1 /*
2 *****************************************************************************
3 * Copyright (C) 1996-2010, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *****************************************************************************
6 */
7
8 #include "unicode/utypes.h"
9
10 #if !UCONFIG_NO_NORMALIZATION
11
12 #include "unicode/uset.h"
13 #include "unicode/ustring.h"
14 #include "hash.h"
15 #include "normalizer2impl.h"
16 #include "unormimp.h"
17 #include "unicode/caniter.h"
18 #include "unicode/normlzr.h"
19 #include "unicode/uchar.h"
20 #include "cmemory.h"
21
22 /**
23 * This class allows one to iterate through all the strings that are canonically equivalent to a given
24 * string. For example, here are some sample results:
25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
26 1: \u0041\u030A\u0064\u0307\u0327
27 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
28 2: \u0041\u030A\u0064\u0327\u0307
29 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
30 3: \u0041\u030A\u1E0B\u0327
31 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
32 4: \u0041\u030A\u1E11\u0307
33 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
34 5: \u00C5\u0064\u0307\u0327
35 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
36 6: \u00C5\u0064\u0327\u0307
37 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
38 7: \u00C5\u1E0B\u0327
39 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
40 8: \u00C5\u1E11\u0307
41 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
42 9: \u212B\u0064\u0307\u0327
43 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
44 10: \u212B\u0064\u0327\u0307
45 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
46 11: \u212B\u1E0B\u0327
47 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
48 12: \u212B\u1E11\u0307
49 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
50 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
51 * since it has not been optimized for that situation.
52 *@author M. Davis
53 *@draft
54 */
55
56 // public
57
58 U_NAMESPACE_BEGIN
59
60 // TODO: add boilerplate methods.
61
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
63
64 /**
65 *@param source string to get results for
66 */
67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
68 pieces(NULL),
69 pieces_length(0),
70 pieces_lengths(NULL),
71 current(NULL),
72 current_length(0),
73 nfd(*Normalizer2Factory::getNFDInstance(status))
74 {
75 if(U_SUCCESS(status)) {
76 setSource(sourceStr, status);
77 }
78 }
79
~CanonicalIterator()80 CanonicalIterator::~CanonicalIterator() {
81 cleanPieces();
82 }
83
cleanPieces()84 void CanonicalIterator::cleanPieces() {
85 int32_t i = 0;
86 if(pieces != NULL) {
87 for(i = 0; i < pieces_length; i++) {
88 if(pieces[i] != NULL) {
89 delete[] pieces[i];
90 }
91 }
92 uprv_free(pieces);
93 pieces = NULL;
94 pieces_length = 0;
95 }
96 if(pieces_lengths != NULL) {
97 uprv_free(pieces_lengths);
98 pieces_lengths = NULL;
99 }
100 if(current != NULL) {
101 uprv_free(current);
102 current = NULL;
103 current_length = 0;
104 }
105 }
106
107 /**
108 *@return gets the source: NOTE: it is the NFD form of source
109 */
getSource()110 UnicodeString CanonicalIterator::getSource() {
111 return source;
112 }
113
114 /**
115 * Resets the iterator so that one can start again from the beginning.
116 */
reset()117 void CanonicalIterator::reset() {
118 done = FALSE;
119 for (int i = 0; i < current_length; ++i) {
120 current[i] = 0;
121 }
122 }
123
124 /**
125 *@return the next string that is canonically equivalent. The value null is returned when
126 * the iteration is done.
127 */
next()128 UnicodeString CanonicalIterator::next() {
129 int32_t i = 0;
130
131 if (done) {
132 buffer.setToBogus();
133 return buffer;
134 }
135
136 // delete old contents
137 buffer.remove();
138
139 // construct return value
140
141 for (i = 0; i < pieces_length; ++i) {
142 buffer.append(pieces[i][current[i]]);
143 }
144 //String result = buffer.toString(); // not needed
145
146 // find next value for next time
147
148 for (i = current_length - 1; ; --i) {
149 if (i < 0) {
150 done = TRUE;
151 break;
152 }
153 current[i]++;
154 if (current[i] < pieces_lengths[i]) break; // got sequence
155 current[i] = 0;
156 }
157 return buffer;
158 }
159
160 /**
161 *@param set the source string to iterate against. This allows the same iterator to be used
162 * while changing the source string, saving object creation.
163 */
setSource(const UnicodeString & newSource,UErrorCode & status)164 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
165 int32_t list_length = 0;
166 UChar32 cp = 0;
167 int32_t start = 0;
168 int32_t i = 0;
169 UnicodeString *list = NULL;
170
171 Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
172 if(U_FAILURE(status)) {
173 return;
174 }
175 done = FALSE;
176
177 cleanPieces();
178
179 // catch degenerate case
180 if (newSource.length() == 0) {
181 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
182 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
183 pieces_length = 1;
184 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
185 current_length = 1;
186 if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
187 status = U_MEMORY_ALLOCATION_ERROR;
188 goto CleanPartialInitialization;
189 }
190 current[0] = 0;
191 pieces[0] = new UnicodeString[1];
192 pieces_lengths[0] = 1;
193 if (pieces[0] == 0) {
194 status = U_MEMORY_ALLOCATION_ERROR;
195 goto CleanPartialInitialization;
196 }
197 return;
198 }
199
200
201 list = new UnicodeString[source.length()];
202 if (list == 0) {
203 status = U_MEMORY_ALLOCATION_ERROR;
204 goto CleanPartialInitialization;
205 }
206
207 // i should initialy be the number of code units at the
208 // start of the string
209 i = UTF16_CHAR_LENGTH(source.char32At(0));
210 //int32_t i = 1;
211 // find the segments
212 // This code iterates through the source string and
213 // extracts segments that end up on a codepoint that
214 // doesn't start any decompositions. (Analysis is done
215 // on the NFD form - see above).
216 for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
217 cp = source.char32At(i);
218 if (unorm_isCanonSafeStart(cp)) {
219 source.extract(start, i-start, list[list_length++]); // add up to i
220 start = i;
221 }
222 }
223 source.extract(start, i-start, list[list_length++]); // add last one
224
225
226 // allocate the arrays, and find the strings that are CE to each segment
227 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
228 pieces_length = list_length;
229 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
230 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
231 current_length = list_length;
232 if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
233 status = U_MEMORY_ALLOCATION_ERROR;
234 goto CleanPartialInitialization;
235 }
236
237 for (i = 0; i < current_length; i++) {
238 current[i] = 0;
239 }
240 // for each segment, get all the combinations that can produce
241 // it after NFD normalization
242 for (i = 0; i < pieces_length; ++i) {
243 //if (PROGRESS) printf("SEGMENT\n");
244 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
245 }
246
247 delete[] list;
248 return;
249 // Common section to cleanup all local variables and reset object variables.
250 CleanPartialInitialization:
251 if (list != NULL) {
252 delete[] list;
253 }
254 cleanPieces();
255 }
256
257 /**
258 * Dumb recursive implementation of permutation.
259 * TODO: optimize
260 * @param source the string to find permutations for
261 * @return the results in a set.
262 */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status)263 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
264 if(U_FAILURE(status)) {
265 return;
266 }
267 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
268 int32_t i = 0;
269
270 // optimization:
271 // if zero or one character, just return a set with it
272 // we check for length < 2 to keep from counting code points all the time
273 if (source.length() <= 2 && source.countChar32() <= 1) {
274 UnicodeString *toPut = new UnicodeString(source);
275 /* test for NULL */
276 if (toPut == 0) {
277 status = U_MEMORY_ALLOCATION_ERROR;
278 return;
279 }
280 result->put(source, toPut, status);
281 return;
282 }
283
284 // otherwise iterate through the string, and recursively permute all the other characters
285 UChar32 cp;
286 Hashtable subpermute(status);
287 if(U_FAILURE(status)) {
288 return;
289 }
290 subpermute.setValueDeleter(uhash_deleteUnicodeString);
291
292 for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
293 cp = source.char32At(i);
294 const UHashElement *ne = NULL;
295 int32_t el = -1;
296 UnicodeString subPermuteString = source;
297
298 // optimization:
299 // if the character is canonical combining class zero,
300 // don't permute it
301 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
302 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
303 continue;
304 }
305
306 subpermute.removeAll();
307
308 // see what the permutations of the characters before and after this one are
309 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
310 permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
311 /* Test for buffer overflows */
312 if(U_FAILURE(status)) {
313 return;
314 }
315 // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
316 // of source at this point.
317
318 // prefix this character to all of them
319 ne = subpermute.nextElement(el);
320 while (ne != NULL) {
321 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
322 UnicodeString *chStr = new UnicodeString(cp);
323 //test for NULL
324 if (chStr == NULL) {
325 status = U_MEMORY_ALLOCATION_ERROR;
326 return;
327 }
328 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
329 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr));
330 result->put(*chStr, chStr, status);
331 ne = subpermute.nextElement(el);
332 }
333 }
334 //return result;
335 }
336
337 // privates
338
339 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)340 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
341 Hashtable result(status);
342 Hashtable permutations(status);
343 Hashtable basic(status);
344 if (U_FAILURE(status)) {
345 return 0;
346 }
347 result.setValueDeleter(uhash_deleteUnicodeString);
348 permutations.setValueDeleter(uhash_deleteUnicodeString);
349 basic.setValueDeleter(uhash_deleteUnicodeString);
350
351 UChar USeg[256];
352 int32_t segLen = segment.extract(USeg, 256, status);
353 getEquivalents2(&basic, USeg, segLen, status);
354
355 // now get all the permutations
356 // add only the ones that are canonically equivalent
357 // TODO: optimize by not permuting any class zero.
358
359 const UHashElement *ne = NULL;
360 int32_t el = -1;
361 //Iterator it = basic.iterator();
362 ne = basic.nextElement(el);
363 //while (it.hasNext())
364 while (ne != NULL) {
365 //String item = (String) it.next();
366 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
367
368 permutations.removeAll();
369 permute(item, CANITER_SKIP_ZEROES, &permutations, status);
370 const UHashElement *ne2 = NULL;
371 int32_t el2 = -1;
372 //Iterator it2 = permutations.iterator();
373 ne2 = permutations.nextElement(el2);
374 //while (it2.hasNext())
375 while (ne2 != NULL) {
376 //String possible = (String) it2.next();
377 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
378 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
379 UnicodeString attempt;
380 Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status);
381
382 // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
383 if (attempt==segment) {
384 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
385 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
386 result.put(possible, new UnicodeString(possible), status); //add(possible);
387 } else {
388 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
389 }
390
391 ne2 = permutations.nextElement(el2);
392 }
393 ne = basic.nextElement(el);
394 }
395
396 /* Test for buffer overflows */
397 if(U_FAILURE(status)) {
398 return 0;
399 }
400 // convert into a String[] to clean up storage
401 //String[] finalResult = new String[result.size()];
402 UnicodeString *finalResult = NULL;
403 int32_t resultCount;
404 if((resultCount = result.count())) {
405 finalResult = new UnicodeString[resultCount];
406 if (finalResult == 0) {
407 status = U_MEMORY_ALLOCATION_ERROR;
408 return NULL;
409 }
410 }
411 else {
412 status = U_ILLEGAL_ARGUMENT_ERROR;
413 return NULL;
414 }
415 //result.toArray(finalResult);
416 result_len = 0;
417 el = -1;
418 ne = result.nextElement(el);
419 while(ne != NULL) {
420 finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
421 ne = result.nextElement(el);
422 }
423
424
425 return finalResult;
426 }
427
getEquivalents2(Hashtable * fillinResult,const UChar * segment,int32_t segLen,UErrorCode & status)428 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
429
430 if (U_FAILURE(status)) {
431 return NULL;
432 }
433
434 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
435
436 UnicodeString toPut(segment, segLen);
437
438 fillinResult->put(toPut, new UnicodeString(toPut), status);
439
440 USerializedSet starts;
441
442 // cycle through all the characters
443 UChar32 cp, end = 0;
444 int32_t i = 0, j;
445 for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
446 // see if any character is at the start of some decomposition
447 UTF_GET_CHAR(segment, 0, i, segLen, cp);
448 if (!unorm_getCanonStartSet(cp, &starts)) {
449 continue;
450 }
451 // if so, see which decompositions match
452 for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) {
453 Hashtable remainder(status);
454 remainder.setValueDeleter(uhash_deleteUnicodeString);
455 if (extract(&remainder, cp, segment, segLen, i, status) == NULL) {
456 continue;
457 }
458
459 // there were some matches, so add all the possibilities to the set.
460 UnicodeString prefix(segment, i);
461 prefix += cp;
462
463 int32_t el = -1;
464 const UHashElement *ne = remainder.nextElement(el);
465 while (ne != NULL) {
466 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
467 UnicodeString *toAdd = new UnicodeString(prefix);
468 /* test for NULL */
469 if (toAdd == 0) {
470 status = U_MEMORY_ALLOCATION_ERROR;
471 return NULL;
472 }
473 *toAdd += item;
474 fillinResult->put(*toAdd, toAdd, status);
475
476 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
477
478 ne = remainder.nextElement(el);
479 }
480 }
481 }
482
483 /* Test for buffer overflows */
484 if(U_FAILURE(status)) {
485 return NULL;
486 }
487 return fillinResult;
488 }
489
490 /**
491 * See if the decomposition of cp2 is at segment starting at segmentPos
492 * (with canonical rearrangment!)
493 * If so, take the remainder, and return the equivalents
494 */
extract(Hashtable * fillinResult,UChar32 comp,const UChar * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)495 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
496 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
497 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
498 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
499
500 if (U_FAILURE(status)) {
501 return NULL;
502 }
503
504 UnicodeString temp(comp);
505 int32_t inputLen=temp.length();
506 UnicodeString decompString;
507 nfd.normalize(temp, decompString, status);
508 const UChar *decomp=decompString.getBuffer();
509 int32_t decompLen=decompString.length();
510
511 // See if it matches the start of segment (at segmentPos)
512 UBool ok = FALSE;
513 UChar32 cp;
514 int32_t decompPos = 0;
515 UChar32 decompCp;
516 U16_NEXT(decomp, decompPos, decompLen, decompCp);
517
518 int32_t i = segmentPos;
519 while(i < segLen) {
520 U16_NEXT(segment, i, segLen, cp);
521
522 if (cp == decompCp) { // if equal, eat another cp from decomp
523
524 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))));
525
526 if (decompPos == decompLen) { // done, have all decomp characters!
527 temp.append(segment+i, segLen-i);
528 ok = TRUE;
529 break;
530 }
531 U16_NEXT(decomp, decompPos, decompLen, decompCp);
532 } else {
533 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp))));
534
535 // brute force approach
536 temp.append(cp);
537
538 /* TODO: optimize
539 // since we know that the classes are monotonically increasing, after zero
540 // e.g. 0 5 7 9 0 3
541 // we can do an optimization
542 // there are only a few cases that work: zero, less, same, greater
543 // if both classes are the same, we fail
544 // if the decomp class < the segment class, we fail
545
546 segClass = getClass(cp);
547 if (decompClass <= segClass) return null;
548 */
549 }
550 }
551 if (!ok)
552 return NULL; // we failed, characters left over
553
554 //if (PROGRESS) printf("Matches\n");
555
556 if (inputLen == temp.length()) {
557 fillinResult->put(UnicodeString(), new UnicodeString(), status);
558 return fillinResult; // succeed, but no remainder
559 }
560
561 // brute force approach
562 // check to make sure result is canonically equivalent
563 UnicodeString trial;
564 nfd.normalize(temp, trial, status);
565 if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
566 return NULL;
567 }
568
569 return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
570 }
571
572 U_NAMESPACE_END
573
574 #endif /* #if !UCONFIG_NO_NORMALIZATION */
575