, 256, status);
353     getEquivalents2(&basic, USeg, segLen, status);
354 
355     // now get all the permutations
356     // add only the ones that are canonically equivalent
357     // TODO: optimize by not permuting any class zero.
358 
359     const UHashElement *ne = NULL;
360     int32_t el = -1;
361     //Iterator it = basic.iterator();
362     ne = basic.nextElement(el);
363     //while (it.hasNext())
364     while (ne != NULL) {
365         //String item = (String) it.next();
366         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
367 
368         permutations.removeAll();
369         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
370         const UHashElement *ne2 = NULL;
371         int32_t el2 = -1;
372         //Iterator it2 = permutations.iterator();
373         ne2 = permutations.nextElement(el2);
374         //while (it2.hasNext())
375         while (ne2 != NULL) {
376             //String possible = (String) it2.next();
377             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
378             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
379             UnicodeString attempt;
380             Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status);
381 
382             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
383             if (attempt==segment) {
384                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
385                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
386                 result.put(possible, new UnicodeString(possible), status); //add(possible);
387             } else {
388                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
389             }
390 
391             ne2 = permutations.nextElement(el2);
392         }
393         ne = basic.nextElement(el);
394     }
395 
396     /* Test for buffer overflows */
397     if(U_FAILURE(status)) {
398         return 0;
399     }
400     // convert into a String[] to clean up storage
401     //String[] finalResult = new String[result.size()];
402     UnicodeString *finalResult = NULL;
403     int32_t resultCount;
404     if((resultCount = result.count())) {
405         finalResult = new UnicodeString[resultCount];
406         if (finalResult == 0) {
407             status = U_MEMORY_ALLOCATION_ERROR;
408             return NULL;
409         }
410     }
411     else {
412         status = U_ILLEGAL_ARGUMENT_ERROR;
413         return NULL;
414     }
415     //result.toArray(finalResult);
416     result_len = 0;
417     el = -1;
418     ne = result.nextElement(el);
419     while(ne != NULL) {
420         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
421         ne = result.nextElement(el);
422     }
423 
424 
425     return finalResult;
426 }
427 
getEquivalents2(Hashtable * fillinResult,const UChar * segment,int32_t segLen,UErrorCode & status)428 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
429 
430     if (U_FAILURE(status)) {
431         return NULL;
432     }
433 
434     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
435 
436     UnicodeString toPut(segment, segLen);
437 
438     fillinResult->put(toPut, new UnicodeString(toPut), status);
439 
440     USerializedSet starts;
441 
442     // cycle through all the characters
443     UChar32 cp, end = 0;
444     int32_t i = 0, j;
445     for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
446         // see if any character is at the start of some decomposition
447         UTF_GET_CHAR(segment, 0, i, segLen, cp);
448         if (!unorm_getCanonStartSet(cp, &starts)) {
449             continue;
450         }
451         // if so, see which decompositions match
452         for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) {
453             Hashtable remainder(status);
454             remainder.setValueDeleter(uhash_deleteUnicodeString);
455             if (extract(&remainder, cp, segment, segLen, i, status) == NULL) {
456                 continue;
457             }
458 
459             // there were some matches, so add all the possibilities to the set.
460             UnicodeString prefix(segment, i);
461             prefix += cp;
462 
463             int32_t el = -1;
464             const UHashElement *ne = remainder.nextElement(el);
465             while (ne != NULL) {
466                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
467                 UnicodeString *toAdd = new UnicodeString(prefix);
468                 /* test for NULL */
469                 if (toAdd == 0) {
470                     status = U_MEMORY_ALLOCATION_ERROR;
471                     return NULL;
472                 }
473                 *toAdd += item;
474                 fillinResult->put(*toAdd, toAdd, status);
475 
476                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
477 
478                 ne = remainder.nextElement(el);
479             }
480         }
481     }
482 
483     /* Test for buffer overflows */
484     if(U_FAILURE(status)) {
485         return NULL;
486     }
487     return fillinResult;
488 }
489 
490 /**
491  * See if the decomposition of cp2 is at segment starting at segmentPos
492  * (with canonical rearrangment!)
493  * If so, take the remainder, and return the equivalents
494  */
extract(Hashtable * fillinResult,UChar32 comp,const UChar * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)495 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
496 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
497     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
498     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
499 
500     if (U_FAILURE(status)) {
501         return NULL;
502     }
503 
504     UnicodeString temp(comp);
505     int32_t inputLen=temp.length();
506     UnicodeString decompString;
507     nfd.normalize(temp, decompString, status);
508     const UChar *decomp=decompString.getBuffer();
509     int32_t decompLen=decompString.length();
510 
511     // See if it matches the start of segment (at segmentPos)
512     UBool ok = FALSE;
513     UChar32 cp;
514     int32_t decompPos = 0;
515     UChar32 decompCp;
516     U16_NEXT(decomp, decompPos, decompLen, decompCp);
517 
518     int32_t i = segmentPos;
519     while(i < segLen) {
520         U16_NEXT(segment, i, segLen, cp);
521 
522         if (cp == decompCp) { // if equal, eat another cp from decomp
523 
524             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
525 
526             if (decompPos == decompLen) { // done, have all decomp characters!
527                 temp.append(segment+i, segLen-i);
528                 ok = TRUE;
529                 break;
530             }
531             U16_NEXT(decomp, decompPos, decompLen, decompCp);
532         } else {
533             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
534 
535             // brute force approach
536             temp.append(cp);
537 
538             /* TODO: optimize
539             // since we know that the classes are monotonically increasing, after zero
540             // e.g. 0 5 7 9 0 3
541             // we can do an optimization
542             // there are only a few cases that work: zero, less, same, greater
543             // if both classes are the same, we fail
544             // if the decomp class < the segment class, we fail
545 
546             segClass = getClass(cp);
547             if (decompClass <= segClass) return null;
548             */
549         }
550     }
551     if (!ok)
552         return NULL; // we failed, characters left over
553 
554     //if (PROGRESS) printf("Matches\n");
555 
556     if (inputLen == temp.length()) {
557         fillinResult->put(UnicodeString(), new UnicodeString(), status);
558         return fillinResult; // succeed, but no remainder
559     }
560 
561     // brute force approach
562     // check to make sure result is canonically equivalent
563     UnicodeString trial;
564     nfd.normalize(temp, trial, status);
565     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
566         return NULL;
567     }
568 
569     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
570 }
571 
572 U_NAMESPACE_END
573 
574 #endif /* #if !UCONFIG_NO_NORMALIZATION */
575