1 /* crypto/aes/aes_core.c -*- mode:C; c-file-style: "eay" -*- */
2 /**
3 * rijndael-alg-fst.c
4 *
5 * @version 3.0 (December 2000)
6 *
7 * Optimised ANSI C code for the Rijndael cipher (now AES)
8 *
9 * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
10 * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
11 * @author Paulo Barreto <paulo.barreto@terra.com.br>
12 *
13 * This code is hereby placed in the public domain.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
24 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
25 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * This is experimental x86[_64] derivative. It assumes little-endian
30 * byte order and expects CPU to sustain unaligned memory references.
31 * It is used as playground for cache-time attack mitigations and
32 * serves as reference C implementation for x86[_64] assembler.
33 *
34 * <appro@fy.chalmers.se>
35 */
36
37
38 #ifndef AES_DEBUG
39 # ifndef NDEBUG
40 # define NDEBUG
41 # endif
42 #endif
43 #include <assert.h>
44
45 #include <stdlib.h>
46 #include <openssl/aes.h>
47 #include "aes_locl.h"
48
49 /*
50 * These two parameters control which table, 256-byte or 2KB, is
51 * referenced in outer and respectively inner rounds.
52 */
53 #define AES_COMPACT_IN_OUTER_ROUNDS
54 #ifdef AES_COMPACT_IN_OUTER_ROUNDS
55 /* AES_COMPACT_IN_OUTER_ROUNDS costs ~30% in performance, while
56 * adding AES_COMPACT_IN_INNER_ROUNDS reduces benchmark *further*
57 * by factor of ~2. */
58 # undef AES_COMPACT_IN_INNER_ROUNDS
59 #endif
60
61 #if 1
prefetch256(const void * table)62 static void prefetch256(const void *table)
63 {
64 volatile unsigned long *t=(void *)table,ret;
65 unsigned long sum;
66 int i;
67
68 /* 32 is common least cache-line size */
69 for (sum=0,i=0;i<256/sizeof(t[0]);i+=32/sizeof(t[0])) sum ^= t[i];
70
71 ret = sum;
72 }
73 #else
74 # define prefetch256(t)
75 #endif
76
77 #undef GETU32
78 #define GETU32(p) (*((u32*)(p)))
79
80 #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
81 typedef unsigned __int64 u64;
82 #define U64(C) C##UI64
83 #elif defined(__arch64__)
84 typedef unsigned long u64;
85 #define U64(C) C##UL
86 #else
87 typedef unsigned long long u64;
88 #define U64(C) C##ULL
89 #endif
90
91 #undef ROTATE
92 #if defined(_MSC_VER) || defined(__ICC)
93 # define ROTATE(a,n) _lrotl(a,n)
94 #elif defined(__GNUC__) && __GNUC__>=2
95 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
96 # define ROTATE(a,n) ({ register unsigned int ret; \
97 asm ( \
98 "roll %1,%0" \
99 : "=r"(ret) \
100 : "I"(n), "0"(a) \
101 : "cc"); \
102 ret; \
103 })
104 # endif
105 #endif
106 /*
107 Te [x] = S [x].[02, 01, 01, 03, 02, 01, 01, 03];
108 Te0[x] = S [x].[02, 01, 01, 03];
109 Te1[x] = S [x].[03, 02, 01, 01];
110 Te2[x] = S [x].[01, 03, 02, 01];
111 Te3[x] = S [x].[01, 01, 03, 02];
112 */
113 #define Te0 (u32)((u64*)((u8*)Te+0))
114 #define Te1 (u32)((u64*)((u8*)Te+3))
115 #define Te2 (u32)((u64*)((u8*)Te+2))
116 #define Te3 (u32)((u64*)((u8*)Te+1))
117 /*
118 Td [x] = Si[x].[0e, 09, 0d, 0b, 0e, 09, 0d, 0b];
119 Td0[x] = Si[x].[0e, 09, 0d, 0b];
120 Td1[x] = Si[x].[0b, 0e, 09, 0d];
121 Td2[x] = Si[x].[0d, 0b, 0e, 09];
122 Td3[x] = Si[x].[09, 0d, 0b, 0e];
123 Td4[x] = Si[x].[01];
124 */
125 #define Td0 (u32)((u64*)((u8*)Td+0))
126 #define Td1 (u32)((u64*)((u8*)Td+3))
127 #define Td2 (u32)((u64*)((u8*)Td+2))
128 #define Td3 (u32)((u64*)((u8*)Td+1))
129
130 static const u64 Te[256] = {
131 U64(0xa56363c6a56363c6), U64(0x847c7cf8847c7cf8),
132 U64(0x997777ee997777ee), U64(0x8d7b7bf68d7b7bf6),
133 U64(0x0df2f2ff0df2f2ff), U64(0xbd6b6bd6bd6b6bd6),
134 U64(0xb16f6fdeb16f6fde), U64(0x54c5c59154c5c591),
135 U64(0x5030306050303060), U64(0x0301010203010102),
136 U64(0xa96767cea96767ce), U64(0x7d2b2b567d2b2b56),
137 U64(0x19fefee719fefee7), U64(0x62d7d7b562d7d7b5),
138 U64(0xe6abab4de6abab4d), U64(0x9a7676ec9a7676ec),
139 U64(0x45caca8f45caca8f), U64(0x9d82821f9d82821f),
140 U64(0x40c9c98940c9c989), U64(0x877d7dfa877d7dfa),
141 U64(0x15fafaef15fafaef), U64(0xeb5959b2eb5959b2),
142 U64(0xc947478ec947478e), U64(0x0bf0f0fb0bf0f0fb),
143 U64(0xecadad41ecadad41), U64(0x67d4d4b367d4d4b3),
144 U64(0xfda2a25ffda2a25f), U64(0xeaafaf45eaafaf45),
145 U64(0xbf9c9c23bf9c9c23), U64(0xf7a4a453f7a4a453),
146 U64(0x967272e4967272e4), U64(0x5bc0c09b5bc0c09b),
147 U64(0xc2b7b775c2b7b775), U64(0x1cfdfde11cfdfde1),
148 U64(0xae93933dae93933d), U64(0x6a26264c6a26264c),
149 U64(0x5a36366c5a36366c), U64(0x413f3f7e413f3f7e),
150 U64(0x02f7f7f502f7f7f5), U64(0x4fcccc834fcccc83),
151 U64(0x5c3434685c343468), U64(0xf4a5a551f4a5a551),
152 U64(0x34e5e5d134e5e5d1), U64(0x08f1f1f908f1f1f9),
153 U64(0x937171e2937171e2), U64(0x73d8d8ab73d8d8ab),
154 U64(0x5331316253313162), U64(0x3f15152a3f15152a),
155 U64(0x0c0404080c040408), U64(0x52c7c79552c7c795),
156 U64(0x6523234665232346), U64(0x5ec3c39d5ec3c39d),
157 U64(0x2818183028181830), U64(0xa1969637a1969637),
158 U64(0x0f05050a0f05050a), U64(0xb59a9a2fb59a9a2f),
159 U64(0x0907070e0907070e), U64(0x3612122436121224),
160 U64(0x9b80801b9b80801b), U64(0x3de2e2df3de2e2df),
161 U64(0x26ebebcd26ebebcd), U64(0x6927274e6927274e),
162 U64(0xcdb2b27fcdb2b27f), U64(0x9f7575ea9f7575ea),
163 U64(0x1b0909121b090912), U64(0x9e83831d9e83831d),
164 U64(0x742c2c58742c2c58), U64(0x2e1a1a342e1a1a34),
165 U64(0x2d1b1b362d1b1b36), U64(0xb26e6edcb26e6edc),
166 U64(0xee5a5ab4ee5a5ab4), U64(0xfba0a05bfba0a05b),
167 U64(0xf65252a4f65252a4), U64(0x4d3b3b764d3b3b76),
168 U64(0x61d6d6b761d6d6b7), U64(0xceb3b37dceb3b37d),
169 U64(0x7b2929527b292952), U64(0x3ee3e3dd3ee3e3dd),
170 U64(0x712f2f5e712f2f5e), U64(0x9784841397848413),
171 U64(0xf55353a6f55353a6), U64(0x68d1d1b968d1d1b9),
172 U64(0x0000000000000000), U64(0x2cededc12cededc1),
173 U64(0x6020204060202040), U64(0x1ffcfce31ffcfce3),
174 U64(0xc8b1b179c8b1b179), U64(0xed5b5bb6ed5b5bb6),
175 U64(0xbe6a6ad4be6a6ad4), U64(0x46cbcb8d46cbcb8d),
176 U64(0xd9bebe67d9bebe67), U64(0x4b3939724b393972),
177 U64(0xde4a4a94de4a4a94), U64(0xd44c4c98d44c4c98),
178 U64(0xe85858b0e85858b0), U64(0x4acfcf854acfcf85),
179 U64(0x6bd0d0bb6bd0d0bb), U64(0x2aefefc52aefefc5),
180 U64(0xe5aaaa4fe5aaaa4f), U64(0x16fbfbed16fbfbed),
181 U64(0xc5434386c5434386), U64(0xd74d4d9ad74d4d9a),
182 U64(0x5533336655333366), U64(0x9485851194858511),
183 U64(0xcf45458acf45458a), U64(0x10f9f9e910f9f9e9),
184 U64(0x0602020406020204), U64(0x817f7ffe817f7ffe),
185 U64(0xf05050a0f05050a0), U64(0x443c3c78443c3c78),
186 U64(0xba9f9f25ba9f9f25), U64(0xe3a8a84be3a8a84b),
187 U64(0xf35151a2f35151a2), U64(0xfea3a35dfea3a35d),
188 U64(0xc0404080c0404080), U64(0x8a8f8f058a8f8f05),
189 U64(0xad92923fad92923f), U64(0xbc9d9d21bc9d9d21),
190 U64(0x4838387048383870), U64(0x04f5f5f104f5f5f1),
191 U64(0xdfbcbc63dfbcbc63), U64(0xc1b6b677c1b6b677),
192 U64(0x75dadaaf75dadaaf), U64(0x6321214263212142),
193 U64(0x3010102030101020), U64(0x1affffe51affffe5),
194 U64(0x0ef3f3fd0ef3f3fd), U64(0x6dd2d2bf6dd2d2bf),
195 U64(0x4ccdcd814ccdcd81), U64(0x140c0c18140c0c18),
196 U64(0x3513132635131326), U64(0x2fececc32fececc3),
197 U64(0xe15f5fbee15f5fbe), U64(0xa2979735a2979735),
198 U64(0xcc444488cc444488), U64(0x3917172e3917172e),
199 U64(0x57c4c49357c4c493), U64(0xf2a7a755f2a7a755),
200 U64(0x827e7efc827e7efc), U64(0x473d3d7a473d3d7a),
201 U64(0xac6464c8ac6464c8), U64(0xe75d5dbae75d5dba),
202 U64(0x2b1919322b191932), U64(0x957373e6957373e6),
203 U64(0xa06060c0a06060c0), U64(0x9881811998818119),
204 U64(0xd14f4f9ed14f4f9e), U64(0x7fdcdca37fdcdca3),
205 U64(0x6622224466222244), U64(0x7e2a2a547e2a2a54),
206 U64(0xab90903bab90903b), U64(0x8388880b8388880b),
207 U64(0xca46468cca46468c), U64(0x29eeeec729eeeec7),
208 U64(0xd3b8b86bd3b8b86b), U64(0x3c1414283c141428),
209 U64(0x79dedea779dedea7), U64(0xe25e5ebce25e5ebc),
210 U64(0x1d0b0b161d0b0b16), U64(0x76dbdbad76dbdbad),
211 U64(0x3be0e0db3be0e0db), U64(0x5632326456323264),
212 U64(0x4e3a3a744e3a3a74), U64(0x1e0a0a141e0a0a14),
213 U64(0xdb494992db494992), U64(0x0a06060c0a06060c),
214 U64(0x6c2424486c242448), U64(0xe45c5cb8e45c5cb8),
215 U64(0x5dc2c29f5dc2c29f), U64(0x6ed3d3bd6ed3d3bd),
216 U64(0xefacac43efacac43), U64(0xa66262c4a66262c4),
217 U64(0xa8919139a8919139), U64(0xa4959531a4959531),
218 U64(0x37e4e4d337e4e4d3), U64(0x8b7979f28b7979f2),
219 U64(0x32e7e7d532e7e7d5), U64(0x43c8c88b43c8c88b),
220 U64(0x5937376e5937376e), U64(0xb76d6ddab76d6dda),
221 U64(0x8c8d8d018c8d8d01), U64(0x64d5d5b164d5d5b1),
222 U64(0xd24e4e9cd24e4e9c), U64(0xe0a9a949e0a9a949),
223 U64(0xb46c6cd8b46c6cd8), U64(0xfa5656acfa5656ac),
224 U64(0x07f4f4f307f4f4f3), U64(0x25eaeacf25eaeacf),
225 U64(0xaf6565caaf6565ca), U64(0x8e7a7af48e7a7af4),
226 U64(0xe9aeae47e9aeae47), U64(0x1808081018080810),
227 U64(0xd5baba6fd5baba6f), U64(0x887878f0887878f0),
228 U64(0x6f25254a6f25254a), U64(0x722e2e5c722e2e5c),
229 U64(0x241c1c38241c1c38), U64(0xf1a6a657f1a6a657),
230 U64(0xc7b4b473c7b4b473), U64(0x51c6c69751c6c697),
231 U64(0x23e8e8cb23e8e8cb), U64(0x7cdddda17cdddda1),
232 U64(0x9c7474e89c7474e8), U64(0x211f1f3e211f1f3e),
233 U64(0xdd4b4b96dd4b4b96), U64(0xdcbdbd61dcbdbd61),
234 U64(0x868b8b0d868b8b0d), U64(0x858a8a0f858a8a0f),
235 U64(0x907070e0907070e0), U64(0x423e3e7c423e3e7c),
236 U64(0xc4b5b571c4b5b571), U64(0xaa6666ccaa6666cc),
237 U64(0xd8484890d8484890), U64(0x0503030605030306),
238 U64(0x01f6f6f701f6f6f7), U64(0x120e0e1c120e0e1c),
239 U64(0xa36161c2a36161c2), U64(0x5f35356a5f35356a),
240 U64(0xf95757aef95757ae), U64(0xd0b9b969d0b9b969),
241 U64(0x9186861791868617), U64(0x58c1c19958c1c199),
242 U64(0x271d1d3a271d1d3a), U64(0xb99e9e27b99e9e27),
243 U64(0x38e1e1d938e1e1d9), U64(0x13f8f8eb13f8f8eb),
244 U64(0xb398982bb398982b), U64(0x3311112233111122),
245 U64(0xbb6969d2bb6969d2), U64(0x70d9d9a970d9d9a9),
246 U64(0x898e8e07898e8e07), U64(0xa7949433a7949433),
247 U64(0xb69b9b2db69b9b2d), U64(0x221e1e3c221e1e3c),
248 U64(0x9287871592878715), U64(0x20e9e9c920e9e9c9),
249 U64(0x49cece8749cece87), U64(0xff5555aaff5555aa),
250 U64(0x7828285078282850), U64(0x7adfdfa57adfdfa5),
251 U64(0x8f8c8c038f8c8c03), U64(0xf8a1a159f8a1a159),
252 U64(0x8089890980898909), U64(0x170d0d1a170d0d1a),
253 U64(0xdabfbf65dabfbf65), U64(0x31e6e6d731e6e6d7),
254 U64(0xc6424284c6424284), U64(0xb86868d0b86868d0),
255 U64(0xc3414182c3414182), U64(0xb0999929b0999929),
256 U64(0x772d2d5a772d2d5a), U64(0x110f0f1e110f0f1e),
257 U64(0xcbb0b07bcbb0b07b), U64(0xfc5454a8fc5454a8),
258 U64(0xd6bbbb6dd6bbbb6d), U64(0x3a16162c3a16162c)
259 };
260
261 static const u8 Te4[256] = {
262 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U,
263 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U,
264 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U,
265 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U,
266 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU,
267 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U,
268 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU,
269 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U,
270 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U,
271 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U,
272 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU,
273 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU,
274 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U,
275 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U,
276 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U,
277 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U,
278 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U,
279 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U,
280 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U,
281 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU,
282 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU,
283 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U,
284 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U,
285 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U,
286 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U,
287 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU,
288 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU,
289 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU,
290 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U,
291 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU,
292 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U,
293 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U
294 };
295
296 static const u64 Td[256] = {
297 U64(0x50a7f45150a7f451), U64(0x5365417e5365417e),
298 U64(0xc3a4171ac3a4171a), U64(0x965e273a965e273a),
299 U64(0xcb6bab3bcb6bab3b), U64(0xf1459d1ff1459d1f),
300 U64(0xab58faacab58faac), U64(0x9303e34b9303e34b),
301 U64(0x55fa302055fa3020), U64(0xf66d76adf66d76ad),
302 U64(0x9176cc889176cc88), U64(0x254c02f5254c02f5),
303 U64(0xfcd7e54ffcd7e54f), U64(0xd7cb2ac5d7cb2ac5),
304 U64(0x8044352680443526), U64(0x8fa362b58fa362b5),
305 U64(0x495ab1de495ab1de), U64(0x671bba25671bba25),
306 U64(0x980eea45980eea45), U64(0xe1c0fe5de1c0fe5d),
307 U64(0x02752fc302752fc3), U64(0x12f04c8112f04c81),
308 U64(0xa397468da397468d), U64(0xc6f9d36bc6f9d36b),
309 U64(0xe75f8f03e75f8f03), U64(0x959c9215959c9215),
310 U64(0xeb7a6dbfeb7a6dbf), U64(0xda595295da595295),
311 U64(0x2d83bed42d83bed4), U64(0xd3217458d3217458),
312 U64(0x2969e0492969e049), U64(0x44c8c98e44c8c98e),
313 U64(0x6a89c2756a89c275), U64(0x78798ef478798ef4),
314 U64(0x6b3e58996b3e5899), U64(0xdd71b927dd71b927),
315 U64(0xb64fe1beb64fe1be), U64(0x17ad88f017ad88f0),
316 U64(0x66ac20c966ac20c9), U64(0xb43ace7db43ace7d),
317 U64(0x184adf63184adf63), U64(0x82311ae582311ae5),
318 U64(0x6033519760335197), U64(0x457f5362457f5362),
319 U64(0xe07764b1e07764b1), U64(0x84ae6bbb84ae6bbb),
320 U64(0x1ca081fe1ca081fe), U64(0x942b08f9942b08f9),
321 U64(0x5868487058684870), U64(0x19fd458f19fd458f),
322 U64(0x876cde94876cde94), U64(0xb7f87b52b7f87b52),
323 U64(0x23d373ab23d373ab), U64(0xe2024b72e2024b72),
324 U64(0x578f1fe3578f1fe3), U64(0x2aab55662aab5566),
325 U64(0x0728ebb20728ebb2), U64(0x03c2b52f03c2b52f),
326 U64(0x9a7bc5869a7bc586), U64(0xa50837d3a50837d3),
327 U64(0xf2872830f2872830), U64(0xb2a5bf23b2a5bf23),
328 U64(0xba6a0302ba6a0302), U64(0x5c8216ed5c8216ed),
329 U64(0x2b1ccf8a2b1ccf8a), U64(0x92b479a792b479a7),
330 U64(0xf0f207f3f0f207f3), U64(0xa1e2694ea1e2694e),
331 U64(0xcdf4da65cdf4da65), U64(0xd5be0506d5be0506),
332 U64(0x1f6234d11f6234d1), U64(0x8afea6c48afea6c4),
333 U64(0x9d532e349d532e34), U64(0xa055f3a2a055f3a2),
334 U64(0x32e18a0532e18a05), U64(0x75ebf6a475ebf6a4),
335 U64(0x39ec830b39ec830b), U64(0xaaef6040aaef6040),
336 U64(0x069f715e069f715e), U64(0x51106ebd51106ebd),
337 U64(0xf98a213ef98a213e), U64(0x3d06dd963d06dd96),
338 U64(0xae053eddae053edd), U64(0x46bde64d46bde64d),
339 U64(0xb58d5491b58d5491), U64(0x055dc471055dc471),
340 U64(0x6fd406046fd40604), U64(0xff155060ff155060),
341 U64(0x24fb981924fb9819), U64(0x97e9bdd697e9bdd6),
342 U64(0xcc434089cc434089), U64(0x779ed967779ed967),
343 U64(0xbd42e8b0bd42e8b0), U64(0x888b8907888b8907),
344 U64(0x385b19e7385b19e7), U64(0xdbeec879dbeec879),
345 U64(0x470a7ca1470a7ca1), U64(0xe90f427ce90f427c),
346 U64(0xc91e84f8c91e84f8), U64(0x0000000000000000),
347 U64(0x8386800983868009), U64(0x48ed2b3248ed2b32),
348 U64(0xac70111eac70111e), U64(0x4e725a6c4e725a6c),
349 U64(0xfbff0efdfbff0efd), U64(0x5638850f5638850f),
350 U64(0x1ed5ae3d1ed5ae3d), U64(0x27392d3627392d36),
351 U64(0x64d90f0a64d90f0a), U64(0x21a65c6821a65c68),
352 U64(0xd1545b9bd1545b9b), U64(0x3a2e36243a2e3624),
353 U64(0xb1670a0cb1670a0c), U64(0x0fe757930fe75793),
354 U64(0xd296eeb4d296eeb4), U64(0x9e919b1b9e919b1b),
355 U64(0x4fc5c0804fc5c080), U64(0xa220dc61a220dc61),
356 U64(0x694b775a694b775a), U64(0x161a121c161a121c),
357 U64(0x0aba93e20aba93e2), U64(0xe52aa0c0e52aa0c0),
358 U64(0x43e0223c43e0223c), U64(0x1d171b121d171b12),
359 U64(0x0b0d090e0b0d090e), U64(0xadc78bf2adc78bf2),
360 U64(0xb9a8b62db9a8b62d), U64(0xc8a91e14c8a91e14),
361 U64(0x8519f1578519f157), U64(0x4c0775af4c0775af),
362 U64(0xbbdd99eebbdd99ee), U64(0xfd607fa3fd607fa3),
363 U64(0x9f2601f79f2601f7), U64(0xbcf5725cbcf5725c),
364 U64(0xc53b6644c53b6644), U64(0x347efb5b347efb5b),
365 U64(0x7629438b7629438b), U64(0xdcc623cbdcc623cb),
366 U64(0x68fcedb668fcedb6), U64(0x63f1e4b863f1e4b8),
367 U64(0xcadc31d7cadc31d7), U64(0x1085634210856342),
368 U64(0x4022971340229713), U64(0x2011c6842011c684),
369 U64(0x7d244a857d244a85), U64(0xf83dbbd2f83dbbd2),
370 U64(0x1132f9ae1132f9ae), U64(0x6da129c76da129c7),
371 U64(0x4b2f9e1d4b2f9e1d), U64(0xf330b2dcf330b2dc),
372 U64(0xec52860dec52860d), U64(0xd0e3c177d0e3c177),
373 U64(0x6c16b32b6c16b32b), U64(0x99b970a999b970a9),
374 U64(0xfa489411fa489411), U64(0x2264e9472264e947),
375 U64(0xc48cfca8c48cfca8), U64(0x1a3ff0a01a3ff0a0),
376 U64(0xd82c7d56d82c7d56), U64(0xef903322ef903322),
377 U64(0xc74e4987c74e4987), U64(0xc1d138d9c1d138d9),
378 U64(0xfea2ca8cfea2ca8c), U64(0x360bd498360bd498),
379 U64(0xcf81f5a6cf81f5a6), U64(0x28de7aa528de7aa5),
380 U64(0x268eb7da268eb7da), U64(0xa4bfad3fa4bfad3f),
381 U64(0xe49d3a2ce49d3a2c), U64(0x0d9278500d927850),
382 U64(0x9bcc5f6a9bcc5f6a), U64(0x62467e5462467e54),
383 U64(0xc2138df6c2138df6), U64(0xe8b8d890e8b8d890),
384 U64(0x5ef7392e5ef7392e), U64(0xf5afc382f5afc382),
385 U64(0xbe805d9fbe805d9f), U64(0x7c93d0697c93d069),
386 U64(0xa92dd56fa92dd56f), U64(0xb31225cfb31225cf),
387 U64(0x3b99acc83b99acc8), U64(0xa77d1810a77d1810),
388 U64(0x6e639ce86e639ce8), U64(0x7bbb3bdb7bbb3bdb),
389 U64(0x097826cd097826cd), U64(0xf418596ef418596e),
390 U64(0x01b79aec01b79aec), U64(0xa89a4f83a89a4f83),
391 U64(0x656e95e6656e95e6), U64(0x7ee6ffaa7ee6ffaa),
392 U64(0x08cfbc2108cfbc21), U64(0xe6e815efe6e815ef),
393 U64(0xd99be7bad99be7ba), U64(0xce366f4ace366f4a),
394 U64(0xd4099fead4099fea), U64(0xd67cb029d67cb029),
395 U64(0xafb2a431afb2a431), U64(0x31233f2a31233f2a),
396 U64(0x3094a5c63094a5c6), U64(0xc066a235c066a235),
397 U64(0x37bc4e7437bc4e74), U64(0xa6ca82fca6ca82fc),
398 U64(0xb0d090e0b0d090e0), U64(0x15d8a73315d8a733),
399 U64(0x4a9804f14a9804f1), U64(0xf7daec41f7daec41),
400 U64(0x0e50cd7f0e50cd7f), U64(0x2ff691172ff69117),
401 U64(0x8dd64d768dd64d76), U64(0x4db0ef434db0ef43),
402 U64(0x544daacc544daacc), U64(0xdf0496e4df0496e4),
403 U64(0xe3b5d19ee3b5d19e), U64(0x1b886a4c1b886a4c),
404 U64(0xb81f2cc1b81f2cc1), U64(0x7f5165467f516546),
405 U64(0x04ea5e9d04ea5e9d), U64(0x5d358c015d358c01),
406 U64(0x737487fa737487fa), U64(0x2e410bfb2e410bfb),
407 U64(0x5a1d67b35a1d67b3), U64(0x52d2db9252d2db92),
408 U64(0x335610e9335610e9), U64(0x1347d66d1347d66d),
409 U64(0x8c61d79a8c61d79a), U64(0x7a0ca1377a0ca137),
410 U64(0x8e14f8598e14f859), U64(0x893c13eb893c13eb),
411 U64(0xee27a9ceee27a9ce), U64(0x35c961b735c961b7),
412 U64(0xede51ce1ede51ce1), U64(0x3cb1477a3cb1477a),
413 U64(0x59dfd29c59dfd29c), U64(0x3f73f2553f73f255),
414 U64(0x79ce141879ce1418), U64(0xbf37c773bf37c773),
415 U64(0xeacdf753eacdf753), U64(0x5baafd5f5baafd5f),
416 U64(0x146f3ddf146f3ddf), U64(0x86db447886db4478),
417 U64(0x81f3afca81f3afca), U64(0x3ec468b93ec468b9),
418 U64(0x2c3424382c342438), U64(0x5f40a3c25f40a3c2),
419 U64(0x72c31d1672c31d16), U64(0x0c25e2bc0c25e2bc),
420 U64(0x8b493c288b493c28), U64(0x41950dff41950dff),
421 U64(0x7101a8397101a839), U64(0xdeb30c08deb30c08),
422 U64(0x9ce4b4d89ce4b4d8), U64(0x90c1566490c15664),
423 U64(0x6184cb7b6184cb7b), U64(0x70b632d570b632d5),
424 U64(0x745c6c48745c6c48), U64(0x4257b8d04257b8d0)
425 };
426 static const u8 Td4[256] = {
427 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
428 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
429 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
430 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
431 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
432 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
433 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
434 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
435 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
436 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
437 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
438 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
439 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
440 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
441 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
442 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
443 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
444 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
445 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
446 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
447 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
448 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
449 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
450 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
451 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
452 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
453 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
454 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
455 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
456 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
457 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
458 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU
459 };
460
461 static const u32 rcon[] = {
462 0x00000001U, 0x00000002U, 0x00000004U, 0x00000008U,
463 0x00000010U, 0x00000020U, 0x00000040U, 0x00000080U,
464 0x0000001bU, 0x00000036U, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
465 };
466
467 /**
468 * Expand the cipher key into the encryption key schedule.
469 */
AES_set_encrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)470 int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
471 AES_KEY *key) {
472
473 u32 *rk;
474 int i = 0;
475 u32 temp;
476
477 if (!userKey || !key)
478 return -1;
479 if (bits != 128 && bits != 192 && bits != 256)
480 return -2;
481
482 rk = key->rd_key;
483
484 if (bits==128)
485 key->rounds = 10;
486 else if (bits==192)
487 key->rounds = 12;
488 else
489 key->rounds = 14;
490
491 rk[0] = GETU32(userKey );
492 rk[1] = GETU32(userKey + 4);
493 rk[2] = GETU32(userKey + 8);
494 rk[3] = GETU32(userKey + 12);
495 if (bits == 128) {
496 while (1) {
497 temp = rk[3];
498 rk[4] = rk[0] ^
499 (Te4[(temp >> 8) & 0xff] ) ^
500 (Te4[(temp >> 16) & 0xff] << 8) ^
501 (Te4[(temp >> 24) ] << 16) ^
502 (Te4[(temp ) & 0xff] << 24) ^
503 rcon[i];
504 rk[5] = rk[1] ^ rk[4];
505 rk[6] = rk[2] ^ rk[5];
506 rk[7] = rk[3] ^ rk[6];
507 if (++i == 10) {
508 return 0;
509 }
510 rk += 4;
511 }
512 }
513 rk[4] = GETU32(userKey + 16);
514 rk[5] = GETU32(userKey + 20);
515 if (bits == 192) {
516 while (1) {
517 temp = rk[ 5];
518 rk[ 6] = rk[ 0] ^
519 (Te4[(temp >> 8) & 0xff] ) ^
520 (Te4[(temp >> 16) & 0xff] << 8) ^
521 (Te4[(temp >> 24) ] << 16) ^
522 (Te4[(temp ) & 0xff] << 24) ^
523 rcon[i];
524 rk[ 7] = rk[ 1] ^ rk[ 6];
525 rk[ 8] = rk[ 2] ^ rk[ 7];
526 rk[ 9] = rk[ 3] ^ rk[ 8];
527 if (++i == 8) {
528 return 0;
529 }
530 rk[10] = rk[ 4] ^ rk[ 9];
531 rk[11] = rk[ 5] ^ rk[10];
532 rk += 6;
533 }
534 }
535 rk[6] = GETU32(userKey + 24);
536 rk[7] = GETU32(userKey + 28);
537 if (bits == 256) {
538 while (1) {
539 temp = rk[ 7];
540 rk[ 8] = rk[ 0] ^
541 (Te4[(temp >> 8) & 0xff] ) ^
542 (Te4[(temp >> 16) & 0xff] << 8) ^
543 (Te4[(temp >> 24) ] << 16) ^
544 (Te4[(temp ) & 0xff] << 24) ^
545 rcon[i];
546 rk[ 9] = rk[ 1] ^ rk[ 8];
547 rk[10] = rk[ 2] ^ rk[ 9];
548 rk[11] = rk[ 3] ^ rk[10];
549 if (++i == 7) {
550 return 0;
551 }
552 temp = rk[11];
553 rk[12] = rk[ 4] ^
554 (Te4[(temp ) & 0xff] ) ^
555 (Te4[(temp >> 8) & 0xff] << 8) ^
556 (Te4[(temp >> 16) & 0xff] << 16) ^
557 (Te4[(temp >> 24) ] << 24);
558 rk[13] = rk[ 5] ^ rk[12];
559 rk[14] = rk[ 6] ^ rk[13];
560 rk[15] = rk[ 7] ^ rk[14];
561
562 rk += 8;
563 }
564 }
565 return 0;
566 }
567
568 /**
569 * Expand the cipher key into the decryption key schedule.
570 */
AES_set_decrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)571 int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
572 AES_KEY *key) {
573
574 u32 *rk;
575 int i, j, status;
576 u32 temp;
577
578 /* first, start with an encryption schedule */
579 status = AES_set_encrypt_key(userKey, bits, key);
580 if (status < 0)
581 return status;
582
583 rk = key->rd_key;
584
585 /* invert the order of the round keys: */
586 for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) {
587 temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
588 temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
589 temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
590 temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
591 }
592 /* apply the inverse MixColumn transform to all round keys but the first and the last: */
593 for (i = 1; i < (key->rounds); i++) {
594 rk += 4;
595 #if 1
596 for (j = 0; j < 4; j++) {
597 u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
598
599 tp1 = rk[j];
600 m = tp1 & 0x80808080;
601 tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
602 ((m - (m >> 7)) & 0x1b1b1b1b);
603 m = tp2 & 0x80808080;
604 tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
605 ((m - (m >> 7)) & 0x1b1b1b1b);
606 m = tp4 & 0x80808080;
607 tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
608 ((m - (m >> 7)) & 0x1b1b1b1b);
609 tp9 = tp8 ^ tp1;
610 tpb = tp9 ^ tp2;
611 tpd = tp9 ^ tp4;
612 tpe = tp8 ^ tp4 ^ tp2;
613 #if defined(ROTATE)
614 rk[j] = tpe ^ ROTATE(tpd,16) ^
615 ROTATE(tp9,8) ^ ROTATE(tpb,24);
616 #else
617 rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
618 (tp9 >> 24) ^ (tp9 << 8) ^
619 (tpb >> 8) ^ (tpb << 24);
620 #endif
621 }
622 #else
623 rk[0] =
624 Td0[Te2[(rk[0] ) & 0xff] & 0xff] ^
625 Td1[Te2[(rk[0] >> 8) & 0xff] & 0xff] ^
626 Td2[Te2[(rk[0] >> 16) & 0xff] & 0xff] ^
627 Td3[Te2[(rk[0] >> 24) ] & 0xff];
628 rk[1] =
629 Td0[Te2[(rk[1] ) & 0xff] & 0xff] ^
630 Td1[Te2[(rk[1] >> 8) & 0xff] & 0xff] ^
631 Td2[Te2[(rk[1] >> 16) & 0xff] & 0xff] ^
632 Td3[Te2[(rk[1] >> 24) ] & 0xff];
633 rk[2] =
634 Td0[Te2[(rk[2] ) & 0xff] & 0xff] ^
635 Td1[Te2[(rk[2] >> 8) & 0xff] & 0xff] ^
636 Td2[Te2[(rk[2] >> 16) & 0xff] & 0xff] ^
637 Td3[Te2[(rk[2] >> 24) ] & 0xff];
638 rk[3] =
639 Td0[Te2[(rk[3] ) & 0xff] & 0xff] ^
640 Td1[Te2[(rk[3] >> 8) & 0xff] & 0xff] ^
641 Td2[Te2[(rk[3] >> 16) & 0xff] & 0xff] ^
642 Td3[Te2[(rk[3] >> 24) ] & 0xff];
643 #endif
644 }
645 return 0;
646 }
647
648 /*
649 * Encrypt a single block
650 * in and out can overlap
651 */
AES_encrypt(const unsigned char * in,unsigned char * out,const AES_KEY * key)652 void AES_encrypt(const unsigned char *in, unsigned char *out,
653 const AES_KEY *key) {
654
655 const u32 *rk;
656 u32 s0, s1, s2, s3, t[4];
657 int r;
658
659 assert(in && out && key);
660 rk = key->rd_key;
661
662 /*
663 * map byte array block to cipher state
664 * and add initial round key:
665 */
666 s0 = GETU32(in ) ^ rk[0];
667 s1 = GETU32(in + 4) ^ rk[1];
668 s2 = GETU32(in + 8) ^ rk[2];
669 s3 = GETU32(in + 12) ^ rk[3];
670
671 #if defined(AES_COMPACT_IN_OUTER_ROUNDS)
672 prefetch256(Te4);
673
674 t[0] = Te4[(s0 ) & 0xff] ^
675 Te4[(s1 >> 8) & 0xff] << 8 ^
676 Te4[(s2 >> 16) & 0xff] << 16 ^
677 Te4[(s3 >> 24) ] << 24;
678 t[1] = Te4[(s1 ) & 0xff] ^
679 Te4[(s2 >> 8) & 0xff] << 8 ^
680 Te4[(s3 >> 16) & 0xff] << 16 ^
681 Te4[(s0 >> 24) ] << 24;
682 t[2] = Te4[(s2 ) & 0xff] ^
683 Te4[(s3 >> 8) & 0xff] << 8 ^
684 Te4[(s0 >> 16) & 0xff] << 16 ^
685 Te4[(s1 >> 24) ] << 24;
686 t[3] = Te4[(s3 ) & 0xff] ^
687 Te4[(s0 >> 8) & 0xff] << 8 ^
688 Te4[(s1 >> 16) & 0xff] << 16 ^
689 Te4[(s2 >> 24) ] << 24;
690
691 /* now do the linear transform using words */
692 { int i;
693 u32 r0, r1, r2;
694
695 for (i = 0; i < 4; i++) {
696 r0 = t[i];
697 r1 = r0 & 0x80808080;
698 r2 = ((r0 & 0x7f7f7f7f) << 1) ^
699 ((r1 - (r1 >> 7)) & 0x1b1b1b1b);
700 #if defined(ROTATE)
701 t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^
702 ROTATE(r0,16) ^ ROTATE(r0,8);
703 #else
704 t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^
705 (r0 << 16) ^ (r0 >> 16) ^
706 (r0 << 8) ^ (r0 >> 24);
707 #endif
708 t[i] ^= rk[4+i];
709 }
710 }
711 #else
712 t[0] = Te0[(s0 ) & 0xff] ^
713 Te1[(s1 >> 8) & 0xff] ^
714 Te2[(s2 >> 16) & 0xff] ^
715 Te3[(s3 >> 24) ] ^
716 rk[4];
717 t[1] = Te0[(s1 ) & 0xff] ^
718 Te1[(s2 >> 8) & 0xff] ^
719 Te2[(s3 >> 16) & 0xff] ^
720 Te3[(s0 >> 24) ] ^
721 rk[5];
722 t[2] = Te0[(s2 ) & 0xff] ^
723 Te1[(s3 >> 8) & 0xff] ^
724 Te2[(s0 >> 16) & 0xff] ^
725 Te3[(s1 >> 24) ] ^
726 rk[6];
727 t[3] = Te0[(s3 ) & 0xff] ^
728 Te1[(s0 >> 8) & 0xff] ^
729 Te2[(s1 >> 16) & 0xff] ^
730 Te3[(s2 >> 24) ] ^
731 rk[7];
732 #endif
733 s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
734
735 /*
736 * Nr - 2 full rounds:
737 */
738 for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) {
739 #if defined(AES_COMPACT_IN_INNER_ROUNDS)
740 t[0] = Te4[(s0 ) & 0xff] ^
741 Te4[(s1 >> 8) & 0xff] << 8 ^
742 Te4[(s2 >> 16) & 0xff] << 16 ^
743 Te4[(s3 >> 24) ] << 24;
744 t[1] = Te4[(s1 ) & 0xff] ^
745 Te4[(s2 >> 8) & 0xff] << 8 ^
746 Te4[(s3 >> 16) & 0xff] << 16 ^
747 Te4[(s0 >> 24) ] << 24;
748 t[2] = Te4[(s2 ) & 0xff] ^
749 Te4[(s3 >> 8) & 0xff] << 8 ^
750 Te4[(s0 >> 16) & 0xff] << 16 ^
751 Te4[(s1 >> 24) ] << 24;
752 t[3] = Te4[(s3 ) & 0xff] ^
753 Te4[(s0 >> 8) & 0xff] << 8 ^
754 Te4[(s1 >> 16) & 0xff] << 16 ^
755 Te4[(s2 >> 24) ] << 24;
756
757 /* now do the linear transform using words */
758 { int i;
759 u32 r0, r1, r2;
760
761 for (i = 0; i < 4; i++) {
762 r0 = t[i];
763 r1 = r0 & 0x80808080;
764 r2 = ((r0 & 0x7f7f7f7f) << 1) ^
765 ((r1 - (r1 >> 7)) & 0x1b1b1b1b);
766 #if defined(ROTATE)
767 t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^
768 ROTATE(r0,16) ^ ROTATE(r0,8);
769 #else
770 t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^
771 (r0 << 16) ^ (r0 >> 16) ^
772 (r0 << 8) ^ (r0 >> 24);
773 #endif
774 t[i] ^= rk[i];
775 }
776 }
777 #else
778 t[0] = Te0[(s0 ) & 0xff] ^
779 Te1[(s1 >> 8) & 0xff] ^
780 Te2[(s2 >> 16) & 0xff] ^
781 Te3[(s3 >> 24) ] ^
782 rk[0];
783 t[1] = Te0[(s1 ) & 0xff] ^
784 Te1[(s2 >> 8) & 0xff] ^
785 Te2[(s3 >> 16) & 0xff] ^
786 Te3[(s0 >> 24) ] ^
787 rk[1];
788 t[2] = Te0[(s2 ) & 0xff] ^
789 Te1[(s3 >> 8) & 0xff] ^
790 Te2[(s0 >> 16) & 0xff] ^
791 Te3[(s1 >> 24) ] ^
792 rk[2];
793 t[3] = Te0[(s3 ) & 0xff] ^
794 Te1[(s0 >> 8) & 0xff] ^
795 Te2[(s1 >> 16) & 0xff] ^
796 Te3[(s2 >> 24) ] ^
797 rk[3];
798 #endif
799 s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
800 }
801 /*
802 * apply last round and
803 * map cipher state to byte array block:
804 */
805 #if defined(AES_COMPACT_IN_OUTER_ROUNDS)
806 prefetch256(Te4);
807
808 *(u32*)(out+0) =
809 Te4[(s0 ) & 0xff] ^
810 Te4[(s1 >> 8) & 0xff] << 8 ^
811 Te4[(s2 >> 16) & 0xff] << 16 ^
812 Te4[(s3 >> 24) ] << 24 ^
813 rk[0];
814 *(u32*)(out+4) =
815 Te4[(s1 ) & 0xff] ^
816 Te4[(s2 >> 8) & 0xff] << 8 ^
817 Te4[(s3 >> 16) & 0xff] << 16 ^
818 Te4[(s0 >> 24) ] << 24 ^
819 rk[1];
820 *(u32*)(out+8) =
821 Te4[(s2 ) & 0xff] ^
822 Te4[(s3 >> 8) & 0xff] << 8 ^
823 Te4[(s0 >> 16) & 0xff] << 16 ^
824 Te4[(s1 >> 24) ] << 24 ^
825 rk[2];
826 *(u32*)(out+12) =
827 Te4[(s3 ) & 0xff] ^
828 Te4[(s0 >> 8) & 0xff] << 8 ^
829 Te4[(s1 >> 16) & 0xff] << 16 ^
830 Te4[(s2 >> 24) ] << 24 ^
831 rk[3];
832 #else
833 *(u32*)(out+0) =
834 (Te2[(s0 ) & 0xff] & 0x000000ffU) ^
835 (Te3[(s1 >> 8) & 0xff] & 0x0000ff00U) ^
836 (Te0[(s2 >> 16) & 0xff] & 0x00ff0000U) ^
837 (Te1[(s3 >> 24) ] & 0xff000000U) ^
838 rk[0];
839 *(u32*)(out+4) =
840 (Te2[(s1 ) & 0xff] & 0x000000ffU) ^
841 (Te3[(s2 >> 8) & 0xff] & 0x0000ff00U) ^
842 (Te0[(s3 >> 16) & 0xff] & 0x00ff0000U) ^
843 (Te1[(s0 >> 24) ] & 0xff000000U) ^
844 rk[1];
845 *(u32*)(out+8) =
846 (Te2[(s2 ) & 0xff] & 0x000000ffU) ^
847 (Te3[(s3 >> 8) & 0xff] & 0x0000ff00U) ^
848 (Te0[(s0 >> 16) & 0xff] & 0x00ff0000U) ^
849 (Te1[(s1 >> 24) ] & 0xff000000U) ^
850 rk[2];
851 *(u32*)(out+12) =
852 (Te2[(s3 ) & 0xff] & 0x000000ffU) ^
853 (Te3[(s0 >> 8) & 0xff] & 0x0000ff00U) ^
854 (Te0[(s1 >> 16) & 0xff] & 0x00ff0000U) ^
855 (Te1[(s2 >> 24) ] & 0xff000000U) ^
856 rk[3];
857 #endif
858 }
859
860 /*
861 * Decrypt a single block
862 * in and out can overlap
863 */
AES_decrypt(const unsigned char * in,unsigned char * out,const AES_KEY * key)864 void AES_decrypt(const unsigned char *in, unsigned char *out,
865 const AES_KEY *key) {
866
867 const u32 *rk;
868 u32 s0, s1, s2, s3, t[4];
869 int r;
870
871 assert(in && out && key);
872 rk = key->rd_key;
873
874 /*
875 * map byte array block to cipher state
876 * and add initial round key:
877 */
878 s0 = GETU32(in ) ^ rk[0];
879 s1 = GETU32(in + 4) ^ rk[1];
880 s2 = GETU32(in + 8) ^ rk[2];
881 s3 = GETU32(in + 12) ^ rk[3];
882
883 #if defined(AES_COMPACT_IN_OUTER_ROUNDS)
884 prefetch256(Td4);
885
886 t[0] = Td4[(s0 ) & 0xff] ^
887 Td4[(s3 >> 8) & 0xff] << 8 ^
888 Td4[(s2 >> 16) & 0xff] << 16 ^
889 Td4[(s1 >> 24) ] << 24;
890 t[1] = Td4[(s1 ) & 0xff] ^
891 Td4[(s0 >> 8) & 0xff] << 8 ^
892 Td4[(s3 >> 16) & 0xff] << 16 ^
893 Td4[(s2 >> 24) ] << 24;
894 t[2] = Td4[(s2 ) & 0xff] ^
895 Td4[(s1 >> 8) & 0xff] << 8 ^
896 Td4[(s0 >> 16) & 0xff] << 16 ^
897 Td4[(s3 >> 24) ] << 24;
898 t[3] = Td4[(s3 ) & 0xff] ^
899 Td4[(s2 >> 8) & 0xff] << 8 ^
900 Td4[(s1 >> 16) & 0xff] << 16 ^
901 Td4[(s0 >> 24) ] << 24;
902
903 /* now do the linear transform using words */
904 { int i;
905 u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
906
907 for (i = 0; i < 4; i++) {
908 tp1 = t[i];
909 m = tp1 & 0x80808080;
910 tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
911 ((m - (m >> 7)) & 0x1b1b1b1b);
912 m = tp2 & 0x80808080;
913 tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
914 ((m - (m >> 7)) & 0x1b1b1b1b);
915 m = tp4 & 0x80808080;
916 tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
917 ((m - (m >> 7)) & 0x1b1b1b1b);
918 tp9 = tp8 ^ tp1;
919 tpb = tp9 ^ tp2;
920 tpd = tp9 ^ tp4;
921 tpe = tp8 ^ tp4 ^ tp2;
922 #if defined(ROTATE)
923 t[i] = tpe ^ ROTATE(tpd,16) ^
924 ROTATE(tp9,8) ^ ROTATE(tpb,24);
925 #else
926 t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
927 (tp9 >> 24) ^ (tp9 << 8) ^
928 (tpb >> 8) ^ (tpb << 24);
929 #endif
930 t[i] ^= rk[4+i];
931 }
932 }
933 #else
934 t[0] = Td0[(s0 ) & 0xff] ^
935 Td1[(s3 >> 8) & 0xff] ^
936 Td2[(s2 >> 16) & 0xff] ^
937 Td3[(s1 >> 24) ] ^
938 rk[4];
939 t[1] = Td0[(s1 ) & 0xff] ^
940 Td1[(s0 >> 8) & 0xff] ^
941 Td2[(s3 >> 16) & 0xff] ^
942 Td3[(s2 >> 24) ] ^
943 rk[5];
944 t[2] = Td0[(s2 ) & 0xff] ^
945 Td1[(s1 >> 8) & 0xff] ^
946 Td2[(s0 >> 16) & 0xff] ^
947 Td3[(s3 >> 24) ] ^
948 rk[6];
949 t[3] = Td0[(s3 ) & 0xff] ^
950 Td1[(s2 >> 8) & 0xff] ^
951 Td2[(s1 >> 16) & 0xff] ^
952 Td3[(s0 >> 24) ] ^
953 rk[7];
954 #endif
955 s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
956
957 /*
958 * Nr - 2 full rounds:
959 */
960 for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) {
961 #if defined(AES_COMPACT_IN_INNER_ROUNDS)
962 t[0] = Td4[(s0 ) & 0xff] ^
963 Td4[(s3 >> 8) & 0xff] << 8 ^
964 Td4[(s2 >> 16) & 0xff] << 16 ^
965 Td4[(s1 >> 24) ] << 24;
966 t[1] = Td4[(s1 ) & 0xff] ^
967 Td4[(s0 >> 8) & 0xff] << 8 ^
968 Td4[(s3 >> 16) & 0xff] << 16 ^
969 Td4[(s2 >> 24) ] << 24;
970 t[2] = Td4[(s2 ) & 0xff] ^
971 Td4[(s1 >> 8) & 0xff] << 8 ^
972 Td4[(s0 >> 16) & 0xff] << 16 ^
973 Td4[(s3 >> 24) ] << 24;
974 t[3] = Td4[(s3 ) & 0xff] ^
975 Td4[(s2 >> 8) & 0xff] << 8 ^
976 Td4[(s1 >> 16) & 0xff] << 16 ^
977 Td4[(s0 >> 24) ] << 24;
978
979 /* now do the linear transform using words */
980 { int i;
981 u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
982
983 for (i = 0; i < 4; i++) {
984 tp1 = t[i];
985 m = tp1 & 0x80808080;
986 tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
987 ((m - (m >> 7)) & 0x1b1b1b1b);
988 m = tp2 & 0x80808080;
989 tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
990 ((m - (m >> 7)) & 0x1b1b1b1b);
991 m = tp4 & 0x80808080;
992 tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
993 ((m - (m >> 7)) & 0x1b1b1b1b);
994 tp9 = tp8 ^ tp1;
995 tpb = tp9 ^ tp2;
996 tpd = tp9 ^ tp4;
997 tpe = tp8 ^ tp4 ^ tp2;
998 #if defined(ROTATE)
999 t[i] = tpe ^ ROTATE(tpd,16) ^
1000 ROTATE(tp9,8) ^ ROTATE(tpb,24);
1001 #else
1002 t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
1003 (tp9 >> 24) ^ (tp9 << 8) ^
1004 (tpb >> 8) ^ (tpb << 24);
1005 #endif
1006 t[i] ^= rk[i];
1007 }
1008 }
1009 #else
1010 t[0] = Td0[(s0 ) & 0xff] ^
1011 Td1[(s3 >> 8) & 0xff] ^
1012 Td2[(s2 >> 16) & 0xff] ^
1013 Td3[(s1 >> 24) ] ^
1014 rk[0];
1015 t[1] = Td0[(s1 ) & 0xff] ^
1016 Td1[(s0 >> 8) & 0xff] ^
1017 Td2[(s3 >> 16) & 0xff] ^
1018 Td3[(s2 >> 24) ] ^
1019 rk[1];
1020 t[2] = Td0[(s2 ) & 0xff] ^
1021 Td1[(s1 >> 8) & 0xff] ^
1022 Td2[(s0 >> 16) & 0xff] ^
1023 Td3[(s3 >> 24) ] ^
1024 rk[2];
1025 t[3] = Td0[(s3 ) & 0xff] ^
1026 Td1[(s2 >> 8) & 0xff] ^
1027 Td2[(s1 >> 16) & 0xff] ^
1028 Td3[(s0 >> 24) ] ^
1029 rk[3];
1030 #endif
1031 s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
1032 }
1033 /*
1034 * apply last round and
1035 * map cipher state to byte array block:
1036 */
1037 prefetch256(Td4);
1038
1039 *(u32*)(out+0) =
1040 (Td4[(s0 ) & 0xff]) ^
1041 (Td4[(s3 >> 8) & 0xff] << 8) ^
1042 (Td4[(s2 >> 16) & 0xff] << 16) ^
1043 (Td4[(s1 >> 24) ] << 24) ^
1044 rk[0];
1045 *(u32*)(out+4) =
1046 (Td4[(s1 ) & 0xff]) ^
1047 (Td4[(s0 >> 8) & 0xff] << 8) ^
1048 (Td4[(s3 >> 16) & 0xff] << 16) ^
1049 (Td4[(s2 >> 24) ] << 24) ^
1050 rk[1];
1051 *(u32*)(out+8) =
1052 (Td4[(s2 ) & 0xff]) ^
1053 (Td4[(s1 >> 8) & 0xff] << 8) ^
1054 (Td4[(s0 >> 16) & 0xff] << 16) ^
1055 (Td4[(s3 >> 24) ] << 24) ^
1056 rk[2];
1057 *(u32*)(out+12) =
1058 (Td4[(s3 ) & 0xff]) ^
1059 (Td4[(s2 >> 8) & 0xff] << 8) ^
1060 (Td4[(s1 >> 16) & 0xff] << 16) ^
1061 (Td4[(s0 >> 24) ] << 24) ^
1062 rk[3];
1063 }
1064