• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "codegen-inl.h"
31 #include "compiler.h"
32 #include "debug.h"
33 #include "full-codegen.h"
34 #include "parser.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 #define __ ACCESS_MASM(masm_)
40 
41 // Generate code for a JS function.  On entry to the function the receiver
42 // and arguments have been pushed on the stack left to right, with the
43 // return address on top of them.  The actual argument count matches the
44 // formal parameter count expected by the function.
45 //
46 // The live registers are:
47 //   o edi: the JS function object being called (ie, ourselves)
48 //   o esi: our context
49 //   o ebp: our caller's frame pointer
50 //   o esp: stack pointer (pointing to return address)
51 //
52 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
53 // frames-ia32.h for its layout.
Generate(CompilationInfo * info,Mode mode)54 void FullCodeGenerator::Generate(CompilationInfo* info, Mode mode) {
55   ASSERT(info_ == NULL);
56   info_ = info;
57   SetFunctionPosition(function());
58 
59   if (mode == PRIMARY) {
60     __ push(ebp);  // Caller's frame pointer.
61     __ mov(ebp, esp);
62     __ push(esi);  // Callee's context.
63     __ push(edi);  // Callee's JS Function.
64 
65     { Comment cmnt(masm_, "[ Allocate locals");
66       int locals_count = scope()->num_stack_slots();
67       if (locals_count == 1) {
68         __ push(Immediate(Factory::undefined_value()));
69       } else if (locals_count > 1) {
70         __ mov(eax, Immediate(Factory::undefined_value()));
71         for (int i = 0; i < locals_count; i++) {
72           __ push(eax);
73         }
74       }
75     }
76 
77     bool function_in_register = true;
78 
79     // Possibly allocate a local context.
80     if (scope()->num_heap_slots() > 0) {
81       Comment cmnt(masm_, "[ Allocate local context");
82       // Argument to NewContext is the function, which is still in edi.
83       __ push(edi);
84       __ CallRuntime(Runtime::kNewContext, 1);
85       function_in_register = false;
86       // Context is returned in both eax and esi.  It replaces the context
87       // passed to us.  It's saved in the stack and kept live in esi.
88       __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
89 
90       // Copy parameters into context if necessary.
91       int num_parameters = scope()->num_parameters();
92       for (int i = 0; i < num_parameters; i++) {
93         Slot* slot = scope()->parameter(i)->slot();
94         if (slot != NULL && slot->type() == Slot::CONTEXT) {
95           int parameter_offset = StandardFrameConstants::kCallerSPOffset +
96                                      (num_parameters - 1 - i) * kPointerSize;
97           // Load parameter from stack.
98           __ mov(eax, Operand(ebp, parameter_offset));
99           // Store it in the context.
100           int context_offset = Context::SlotOffset(slot->index());
101           __ mov(Operand(esi, context_offset), eax);
102           // Update the write barrier. This clobbers all involved
103           // registers, so we have use a third register to avoid
104           // clobbering esi.
105           __ mov(ecx, esi);
106           __ RecordWrite(ecx, context_offset, eax, ebx);
107         }
108       }
109     }
110 
111     Variable* arguments = scope()->arguments()->AsVariable();
112     if (arguments != NULL) {
113       // Function uses arguments object.
114       Comment cmnt(masm_, "[ Allocate arguments object");
115       if (function_in_register) {
116         __ push(edi);
117       } else {
118         __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
119       }
120       // Receiver is just before the parameters on the caller's stack.
121       int offset = scope()->num_parameters() * kPointerSize;
122       __ lea(edx,
123              Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
124       __ push(edx);
125       __ push(Immediate(Smi::FromInt(scope()->num_parameters())));
126       // Arguments to ArgumentsAccessStub:
127       //   function, receiver address, parameter count.
128       // The stub will rewrite receiver and parameter count if the previous
129       // stack frame was an arguments adapter frame.
130       ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
131       __ CallStub(&stub);
132       __ mov(ecx, eax);  // Duplicate result.
133       Move(arguments->slot(), eax, ebx, edx);
134       Slot* dot_arguments_slot =
135           scope()->arguments_shadow()->AsVariable()->slot();
136       Move(dot_arguments_slot, ecx, ebx, edx);
137     }
138   }
139 
140   { Comment cmnt(masm_, "[ Declarations");
141     VisitDeclarations(scope()->declarations());
142   }
143 
144   { Comment cmnt(masm_, "[ Stack check");
145     Label ok;
146     ExternalReference stack_limit =
147         ExternalReference::address_of_stack_limit();
148     __ cmp(esp, Operand::StaticVariable(stack_limit));
149     __ j(above_equal, &ok, taken);
150     StackCheckStub stub;
151     __ CallStub(&stub);
152     __ bind(&ok);
153   }
154 
155   if (FLAG_trace) {
156     __ CallRuntime(Runtime::kTraceEnter, 0);
157   }
158 
159   { Comment cmnt(masm_, "[ Body");
160     ASSERT(loop_depth() == 0);
161     VisitStatements(function()->body());
162     ASSERT(loop_depth() == 0);
163   }
164 
165   { Comment cmnt(masm_, "[ return <undefined>;");
166     // Emit a 'return undefined' in case control fell off the end of the body.
167     __ mov(eax, Factory::undefined_value());
168     EmitReturnSequence(function()->end_position());
169   }
170 }
171 
172 
EmitReturnSequence(int position)173 void FullCodeGenerator::EmitReturnSequence(int position) {
174   Comment cmnt(masm_, "[ Return sequence");
175   if (return_label_.is_bound()) {
176     __ jmp(&return_label_);
177   } else {
178     // Common return label
179     __ bind(&return_label_);
180     if (FLAG_trace) {
181       __ push(eax);
182       __ CallRuntime(Runtime::kTraceExit, 1);
183     }
184 #ifdef DEBUG
185     // Add a label for checking the size of the code used for returning.
186     Label check_exit_codesize;
187     masm_->bind(&check_exit_codesize);
188 #endif
189     CodeGenerator::RecordPositions(masm_, position);
190     __ RecordJSReturn();
191     // Do not use the leave instruction here because it is too short to
192     // patch with the code required by the debugger.
193     __ mov(esp, ebp);
194     __ pop(ebp);
195     __ ret((scope()->num_parameters() + 1) * kPointerSize);
196 #ifdef ENABLE_DEBUGGER_SUPPORT
197     // Check that the size of the code used for returning matches what is
198     // expected by the debugger.
199     ASSERT_EQ(Assembler::kJSReturnSequenceLength,
200             masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
201 #endif
202   }
203 }
204 
205 
Apply(Expression::Context context,Register reg)206 void FullCodeGenerator::Apply(Expression::Context context, Register reg) {
207   switch (context) {
208     case Expression::kUninitialized:
209       UNREACHABLE();
210 
211     case Expression::kEffect:
212       // Nothing to do.
213       break;
214 
215     case Expression::kValue:
216       // Move value into place.
217       switch (location_) {
218         case kAccumulator:
219           if (!reg.is(result_register())) __ mov(result_register(), reg);
220           break;
221         case kStack:
222           __ push(reg);
223           break;
224       }
225       break;
226 
227     case Expression::kTest:
228       // For simplicity we always test the accumulator register.
229       if (!reg.is(result_register())) __ mov(result_register(), reg);
230       DoTest(context);
231       break;
232 
233     case Expression::kValueTest:
234     case Expression::kTestValue:
235       if (!reg.is(result_register())) __ mov(result_register(), reg);
236       switch (location_) {
237         case kAccumulator:
238           break;
239         case kStack:
240           __ push(result_register());
241           break;
242       }
243       DoTest(context);
244       break;
245   }
246 }
247 
248 
Apply(Expression::Context context,Slot * slot)249 void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) {
250   switch (context) {
251     case Expression::kUninitialized:
252       UNREACHABLE();
253     case Expression::kEffect:
254       // Nothing to do.
255       break;
256     case Expression::kValue: {
257       MemOperand slot_operand = EmitSlotSearch(slot, result_register());
258       switch (location_) {
259         case kAccumulator:
260           __ mov(result_register(), slot_operand);
261           break;
262         case kStack:
263           // Memory operands can be pushed directly.
264           __ push(slot_operand);
265           break;
266       }
267       break;
268     }
269 
270     case Expression::kTest:
271       // For simplicity we always test the accumulator register.
272       Move(result_register(), slot);
273       DoTest(context);
274       break;
275 
276     case Expression::kValueTest:
277     case Expression::kTestValue:
278       Move(result_register(), slot);
279       switch (location_) {
280         case kAccumulator:
281           break;
282         case kStack:
283           __ push(result_register());
284           break;
285       }
286       DoTest(context);
287       break;
288   }
289 }
290 
291 
Apply(Expression::Context context,Literal * lit)292 void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) {
293   switch (context) {
294     case Expression::kUninitialized:
295       UNREACHABLE();
296     case Expression::kEffect:
297       // Nothing to do.
298       break;
299     case Expression::kValue:
300       switch (location_) {
301         case kAccumulator:
302           __ mov(result_register(), lit->handle());
303           break;
304         case kStack:
305           // Immediates can be pushed directly.
306           __ push(Immediate(lit->handle()));
307           break;
308       }
309       break;
310 
311     case Expression::kTest:
312       // For simplicity we always test the accumulator register.
313       __ mov(result_register(), lit->handle());
314       DoTest(context);
315       break;
316 
317     case Expression::kValueTest:
318     case Expression::kTestValue:
319       __ mov(result_register(), lit->handle());
320       switch (location_) {
321         case kAccumulator:
322           break;
323         case kStack:
324           __ push(result_register());
325           break;
326       }
327       DoTest(context);
328       break;
329   }
330 }
331 
332 
ApplyTOS(Expression::Context context)333 void FullCodeGenerator::ApplyTOS(Expression::Context context) {
334   switch (context) {
335     case Expression::kUninitialized:
336       UNREACHABLE();
337 
338     case Expression::kEffect:
339       __ Drop(1);
340       break;
341 
342     case Expression::kValue:
343       switch (location_) {
344         case kAccumulator:
345           __ pop(result_register());
346           break;
347         case kStack:
348           break;
349       }
350       break;
351 
352     case Expression::kTest:
353       // For simplicity we always test the accumulator register.
354       __ pop(result_register());
355       DoTest(context);
356       break;
357 
358     case Expression::kValueTest:
359     case Expression::kTestValue:
360       switch (location_) {
361         case kAccumulator:
362           __ pop(result_register());
363           break;
364         case kStack:
365           __ mov(result_register(), Operand(esp, 0));
366           break;
367       }
368       DoTest(context);
369       break;
370   }
371 }
372 
373 
DropAndApply(int count,Expression::Context context,Register reg)374 void FullCodeGenerator::DropAndApply(int count,
375                                      Expression::Context context,
376                                      Register reg) {
377   ASSERT(count > 0);
378   ASSERT(!reg.is(esp));
379   switch (context) {
380     case Expression::kUninitialized:
381       UNREACHABLE();
382 
383     case Expression::kEffect:
384       __ Drop(count);
385       break;
386 
387     case Expression::kValue:
388       switch (location_) {
389         case kAccumulator:
390           __ Drop(count);
391           if (!reg.is(result_register())) __ mov(result_register(), reg);
392           break;
393         case kStack:
394           if (count > 1) __ Drop(count - 1);
395           __ mov(Operand(esp, 0), reg);
396           break;
397       }
398       break;
399 
400     case Expression::kTest:
401       // For simplicity we always test the accumulator register.
402       __ Drop(count);
403       if (!reg.is(result_register())) __ mov(result_register(), reg);
404       DoTest(context);
405       break;
406 
407     case Expression::kValueTest:
408     case Expression::kTestValue:
409       switch (location_) {
410         case kAccumulator:
411           __ Drop(count);
412           if (!reg.is(result_register())) __ mov(result_register(), reg);
413           break;
414         case kStack:
415           if (count > 1) __ Drop(count - 1);
416           __ mov(result_register(), reg);
417           __ mov(Operand(esp, 0), result_register());
418           break;
419       }
420       DoTest(context);
421       break;
422   }
423 }
424 
425 
Apply(Expression::Context context,Label * materialize_true,Label * materialize_false)426 void FullCodeGenerator::Apply(Expression::Context context,
427                               Label* materialize_true,
428                               Label* materialize_false) {
429   switch (context) {
430     case Expression::kUninitialized:
431 
432     case Expression::kEffect:
433       ASSERT_EQ(materialize_true, materialize_false);
434       __ bind(materialize_true);
435       break;
436 
437     case Expression::kValue: {
438       Label done;
439       switch (location_) {
440         case kAccumulator:
441           __ bind(materialize_true);
442           __ mov(result_register(), Factory::true_value());
443           __ jmp(&done);
444           __ bind(materialize_false);
445           __ mov(result_register(), Factory::false_value());
446           break;
447         case kStack:
448           __ bind(materialize_true);
449           __ push(Immediate(Factory::true_value()));
450           __ jmp(&done);
451           __ bind(materialize_false);
452           __ push(Immediate(Factory::false_value()));
453           break;
454       }
455       __ bind(&done);
456       break;
457     }
458 
459     case Expression::kTest:
460       break;
461 
462     case Expression::kValueTest:
463       __ bind(materialize_true);
464       switch (location_) {
465         case kAccumulator:
466           __ mov(result_register(), Factory::true_value());
467           break;
468         case kStack:
469           __ push(Immediate(Factory::true_value()));
470           break;
471       }
472       __ jmp(true_label_);
473       break;
474 
475     case Expression::kTestValue:
476       __ bind(materialize_false);
477       switch (location_) {
478         case kAccumulator:
479           __ mov(result_register(), Factory::false_value());
480           break;
481         case kStack:
482           __ push(Immediate(Factory::false_value()));
483           break;
484       }
485       __ jmp(false_label_);
486       break;
487   }
488 }
489 
490 
DoTest(Expression::Context context)491 void FullCodeGenerator::DoTest(Expression::Context context) {
492   // The value to test is in the accumulator.  If the value might be needed
493   // on the stack (value/test and test/value contexts with a stack location
494   // desired), then the value is already duplicated on the stack.
495   ASSERT_NE(NULL, true_label_);
496   ASSERT_NE(NULL, false_label_);
497 
498   // In value/test and test/value expression contexts with stack as the
499   // desired location, there is already an extra value on the stack.  Use a
500   // label to discard it if unneeded.
501   Label discard;
502   Label* if_true = true_label_;
503   Label* if_false = false_label_;
504   switch (context) {
505     case Expression::kUninitialized:
506     case Expression::kEffect:
507     case Expression::kValue:
508       UNREACHABLE();
509     case Expression::kTest:
510       break;
511     case Expression::kValueTest:
512       switch (location_) {
513         case kAccumulator:
514           break;
515         case kStack:
516           if_false = &discard;
517           break;
518       }
519       break;
520     case Expression::kTestValue:
521       switch (location_) {
522         case kAccumulator:
523           break;
524         case kStack:
525           if_true = &discard;
526           break;
527       }
528       break;
529   }
530 
531   // Emit the inlined tests assumed by the stub.
532   __ cmp(result_register(), Factory::undefined_value());
533   __ j(equal, if_false);
534   __ cmp(result_register(), Factory::true_value());
535   __ j(equal, if_true);
536   __ cmp(result_register(), Factory::false_value());
537   __ j(equal, if_false);
538   ASSERT_EQ(0, kSmiTag);
539   __ test(result_register(), Operand(result_register()));
540   __ j(zero, if_false);
541   __ test(result_register(), Immediate(kSmiTagMask));
542   __ j(zero, if_true);
543 
544   // Save a copy of the value if it may be needed and isn't already saved.
545   switch (context) {
546     case Expression::kUninitialized:
547     case Expression::kEffect:
548     case Expression::kValue:
549       UNREACHABLE();
550     case Expression::kTest:
551       break;
552     case Expression::kValueTest:
553       switch (location_) {
554         case kAccumulator:
555           __ push(result_register());
556           break;
557         case kStack:
558           break;
559       }
560       break;
561     case Expression::kTestValue:
562       switch (location_) {
563         case kAccumulator:
564           __ push(result_register());
565           break;
566         case kStack:
567           break;
568       }
569       break;
570   }
571 
572   // Call the ToBoolean stub for all other cases.
573   ToBooleanStub stub;
574   __ push(result_register());
575   __ CallStub(&stub);
576   __ test(eax, Operand(eax));
577 
578   // The stub returns nonzero for true.  Complete based on the context.
579   switch (context) {
580     case Expression::kUninitialized:
581     case Expression::kEffect:
582     case Expression::kValue:
583       UNREACHABLE();
584 
585     case Expression::kTest:
586       __ j(not_zero, true_label_);
587       __ jmp(false_label_);
588       break;
589 
590     case Expression::kValueTest:
591       switch (location_) {
592         case kAccumulator:
593           __ j(zero, &discard);
594           __ pop(result_register());
595           __ jmp(true_label_);
596           break;
597         case kStack:
598           __ j(not_zero, true_label_);
599           break;
600       }
601       __ bind(&discard);
602       __ Drop(1);
603       __ jmp(false_label_);
604       break;
605 
606     case Expression::kTestValue:
607       switch (location_) {
608         case kAccumulator:
609           __ j(not_zero, &discard);
610           __ pop(result_register());
611           __ jmp(false_label_);
612           break;
613         case kStack:
614           __ j(zero, false_label_);
615           break;
616       }
617       __ bind(&discard);
618       __ Drop(1);
619       __ jmp(true_label_);
620       break;
621   }
622 }
623 
624 
EmitSlotSearch(Slot * slot,Register scratch)625 MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
626   switch (slot->type()) {
627     case Slot::PARAMETER:
628     case Slot::LOCAL:
629       return Operand(ebp, SlotOffset(slot));
630     case Slot::CONTEXT: {
631       int context_chain_length =
632           scope()->ContextChainLength(slot->var()->scope());
633       __ LoadContext(scratch, context_chain_length);
634       return CodeGenerator::ContextOperand(scratch, slot->index());
635     }
636     case Slot::LOOKUP:
637       UNREACHABLE();
638   }
639   UNREACHABLE();
640   return Operand(eax, 0);
641 }
642 
643 
Move(Register destination,Slot * source)644 void FullCodeGenerator::Move(Register destination, Slot* source) {
645   MemOperand location = EmitSlotSearch(source, destination);
646   __ mov(destination, location);
647 }
648 
649 
Move(Slot * dst,Register src,Register scratch1,Register scratch2)650 void FullCodeGenerator::Move(Slot* dst,
651                              Register src,
652                              Register scratch1,
653                              Register scratch2) {
654   ASSERT(dst->type() != Slot::LOOKUP);  // Not yet implemented.
655   ASSERT(!scratch1.is(src) && !scratch2.is(src));
656   MemOperand location = EmitSlotSearch(dst, scratch1);
657   __ mov(location, src);
658   // Emit the write barrier code if the location is in the heap.
659   if (dst->type() == Slot::CONTEXT) {
660     int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize;
661     __ RecordWrite(scratch1, offset, src, scratch2);
662   }
663 }
664 
665 
VisitDeclaration(Declaration * decl)666 void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
667   Comment cmnt(masm_, "[ Declaration");
668   Variable* var = decl->proxy()->var();
669   ASSERT(var != NULL);  // Must have been resolved.
670   Slot* slot = var->slot();
671   Property* prop = var->AsProperty();
672 
673   if (slot != NULL) {
674     switch (slot->type()) {
675       case Slot::PARAMETER:
676       case Slot::LOCAL:
677         if (decl->mode() == Variable::CONST) {
678           __ mov(Operand(ebp, SlotOffset(slot)),
679                  Immediate(Factory::the_hole_value()));
680         } else if (decl->fun() != NULL) {
681           VisitForValue(decl->fun(), kAccumulator);
682           __ mov(Operand(ebp, SlotOffset(slot)), result_register());
683         }
684         break;
685 
686       case Slot::CONTEXT:
687         // We bypass the general EmitSlotSearch because we know more about
688         // this specific context.
689 
690         // The variable in the decl always resides in the current context.
691         ASSERT_EQ(0, scope()->ContextChainLength(var->scope()));
692         if (FLAG_debug_code) {
693           // Check if we have the correct context pointer.
694           __ mov(ebx,
695                  CodeGenerator::ContextOperand(esi, Context::FCONTEXT_INDEX));
696           __ cmp(ebx, Operand(esi));
697           __ Check(equal, "Unexpected declaration in current context.");
698         }
699         if (decl->mode() == Variable::CONST) {
700           __ mov(eax, Immediate(Factory::the_hole_value()));
701           __ mov(CodeGenerator::ContextOperand(esi, slot->index()), eax);
702           // No write barrier since the hole value is in old space.
703         } else if (decl->fun() != NULL) {
704           VisitForValue(decl->fun(), kAccumulator);
705           __ mov(CodeGenerator::ContextOperand(esi, slot->index()),
706                  result_register());
707           int offset = Context::SlotOffset(slot->index());
708           __ mov(ebx, esi);
709           __ RecordWrite(ebx, offset, result_register(), ecx);
710         }
711         break;
712 
713       case Slot::LOOKUP: {
714         __ push(esi);
715         __ push(Immediate(var->name()));
716         // Declaration nodes are always introduced in one of two modes.
717         ASSERT(decl->mode() == Variable::VAR ||
718                decl->mode() == Variable::CONST);
719         PropertyAttributes attr =
720             (decl->mode() == Variable::VAR) ? NONE : READ_ONLY;
721         __ push(Immediate(Smi::FromInt(attr)));
722         // Push initial value, if any.
723         // Note: For variables we must not push an initial value (such as
724         // 'undefined') because we may have a (legal) redeclaration and we
725         // must not destroy the current value.
726         if (decl->mode() == Variable::CONST) {
727           __ push(Immediate(Factory::the_hole_value()));
728         } else if (decl->fun() != NULL) {
729           VisitForValue(decl->fun(), kStack);
730         } else {
731           __ push(Immediate(Smi::FromInt(0)));  // No initial value!
732         }
733         __ CallRuntime(Runtime::kDeclareContextSlot, 4);
734         break;
735       }
736     }
737 
738   } else if (prop != NULL) {
739     if (decl->fun() != NULL || decl->mode() == Variable::CONST) {
740       // We are declaring a function or constant that rewrites to a
741       // property.  Use (keyed) IC to set the initial value.
742       VisitForValue(prop->obj(), kStack);
743       VisitForValue(prop->key(), kStack);
744 
745       if (decl->fun() != NULL) {
746         VisitForValue(decl->fun(), kAccumulator);
747       } else {
748         __ mov(result_register(), Factory::the_hole_value());
749       }
750 
751       Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
752       __ call(ic, RelocInfo::CODE_TARGET);
753       // Absence of a test eax instruction following the call
754       // indicates that none of the load was inlined.
755       __ nop();
756 
757       // Value in eax is ignored (declarations are statements).  Receiver
758       // and key on stack are discarded.
759       __ Drop(2);
760     }
761   }
762 }
763 
764 
DeclareGlobals(Handle<FixedArray> pairs)765 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
766   // Call the runtime to declare the globals.
767   __ push(esi);  // The context is the first argument.
768   __ push(Immediate(pairs));
769   __ push(Immediate(Smi::FromInt(is_eval() ? 1 : 0)));
770   __ CallRuntime(Runtime::kDeclareGlobals, 3);
771   // Return value is ignored.
772 }
773 
774 
VisitFunctionLiteral(FunctionLiteral * expr)775 void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
776   Comment cmnt(masm_, "[ FunctionLiteral");
777 
778   // Build the function boilerplate and instantiate it.
779   Handle<JSFunction> boilerplate =
780       Compiler::BuildBoilerplate(expr, script(), this);
781   if (HasStackOverflow()) return;
782 
783   ASSERT(boilerplate->IsBoilerplate());
784 
785   // Create a new closure.
786   __ push(esi);
787   __ push(Immediate(boilerplate));
788   __ CallRuntime(Runtime::kNewClosure, 2);
789   Apply(context_, eax);
790 }
791 
792 
VisitVariableProxy(VariableProxy * expr)793 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
794   Comment cmnt(masm_, "[ VariableProxy");
795   EmitVariableLoad(expr->var(), context_);
796 }
797 
798 
EmitVariableLoad(Variable * var,Expression::Context context)799 void FullCodeGenerator::EmitVariableLoad(Variable* var,
800                                          Expression::Context context) {
801   // Four cases: non-this global variables, lookup slots, all other
802   // types of slots, and parameters that rewrite to explicit property
803   // accesses on the arguments object.
804   Slot* slot = var->slot();
805   Property* property = var->AsProperty();
806 
807   if (var->is_global() && !var->is_this()) {
808     Comment cmnt(masm_, "Global variable");
809     // Use inline caching. Variable name is passed in ecx and the global
810     // object on the stack.
811     __ mov(eax, CodeGenerator::GlobalObject());
812     __ mov(ecx, var->name());
813     Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
814     __ call(ic, RelocInfo::CODE_TARGET_CONTEXT);
815     // By emitting a nop we make sure that we do not have a test eax
816     // instruction after the call it is treated specially by the LoadIC code
817     // Remember that the assembler may choose to do peephole optimization
818     // (eg, push/pop elimination).
819     __ nop();
820     Apply(context, eax);
821 
822   } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
823     Comment cmnt(masm_, "Lookup slot");
824     __ push(esi);  // Context.
825     __ push(Immediate(var->name()));
826     __ CallRuntime(Runtime::kLoadContextSlot, 2);
827     Apply(context, eax);
828 
829   } else if (slot != NULL) {
830     Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
831                             ? "Context slot"
832                             : "Stack slot");
833     Apply(context, slot);
834 
835   } else {
836     Comment cmnt(masm_, "Rewritten parameter");
837     ASSERT_NOT_NULL(property);
838     // Rewritten parameter accesses are of the form "slot[literal]".
839 
840     // Assert that the object is in a slot.
841     Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
842     ASSERT_NOT_NULL(object_var);
843     Slot* object_slot = object_var->slot();
844     ASSERT_NOT_NULL(object_slot);
845 
846     // Load the object.
847     MemOperand object_loc = EmitSlotSearch(object_slot, eax);
848     __ mov(edx, object_loc);
849 
850     // Assert that the key is a smi.
851     Literal* key_literal = property->key()->AsLiteral();
852     ASSERT_NOT_NULL(key_literal);
853     ASSERT(key_literal->handle()->IsSmi());
854 
855     // Load the key.
856     __ mov(eax, Immediate(key_literal->handle()));
857 
858     // Do a keyed property load.
859     Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
860     __ call(ic, RelocInfo::CODE_TARGET);
861     // Notice: We must not have a "test eax, ..." instruction after the
862     // call. It is treated specially by the LoadIC code.
863     __ nop();
864     // Drop key and object left on the stack by IC.
865     Apply(context, eax);
866   }
867 }
868 
869 
VisitRegExpLiteral(RegExpLiteral * expr)870 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
871   Comment cmnt(masm_, "[ RegExpLiteral");
872   Label done;
873   // Registers will be used as follows:
874   // edi = JS function.
875   // ebx = literals array.
876   // eax = regexp literal.
877   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
878   __ mov(ebx, FieldOperand(edi, JSFunction::kLiteralsOffset));
879   int literal_offset =
880     FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
881   __ mov(eax, FieldOperand(ebx, literal_offset));
882   __ cmp(eax, Factory::undefined_value());
883   __ j(not_equal, &done);
884   // Create regexp literal using runtime function
885   // Result will be in eax.
886   __ push(ebx);
887   __ push(Immediate(Smi::FromInt(expr->literal_index())));
888   __ push(Immediate(expr->pattern()));
889   __ push(Immediate(expr->flags()));
890   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
891   // Label done:
892   __ bind(&done);
893   Apply(context_, eax);
894 }
895 
896 
VisitObjectLiteral(ObjectLiteral * expr)897 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
898   Comment cmnt(masm_, "[ ObjectLiteral");
899   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
900   __ push(FieldOperand(edi, JSFunction::kLiteralsOffset));
901   __ push(Immediate(Smi::FromInt(expr->literal_index())));
902   __ push(Immediate(expr->constant_properties()));
903   if (expr->depth() > 1) {
904     __ CallRuntime(Runtime::kCreateObjectLiteral, 3);
905   } else {
906     __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 3);
907   }
908 
909   // If result_saved is true the result is on top of the stack.  If
910   // result_saved is false the result is in eax.
911   bool result_saved = false;
912 
913   for (int i = 0; i < expr->properties()->length(); i++) {
914     ObjectLiteral::Property* property = expr->properties()->at(i);
915     if (property->IsCompileTimeValue()) continue;
916 
917     Literal* key = property->key();
918     Expression* value = property->value();
919     if (!result_saved) {
920       __ push(eax);  // Save result on the stack
921       result_saved = true;
922     }
923     switch (property->kind()) {
924       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
925         ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
926         // Fall through.
927       case ObjectLiteral::Property::COMPUTED:
928         if (key->handle()->IsSymbol()) {
929           VisitForValue(value, kAccumulator);
930           __ mov(ecx, Immediate(key->handle()));
931           __ mov(edx, Operand(esp, 0));
932           Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
933           __ call(ic, RelocInfo::CODE_TARGET);
934           __ nop();
935           break;
936         }
937         // Fall through.
938       case ObjectLiteral::Property::PROTOTYPE:
939         __ push(Operand(esp, 0));  // Duplicate receiver.
940         VisitForValue(key, kStack);
941         VisitForValue(value, kStack);
942         __ CallRuntime(Runtime::kSetProperty, 3);
943         break;
944       case ObjectLiteral::Property::SETTER:
945       case ObjectLiteral::Property::GETTER:
946         __ push(Operand(esp, 0));  // Duplicate receiver.
947         VisitForValue(key, kStack);
948         __ push(Immediate(property->kind() == ObjectLiteral::Property::SETTER ?
949                           Smi::FromInt(1) :
950                           Smi::FromInt(0)));
951         VisitForValue(value, kStack);
952         __ CallRuntime(Runtime::kDefineAccessor, 4);
953         break;
954       default: UNREACHABLE();
955     }
956   }
957 
958   if (result_saved) {
959     ApplyTOS(context_);
960   } else {
961     Apply(context_, eax);
962   }
963 }
964 
965 
VisitArrayLiteral(ArrayLiteral * expr)966 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
967   Comment cmnt(masm_, "[ ArrayLiteral");
968   __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
969   __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
970   __ push(Immediate(Smi::FromInt(expr->literal_index())));
971   __ push(Immediate(expr->constant_elements()));
972   if (expr->depth() > 1) {
973     __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
974   } else {
975     __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
976   }
977 
978   bool result_saved = false;  // Is the result saved to the stack?
979 
980   // Emit code to evaluate all the non-constant subexpressions and to store
981   // them into the newly cloned array.
982   ZoneList<Expression*>* subexprs = expr->values();
983   for (int i = 0, len = subexprs->length(); i < len; i++) {
984     Expression* subexpr = subexprs->at(i);
985     // If the subexpression is a literal or a simple materialized literal it
986     // is already set in the cloned array.
987     if (subexpr->AsLiteral() != NULL ||
988         CompileTimeValue::IsCompileTimeValue(subexpr)) {
989       continue;
990     }
991 
992     if (!result_saved) {
993       __ push(eax);
994       result_saved = true;
995     }
996     VisitForValue(subexpr, kAccumulator);
997 
998     // Store the subexpression value in the array's elements.
999     __ mov(ebx, Operand(esp, 0));  // Copy of array literal.
1000     __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
1001     int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1002     __ mov(FieldOperand(ebx, offset), result_register());
1003 
1004     // Update the write barrier for the array store.
1005     __ RecordWrite(ebx, offset, result_register(), ecx);
1006   }
1007 
1008   if (result_saved) {
1009     ApplyTOS(context_);
1010   } else {
1011     Apply(context_, eax);
1012   }
1013 }
1014 
1015 
VisitAssignment(Assignment * expr)1016 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1017   Comment cmnt(masm_, "[ Assignment");
1018   ASSERT(expr->op() != Token::INIT_CONST);
1019   // Left-hand side can only be a property, a global or a (parameter or local)
1020   // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
1021   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1022   LhsKind assign_type = VARIABLE;
1023   Property* prop = expr->target()->AsProperty();
1024   if (prop != NULL) {
1025     assign_type =
1026         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
1027   }
1028 
1029   // Evaluate LHS expression.
1030   switch (assign_type) {
1031     case VARIABLE:
1032       // Nothing to do here.
1033       break;
1034     case NAMED_PROPERTY:
1035       if (expr->is_compound()) {
1036         // We need the receiver both on the stack and in the accumulator.
1037         VisitForValue(prop->obj(), kAccumulator);
1038         __ push(result_register());
1039       } else {
1040         VisitForValue(prop->obj(), kStack);
1041       }
1042       break;
1043     case KEYED_PROPERTY:
1044       if (expr->is_compound()) {
1045         VisitForValue(prop->obj(), kStack);
1046         VisitForValue(prop->key(), kAccumulator);
1047         __ mov(edx, Operand(esp, 0));
1048         __ push(eax);
1049       } else {
1050         VisitForValue(prop->obj(), kStack);
1051         VisitForValue(prop->key(), kStack);
1052       }
1053       break;
1054   }
1055 
1056   // If we have a compound assignment: Get value of LHS expression and
1057   // store in on top of the stack.
1058   if (expr->is_compound()) {
1059     Location saved_location = location_;
1060     location_ = kStack;
1061     switch (assign_type) {
1062       case VARIABLE:
1063         EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
1064                          Expression::kValue);
1065         break;
1066       case NAMED_PROPERTY:
1067         EmitNamedPropertyLoad(prop);
1068         __ push(result_register());
1069         break;
1070       case KEYED_PROPERTY:
1071         EmitKeyedPropertyLoad(prop);
1072         __ push(result_register());
1073         break;
1074     }
1075     location_ = saved_location;
1076   }
1077 
1078   // Evaluate RHS expression.
1079   Expression* rhs = expr->value();
1080   VisitForValue(rhs, kAccumulator);
1081 
1082   // If we have a compound assignment: Apply operator.
1083   if (expr->is_compound()) {
1084     Location saved_location = location_;
1085     location_ = kAccumulator;
1086     EmitBinaryOp(expr->binary_op(), Expression::kValue);
1087     location_ = saved_location;
1088   }
1089 
1090   // Record source position before possible IC call.
1091   SetSourcePosition(expr->position());
1092 
1093   // Store the value.
1094   switch (assign_type) {
1095     case VARIABLE:
1096       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1097                              context_);
1098       break;
1099     case NAMED_PROPERTY:
1100       EmitNamedPropertyAssignment(expr);
1101       break;
1102     case KEYED_PROPERTY:
1103       EmitKeyedPropertyAssignment(expr);
1104       break;
1105   }
1106 }
1107 
1108 
EmitNamedPropertyLoad(Property * prop)1109 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1110   SetSourcePosition(prop->position());
1111   Literal* key = prop->key()->AsLiteral();
1112   __ mov(ecx, Immediate(key->handle()));
1113   Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
1114   __ call(ic, RelocInfo::CODE_TARGET);
1115   __ nop();
1116 }
1117 
1118 
EmitKeyedPropertyLoad(Property * prop)1119 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
1120   SetSourcePosition(prop->position());
1121   Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
1122   __ call(ic, RelocInfo::CODE_TARGET);
1123   __ nop();
1124 }
1125 
1126 
EmitBinaryOp(Token::Value op,Expression::Context context)1127 void FullCodeGenerator::EmitBinaryOp(Token::Value op,
1128                                      Expression::Context context) {
1129   __ push(result_register());
1130   GenericBinaryOpStub stub(op,
1131                            NO_OVERWRITE,
1132                            NO_GENERIC_BINARY_FLAGS);
1133   __ CallStub(&stub);
1134   Apply(context, eax);
1135 }
1136 
1137 
EmitVariableAssignment(Variable * var,Expression::Context context)1138 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
1139                                                Expression::Context context) {
1140   // Three main cases: global variables, lookup slots, and all other
1141   // types of slots.  Left-hand-side parameters that rewrite to
1142   // explicit property accesses do not reach here.
1143   ASSERT(var != NULL);
1144   ASSERT(var->is_global() || var->slot() != NULL);
1145 
1146   Slot* slot = var->slot();
1147   if (var->is_global()) {
1148     ASSERT(!var->is_this());
1149     // Assignment to a global variable.  Use inline caching for the
1150     // assignment.  Right-hand-side value is passed in eax, variable name in
1151     // ecx, and the global object on the stack.
1152     __ mov(ecx, var->name());
1153     __ mov(edx, CodeGenerator::GlobalObject());
1154     Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
1155     __ call(ic, RelocInfo::CODE_TARGET);
1156     __ nop();
1157     Apply(context, eax);
1158 
1159   } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
1160     __ push(result_register());  // Value.
1161     __ push(esi);  // Context.
1162     __ push(Immediate(var->name()));
1163     __ CallRuntime(Runtime::kStoreContextSlot, 3);
1164     Apply(context, eax);
1165 
1166   } else if (slot != NULL) {
1167     switch (slot->type()) {
1168       case Slot::LOCAL:
1169       case Slot::PARAMETER:
1170         __ mov(Operand(ebp, SlotOffset(slot)), result_register());
1171         break;
1172 
1173       case Slot::CONTEXT: {
1174         MemOperand target = EmitSlotSearch(slot, ecx);
1175         __ mov(target, result_register());
1176 
1177         // RecordWrite may destroy all its register arguments.
1178         __ mov(edx, result_register());
1179         int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
1180         __ RecordWrite(ecx, offset, edx, ebx);
1181         break;
1182       }
1183 
1184       case Slot::LOOKUP:
1185         UNREACHABLE();
1186         break;
1187     }
1188     Apply(context, result_register());
1189 
1190   } else {
1191     // Variables rewritten as properties are not treated as variables in
1192     // assignments.
1193     UNREACHABLE();
1194   }
1195 }
1196 
1197 
EmitNamedPropertyAssignment(Assignment * expr)1198 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
1199   // Assignment to a property, using a named store IC.
1200   Property* prop = expr->target()->AsProperty();
1201   ASSERT(prop != NULL);
1202   ASSERT(prop->key()->AsLiteral() != NULL);
1203 
1204   // If the assignment starts a block of assignments to the same object,
1205   // change to slow case to avoid the quadratic behavior of repeatedly
1206   // adding fast properties.
1207   if (expr->starts_initialization_block()) {
1208     __ push(result_register());
1209     __ push(Operand(esp, kPointerSize));  // Receiver is now under value.
1210     __ CallRuntime(Runtime::kToSlowProperties, 1);
1211     __ pop(result_register());
1212   }
1213 
1214   // Record source code position before IC call.
1215   SetSourcePosition(expr->position());
1216   __ mov(ecx, prop->key()->AsLiteral()->handle());
1217   if (expr->ends_initialization_block()) {
1218     __ mov(edx, Operand(esp, 0));
1219   } else {
1220     __ pop(edx);
1221   }
1222   Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
1223   __ call(ic, RelocInfo::CODE_TARGET);
1224   __ nop();
1225 
1226   // If the assignment ends an initialization block, revert to fast case.
1227   if (expr->ends_initialization_block()) {
1228     __ push(eax);  // Result of assignment, saved even if not needed.
1229     __ push(Operand(esp, kPointerSize));  // Receiver is under value.
1230     __ CallRuntime(Runtime::kToFastProperties, 1);
1231     __ pop(eax);
1232     DropAndApply(1, context_, eax);
1233   } else {
1234     Apply(context_, eax);
1235   }
1236 }
1237 
1238 
EmitKeyedPropertyAssignment(Assignment * expr)1239 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
1240   // Assignment to a property, using a keyed store IC.
1241 
1242   // If the assignment starts a block of assignments to the same object,
1243   // change to slow case to avoid the quadratic behavior of repeatedly
1244   // adding fast properties.
1245   if (expr->starts_initialization_block()) {
1246     __ push(result_register());
1247     // Receiver is now under the key and value.
1248     __ push(Operand(esp, 2 * kPointerSize));
1249     __ CallRuntime(Runtime::kToSlowProperties, 1);
1250     __ pop(result_register());
1251   }
1252 
1253   // Record source code position before IC call.
1254   SetSourcePosition(expr->position());
1255   Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
1256   __ call(ic, RelocInfo::CODE_TARGET);
1257   // This nop signals to the IC that there is no inlined code at the call
1258   // site for it to patch.
1259   __ nop();
1260 
1261   // If the assignment ends an initialization block, revert to fast case.
1262   if (expr->ends_initialization_block()) {
1263     __ push(eax);  // Result of assignment, saved even if not needed.
1264     // Receiver is under the key and value.
1265     __ push(Operand(esp, 2 * kPointerSize));
1266     __ CallRuntime(Runtime::kToFastProperties, 1);
1267     __ pop(eax);
1268   }
1269 
1270   // Receiver and key are still on stack.
1271   DropAndApply(2, context_, eax);
1272 }
1273 
1274 
VisitProperty(Property * expr)1275 void FullCodeGenerator::VisitProperty(Property* expr) {
1276   Comment cmnt(masm_, "[ Property");
1277   Expression* key = expr->key();
1278 
1279   if (key->IsPropertyName()) {
1280     VisitForValue(expr->obj(), kAccumulator);
1281     EmitNamedPropertyLoad(expr);
1282     Apply(context_, eax);
1283   } else {
1284     VisitForValue(expr->obj(), kStack);
1285     VisitForValue(expr->key(), kAccumulator);
1286     __ pop(edx);
1287     EmitKeyedPropertyLoad(expr);
1288     Apply(context_, eax);
1289   }
1290 }
1291 
1292 
EmitCallWithIC(Call * expr,Handle<Object> name,RelocInfo::Mode mode)1293 void FullCodeGenerator::EmitCallWithIC(Call* expr,
1294                                        Handle<Object> name,
1295                                        RelocInfo::Mode mode) {
1296   // Code common for calls using the IC.
1297   ZoneList<Expression*>* args = expr->arguments();
1298   int arg_count = args->length();
1299   for (int i = 0; i < arg_count; i++) {
1300     VisitForValue(args->at(i), kStack);
1301   }
1302   __ Set(ecx, Immediate(name));
1303   // Record source position of the IC call.
1304   SetSourcePosition(expr->position());
1305   InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
1306   Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
1307   __ call(ic, mode);
1308   // Restore context register.
1309   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1310   Apply(context_, eax);
1311 }
1312 
1313 
EmitCallWithStub(Call * expr)1314 void FullCodeGenerator::EmitCallWithStub(Call* expr) {
1315   // Code common for calls using the call stub.
1316   ZoneList<Expression*>* args = expr->arguments();
1317   int arg_count = args->length();
1318   for (int i = 0; i < arg_count; i++) {
1319     VisitForValue(args->at(i), kStack);
1320   }
1321   // Record source position for debugger.
1322   SetSourcePosition(expr->position());
1323   CallFunctionStub stub(arg_count, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
1324   __ CallStub(&stub);
1325   // Restore context register.
1326   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1327   DropAndApply(1, context_, eax);
1328 }
1329 
1330 
VisitCall(Call * expr)1331 void FullCodeGenerator::VisitCall(Call* expr) {
1332   Comment cmnt(masm_, "[ Call");
1333   Expression* fun = expr->expression();
1334   Variable* var = fun->AsVariableProxy()->AsVariable();
1335 
1336   if (var != NULL && var->is_possibly_eval()) {
1337     // Call to the identifier 'eval'.
1338     UNREACHABLE();
1339   } else if (var != NULL && !var->is_this() && var->is_global()) {
1340     // Push global object as receiver for the call IC.
1341     __ push(CodeGenerator::GlobalObject());
1342     EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
1343   } else if (var != NULL && var->slot() != NULL &&
1344              var->slot()->type() == Slot::LOOKUP) {
1345     // Call to a lookup slot.
1346     UNREACHABLE();
1347   } else if (fun->AsProperty() != NULL) {
1348     // Call to an object property.
1349     Property* prop = fun->AsProperty();
1350     Literal* key = prop->key()->AsLiteral();
1351     if (key != NULL && key->handle()->IsSymbol()) {
1352       // Call to a named property, use call IC.
1353       VisitForValue(prop->obj(), kStack);
1354       EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET);
1355     } else {
1356       // Call to a keyed property, use keyed load IC followed by function
1357       // call.
1358       VisitForValue(prop->obj(), kStack);
1359       VisitForValue(prop->key(), kAccumulator);
1360       // Record source code position for IC call.
1361       SetSourcePosition(prop->position());
1362       if (prop->is_synthetic()) {
1363         __ pop(edx);  // We do not need to keep the receiver.
1364       } else {
1365         __ mov(edx, Operand(esp, 0));  // Keep receiver, to call function on.
1366       }
1367 
1368       Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
1369       __ call(ic, RelocInfo::CODE_TARGET);
1370       // By emitting a nop we make sure that we do not have a "test eax,..."
1371       // instruction after the call it is treated specially by the LoadIC code.
1372       __ nop();
1373       if (prop->is_synthetic()) {
1374         // Push result (function).
1375         __ push(eax);
1376         // Push Global receiver.
1377         __ mov(ecx, CodeGenerator::GlobalObject());
1378         __ push(FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
1379       } else {
1380         // Pop receiver.
1381         __ pop(ebx);
1382         // Push result (function).
1383         __ push(eax);
1384         __ push(ebx);
1385       }
1386       EmitCallWithStub(expr);
1387     }
1388   } else {
1389     // Call to some other expression.  If the expression is an anonymous
1390     // function literal not called in a loop, mark it as one that should
1391     // also use the full code generator.
1392     FunctionLiteral* lit = fun->AsFunctionLiteral();
1393     if (lit != NULL &&
1394         lit->name()->Equals(Heap::empty_string()) &&
1395         loop_depth() == 0) {
1396       lit->set_try_full_codegen(true);
1397     }
1398     VisitForValue(fun, kStack);
1399     // Load global receiver object.
1400     __ mov(ebx, CodeGenerator::GlobalObject());
1401     __ push(FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
1402     // Emit function call.
1403     EmitCallWithStub(expr);
1404   }
1405 }
1406 
1407 
VisitCallNew(CallNew * expr)1408 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
1409   Comment cmnt(masm_, "[ CallNew");
1410   // According to ECMA-262, section 11.2.2, page 44, the function
1411   // expression in new calls must be evaluated before the
1412   // arguments.
1413   // Push function on the stack.
1414   VisitForValue(expr->expression(), kStack);
1415 
1416   // Push global object (receiver).
1417   __ push(CodeGenerator::GlobalObject());
1418 
1419   // Push the arguments ("left-to-right") on the stack.
1420   ZoneList<Expression*>* args = expr->arguments();
1421   int arg_count = args->length();
1422   for (int i = 0; i < arg_count; i++) {
1423     VisitForValue(args->at(i), kStack);
1424   }
1425 
1426   // Call the construct call builtin that handles allocation and
1427   // constructor invocation.
1428   SetSourcePosition(expr->position());
1429 
1430   // Load function, arg_count into edi and eax.
1431   __ Set(eax, Immediate(arg_count));
1432   // Function is in esp[arg_count + 1].
1433   __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
1434 
1435   Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
1436   __ call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
1437 
1438   // Replace function on TOS with result in eax, or pop it.
1439   DropAndApply(1, context_, eax);
1440 }
1441 
1442 
VisitCallRuntime(CallRuntime * expr)1443 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
1444   Comment cmnt(masm_, "[ CallRuntime");
1445   ZoneList<Expression*>* args = expr->arguments();
1446 
1447   if (expr->is_jsruntime()) {
1448     // Prepare for calling JS runtime function.
1449     __ mov(eax, CodeGenerator::GlobalObject());
1450     __ push(FieldOperand(eax, GlobalObject::kBuiltinsOffset));
1451   }
1452 
1453   // Push the arguments ("left-to-right").
1454   int arg_count = args->length();
1455   for (int i = 0; i < arg_count; i++) {
1456     VisitForValue(args->at(i), kStack);
1457   }
1458 
1459   if (expr->is_jsruntime()) {
1460     // Call the JS runtime function via a call IC.
1461     __ Set(ecx, Immediate(expr->name()));
1462     InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
1463     Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
1464     __ call(ic, RelocInfo::CODE_TARGET);
1465       // Restore context register.
1466     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1467   } else {
1468     // Call the C runtime function.
1469     __ CallRuntime(expr->function(), arg_count);
1470   }
1471   Apply(context_, eax);
1472 }
1473 
1474 
VisitUnaryOperation(UnaryOperation * expr)1475 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
1476   switch (expr->op()) {
1477     case Token::VOID: {
1478       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
1479       VisitForEffect(expr->expression());
1480       switch (context_) {
1481         case Expression::kUninitialized:
1482           UNREACHABLE();
1483           break;
1484         case Expression::kEffect:
1485           break;
1486         case Expression::kValue:
1487           switch (location_) {
1488             case kAccumulator:
1489               __ mov(result_register(), Factory::undefined_value());
1490               break;
1491             case kStack:
1492               __ push(Immediate(Factory::undefined_value()));
1493               break;
1494           }
1495           break;
1496         case Expression::kTestValue:
1497           // Value is false so it's needed.
1498           switch (location_) {
1499             case kAccumulator:
1500               __ mov(result_register(), Factory::undefined_value());
1501               break;
1502             case kStack:
1503               __ push(Immediate(Factory::undefined_value()));
1504               break;
1505           }
1506           // Fall through.
1507         case Expression::kTest:
1508         case Expression::kValueTest:
1509           __ jmp(false_label_);
1510           break;
1511       }
1512       break;
1513     }
1514 
1515     case Token::NOT: {
1516       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
1517       Label materialize_true, materialize_false, done;
1518       // Initially assume a pure test context.  Notice that the labels are
1519       // swapped.
1520       Label* if_true = false_label_;
1521       Label* if_false = true_label_;
1522       switch (context_) {
1523         case Expression::kUninitialized:
1524           UNREACHABLE();
1525           break;
1526         case Expression::kEffect:
1527           if_true = &done;
1528           if_false = &done;
1529           break;
1530         case Expression::kValue:
1531           if_true = &materialize_false;
1532           if_false = &materialize_true;
1533           break;
1534         case Expression::kTest:
1535           break;
1536         case Expression::kValueTest:
1537           if_false = &materialize_true;
1538           break;
1539         case Expression::kTestValue:
1540           if_true = &materialize_false;
1541           break;
1542       }
1543       VisitForControl(expr->expression(), if_true, if_false);
1544       Apply(context_, if_false, if_true);  // Labels swapped.
1545       break;
1546     }
1547 
1548     case Token::TYPEOF: {
1549       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
1550       VariableProxy* proxy = expr->expression()->AsVariableProxy();
1551       if (proxy != NULL &&
1552           !proxy->var()->is_this() &&
1553           proxy->var()->is_global()) {
1554         Comment cmnt(masm_, "Global variable");
1555         __ mov(eax, CodeGenerator::GlobalObject());
1556         __ mov(ecx, Immediate(proxy->name()));
1557         Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
1558         // Use a regular load, not a contextual load, to avoid a reference
1559         // error.
1560         __ call(ic, RelocInfo::CODE_TARGET);
1561         __ push(eax);
1562       } else if (proxy != NULL &&
1563                  proxy->var()->slot() != NULL &&
1564                  proxy->var()->slot()->type() == Slot::LOOKUP) {
1565         __ push(esi);
1566         __ push(Immediate(proxy->name()));
1567         __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
1568         __ push(eax);
1569       } else {
1570         // This expression cannot throw a reference error at the top level.
1571         VisitForValue(expr->expression(), kStack);
1572       }
1573 
1574       __ CallRuntime(Runtime::kTypeof, 1);
1575       Apply(context_, eax);
1576       break;
1577     }
1578 
1579     case Token::ADD: {
1580       Comment cmt(masm_, "[ UnaryOperation (ADD)");
1581       VisitForValue(expr->expression(), kAccumulator);
1582       Label no_conversion;
1583       __ test(result_register(), Immediate(kSmiTagMask));
1584       __ j(zero, &no_conversion);
1585       __ push(result_register());
1586       __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
1587       __ bind(&no_conversion);
1588       Apply(context_, result_register());
1589       break;
1590     }
1591 
1592     case Token::SUB: {
1593       Comment cmt(masm_, "[ UnaryOperation (SUB)");
1594       bool overwrite =
1595           (expr->expression()->AsBinaryOperation() != NULL &&
1596            expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
1597       GenericUnaryOpStub stub(Token::SUB, overwrite);
1598       // GenericUnaryOpStub expects the argument to be in the
1599       // accumulator register eax.
1600       VisitForValue(expr->expression(), kAccumulator);
1601       __ CallStub(&stub);
1602       Apply(context_, eax);
1603       break;
1604     }
1605 
1606     case Token::BIT_NOT: {
1607       Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)");
1608       bool overwrite =
1609           (expr->expression()->AsBinaryOperation() != NULL &&
1610            expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
1611       GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
1612       // GenericUnaryOpStub expects the argument to be in the
1613       // accumulator register eax.
1614       VisitForValue(expr->expression(), kAccumulator);
1615       // Avoid calling the stub for Smis.
1616       Label smi, done;
1617       __ test(result_register(), Immediate(kSmiTagMask));
1618       __ j(zero, &smi);
1619       // Non-smi: call stub leaving result in accumulator register.
1620       __ CallStub(&stub);
1621       __ jmp(&done);
1622       // Perform operation directly on Smis.
1623       __ bind(&smi);
1624       __ not_(result_register());
1625       __ and_(result_register(), ~kSmiTagMask);  // Remove inverted smi-tag.
1626       __ bind(&done);
1627       Apply(context_, result_register());
1628       break;
1629     }
1630 
1631     default:
1632       UNREACHABLE();
1633   }
1634 }
1635 
1636 
VisitCountOperation(CountOperation * expr)1637 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
1638   Comment cmnt(masm_, "[ CountOperation");
1639 
1640   // Expression can only be a property, a global or a (parameter or local)
1641   // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
1642   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1643   LhsKind assign_type = VARIABLE;
1644   Property* prop = expr->expression()->AsProperty();
1645   // In case of a property we use the uninitialized expression context
1646   // of the key to detect a named property.
1647   if (prop != NULL) {
1648     assign_type =
1649         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
1650   }
1651 
1652   // Evaluate expression and get value.
1653   if (assign_type == VARIABLE) {
1654     ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
1655     Location saved_location = location_;
1656     location_ = kAccumulator;
1657     EmitVariableLoad(expr->expression()->AsVariableProxy()->var(),
1658                      Expression::kValue);
1659     location_ = saved_location;
1660   } else  {
1661     // Reserve space for result of postfix operation.
1662     if (expr->is_postfix() && context_ != Expression::kEffect) {
1663       __ push(Immediate(Smi::FromInt(0)));
1664     }
1665     if (assign_type == NAMED_PROPERTY) {
1666       // Put the object both on the stack and in the accumulator.
1667       VisitForValue(prop->obj(), kAccumulator);
1668       __ push(eax);
1669       EmitNamedPropertyLoad(prop);
1670     } else {
1671       VisitForValue(prop->obj(), kStack);
1672       VisitForValue(prop->key(), kAccumulator);
1673       __ mov(edx, Operand(esp, 0));
1674       __ push(eax);
1675       EmitKeyedPropertyLoad(prop);
1676     }
1677   }
1678 
1679   // Call ToNumber only if operand is not a smi.
1680   Label no_conversion;
1681   __ test(eax, Immediate(kSmiTagMask));
1682   __ j(zero, &no_conversion);
1683   __ push(eax);
1684   __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
1685   __ bind(&no_conversion);
1686 
1687   // Save result for postfix expressions.
1688   if (expr->is_postfix()) {
1689     switch (context_) {
1690       case Expression::kUninitialized:
1691         UNREACHABLE();
1692       case Expression::kEffect:
1693         // Do not save result.
1694         break;
1695       case Expression::kValue:
1696       case Expression::kTest:
1697       case Expression::kValueTest:
1698       case Expression::kTestValue:
1699         // Save the result on the stack. If we have a named or keyed property
1700         // we store the result under the receiver that is currently on top
1701         // of the stack.
1702         switch (assign_type) {
1703           case VARIABLE:
1704             __ push(eax);
1705             break;
1706           case NAMED_PROPERTY:
1707             __ mov(Operand(esp, kPointerSize), eax);
1708             break;
1709           case KEYED_PROPERTY:
1710             __ mov(Operand(esp, 2 * kPointerSize), eax);
1711             break;
1712         }
1713         break;
1714     }
1715   }
1716 
1717   // Inline smi case if we are in a loop.
1718   Label stub_call, done;
1719   if (loop_depth() > 0) {
1720     if (expr->op() == Token::INC) {
1721       __ add(Operand(eax), Immediate(Smi::FromInt(1)));
1722     } else {
1723       __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
1724     }
1725     __ j(overflow, &stub_call);
1726     // We could eliminate this smi check if we split the code at
1727     // the first smi check before calling ToNumber.
1728     __ test(eax, Immediate(kSmiTagMask));
1729     __ j(zero, &done);
1730     __ bind(&stub_call);
1731     // Call stub. Undo operation first.
1732     if (expr->op() == Token::INC) {
1733       __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
1734     } else {
1735       __ add(Operand(eax), Immediate(Smi::FromInt(1)));
1736     }
1737   }
1738   // Call stub for +1/-1.
1739   GenericBinaryOpStub stub(expr->binary_op(),
1740                            NO_OVERWRITE,
1741                            NO_GENERIC_BINARY_FLAGS);
1742   stub.GenerateCall(masm(), eax, Smi::FromInt(1));
1743   __ bind(&done);
1744 
1745   // Store the value returned in eax.
1746   switch (assign_type) {
1747     case VARIABLE:
1748       if (expr->is_postfix()) {
1749         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
1750                                Expression::kEffect);
1751         // For all contexts except kEffect: We have the result on
1752         // top of the stack.
1753         if (context_ != Expression::kEffect) {
1754           ApplyTOS(context_);
1755         }
1756       } else {
1757         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
1758                                context_);
1759       }
1760       break;
1761     case NAMED_PROPERTY: {
1762       __ mov(ecx, prop->key()->AsLiteral()->handle());
1763       __ pop(edx);
1764       Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
1765       __ call(ic, RelocInfo::CODE_TARGET);
1766       // This nop signals to the IC that there is no inlined code at the call
1767       // site for it to patch.
1768       __ nop();
1769       if (expr->is_postfix()) {
1770         if (context_ != Expression::kEffect) {
1771           ApplyTOS(context_);
1772         }
1773       } else {
1774         Apply(context_, eax);
1775       }
1776       break;
1777     }
1778     case KEYED_PROPERTY: {
1779       Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
1780       __ call(ic, RelocInfo::CODE_TARGET);
1781       // This nop signals to the IC that there is no inlined code at the call
1782       // site for it to patch.
1783       __ nop();
1784       if (expr->is_postfix()) {
1785         __ Drop(2);  // Result is on the stack under the key and the receiver.
1786         if (context_ != Expression::kEffect) {
1787           ApplyTOS(context_);
1788         }
1789       } else {
1790         DropAndApply(2, context_, eax);
1791       }
1792       break;
1793     }
1794   }
1795 }
1796 
1797 
VisitBinaryOperation(BinaryOperation * expr)1798 void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
1799   Comment cmnt(masm_, "[ BinaryOperation");
1800   switch (expr->op()) {
1801     case Token::COMMA:
1802       VisitForEffect(expr->left());
1803       Visit(expr->right());
1804       break;
1805 
1806     case Token::OR:
1807     case Token::AND:
1808       EmitLogicalOperation(expr);
1809       break;
1810 
1811     case Token::ADD:
1812     case Token::SUB:
1813     case Token::DIV:
1814     case Token::MOD:
1815     case Token::MUL:
1816     case Token::BIT_OR:
1817     case Token::BIT_AND:
1818     case Token::BIT_XOR:
1819     case Token::SHL:
1820     case Token::SHR:
1821     case Token::SAR:
1822       VisitForValue(expr->left(), kStack);
1823       VisitForValue(expr->right(), kAccumulator);
1824       EmitBinaryOp(expr->op(), context_);
1825       break;
1826 
1827     default:
1828       UNREACHABLE();
1829   }
1830 }
1831 
1832 
VisitCompareOperation(CompareOperation * expr)1833 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
1834   Comment cmnt(masm_, "[ CompareOperation");
1835 
1836   // Always perform the comparison for its control flow.  Pack the result
1837   // into the expression's context after the comparison is performed.
1838   Label materialize_true, materialize_false, done;
1839   // Initially assume we are in a test context.
1840   Label* if_true = true_label_;
1841   Label* if_false = false_label_;
1842   switch (context_) {
1843     case Expression::kUninitialized:
1844       UNREACHABLE();
1845       break;
1846     case Expression::kEffect:
1847       if_true = &done;
1848       if_false = &done;
1849       break;
1850     case Expression::kValue:
1851       if_true = &materialize_true;
1852       if_false = &materialize_false;
1853       break;
1854     case Expression::kTest:
1855       break;
1856     case Expression::kValueTest:
1857       if_true = &materialize_true;
1858       break;
1859     case Expression::kTestValue:
1860       if_false = &materialize_false;
1861       break;
1862   }
1863 
1864   VisitForValue(expr->left(), kStack);
1865   switch (expr->op()) {
1866     case Token::IN:
1867       VisitForValue(expr->right(), kStack);
1868       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
1869       __ cmp(eax, Factory::true_value());
1870       __ j(equal, if_true);
1871       __ jmp(if_false);
1872       break;
1873 
1874     case Token::INSTANCEOF: {
1875       VisitForValue(expr->right(), kStack);
1876       InstanceofStub stub;
1877       __ CallStub(&stub);
1878       __ test(eax, Operand(eax));
1879       __ j(zero, if_true);  // The stub returns 0 for true.
1880       __ jmp(if_false);
1881       break;
1882     }
1883 
1884     default: {
1885       VisitForValue(expr->right(), kAccumulator);
1886       Condition cc = no_condition;
1887       bool strict = false;
1888       switch (expr->op()) {
1889         case Token::EQ_STRICT:
1890           strict = true;
1891           // Fall through
1892         case Token::EQ:
1893           cc = equal;
1894           __ pop(edx);
1895           break;
1896         case Token::LT:
1897           cc = less;
1898           __ pop(edx);
1899           break;
1900         case Token::GT:
1901           // Reverse left and right sizes to obtain ECMA-262 conversion order.
1902           cc = less;
1903           __ mov(edx, result_register());
1904           __ pop(eax);
1905          break;
1906         case Token::LTE:
1907           // Reverse left and right sizes to obtain ECMA-262 conversion order.
1908           cc = greater_equal;
1909           __ mov(edx, result_register());
1910           __ pop(eax);
1911           break;
1912         case Token::GTE:
1913           cc = greater_equal;
1914           __ pop(edx);
1915           break;
1916         case Token::IN:
1917         case Token::INSTANCEOF:
1918         default:
1919           UNREACHABLE();
1920       }
1921 
1922       // The comparison stub expects the smi vs. smi case to be handled
1923       // before it is called.
1924       Label slow_case;
1925       __ mov(ecx, Operand(edx));
1926       __ or_(ecx, Operand(eax));
1927       __ test(ecx, Immediate(kSmiTagMask));
1928       __ j(not_zero, &slow_case, not_taken);
1929       __ cmp(edx, Operand(eax));
1930       __ j(cc, if_true);
1931       __ jmp(if_false);
1932 
1933       __ bind(&slow_case);
1934       CompareStub stub(cc, strict);
1935       __ CallStub(&stub);
1936       __ test(eax, Operand(eax));
1937       __ j(cc, if_true);
1938       __ jmp(if_false);
1939     }
1940   }
1941 
1942   // Convert the result of the comparison into one expected for this
1943   // expression's context.
1944   Apply(context_, if_true, if_false);
1945 }
1946 
1947 
VisitThisFunction(ThisFunction * expr)1948 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
1949   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1950   Apply(context_, eax);
1951 }
1952 
1953 
result_register()1954 Register FullCodeGenerator::result_register() { return eax; }
1955 
1956 
context_register()1957 Register FullCodeGenerator::context_register() { return esi; }
1958 
1959 
StoreToFrameField(int frame_offset,Register value)1960 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
1961   ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
1962   __ mov(Operand(ebp, frame_offset), value);
1963 }
1964 
1965 
LoadContextField(Register dst,int context_index)1966 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
1967   __ mov(dst, CodeGenerator::ContextOperand(esi, context_index));
1968 }
1969 
1970 
1971 // ----------------------------------------------------------------------------
1972 // Non-local control flow support.
1973 
EnterFinallyBlock()1974 void FullCodeGenerator::EnterFinallyBlock() {
1975   // Cook return address on top of stack (smi encoded Code* delta)
1976   ASSERT(!result_register().is(edx));
1977   __ mov(edx, Operand(esp, 0));
1978   __ sub(Operand(edx), Immediate(masm_->CodeObject()));
1979   ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
1980   ASSERT_EQ(0, kSmiTag);
1981   __ add(edx, Operand(edx));  // Convert to smi.
1982   __ mov(Operand(esp, 0), edx);
1983   // Store result register while executing finally block.
1984   __ push(result_register());
1985 }
1986 
1987 
ExitFinallyBlock()1988 void FullCodeGenerator::ExitFinallyBlock() {
1989   ASSERT(!result_register().is(edx));
1990   // Restore result register from stack.
1991   __ pop(result_register());
1992   // Uncook return address.
1993   __ mov(edx, Operand(esp, 0));
1994   __ sar(edx, 1);  // Convert smi to int.
1995   __ add(Operand(edx), Immediate(masm_->CodeObject()));
1996   __ mov(Operand(esp, 0), edx);
1997   // And return.
1998   __ ret(0);
1999 }
2000 
2001 
2002 #undef __
2003 
2004 } }  // namespace v8::internal
2005