• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "accessors.h"
31 #include "api.h"
32 #include "execution.h"
33 #include "global-handles.h"
34 #include "ic-inl.h"
35 #include "natives.h"
36 #include "platform.h"
37 #include "runtime.h"
38 #include "serialize.h"
39 #include "stub-cache.h"
40 #include "v8threads.h"
41 #include "top.h"
42 #include "bootstrapper.h"
43 
44 namespace v8 {
45 namespace internal {
46 
47 
48 // -----------------------------------------------------------------------------
49 // Coding of external references.
50 
51 // The encoding of an external reference. The type is in the high word.
52 // The id is in the low word.
EncodeExternal(TypeCode type,uint16_t id)53 static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
54   return static_cast<uint32_t>(type) << 16 | id;
55 }
56 
57 
GetInternalPointer(StatsCounter * counter)58 static int* GetInternalPointer(StatsCounter* counter) {
59   // All counters refer to dummy_counter, if deserializing happens without
60   // setting up counters.
61   static int dummy_counter = 0;
62   return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
63 }
64 
65 
66 // ExternalReferenceTable is a helper class that defines the relationship
67 // between external references and their encodings. It is used to build
68 // hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
69 class ExternalReferenceTable {
70  public:
instance()71   static ExternalReferenceTable* instance() {
72     if (!instance_) instance_ = new ExternalReferenceTable();
73     return instance_;
74   }
75 
size() const76   int size() const { return refs_.length(); }
77 
address(int i)78   Address address(int i) { return refs_[i].address; }
79 
code(int i)80   uint32_t code(int i) { return refs_[i].code; }
81 
name(int i)82   const char* name(int i) { return refs_[i].name; }
83 
max_id(int code)84   int max_id(int code) { return max_id_[code]; }
85 
86  private:
87   static ExternalReferenceTable* instance_;
88 
ExternalReferenceTable()89   ExternalReferenceTable() : refs_(64) { PopulateTable(); }
~ExternalReferenceTable()90   ~ExternalReferenceTable() { }
91 
92   struct ExternalReferenceEntry {
93     Address address;
94     uint32_t code;
95     const char* name;
96   };
97 
98   void PopulateTable();
99 
100   // For a few types of references, we can get their address from their id.
101   void AddFromId(TypeCode type, uint16_t id, const char* name);
102 
103   // For other types of references, the caller will figure out the address.
104   void Add(Address address, TypeCode type, uint16_t id, const char* name);
105 
106   List<ExternalReferenceEntry> refs_;
107   int max_id_[kTypeCodeCount];
108 };
109 
110 
111 ExternalReferenceTable* ExternalReferenceTable::instance_ = NULL;
112 
113 
AddFromId(TypeCode type,uint16_t id,const char * name)114 void ExternalReferenceTable::AddFromId(TypeCode type,
115                                        uint16_t id,
116                                        const char* name) {
117   Address address;
118   switch (type) {
119     case C_BUILTIN: {
120       ExternalReference ref(static_cast<Builtins::CFunctionId>(id));
121       address = ref.address();
122       break;
123     }
124     case BUILTIN: {
125       ExternalReference ref(static_cast<Builtins::Name>(id));
126       address = ref.address();
127       break;
128     }
129     case RUNTIME_FUNCTION: {
130       ExternalReference ref(static_cast<Runtime::FunctionId>(id));
131       address = ref.address();
132       break;
133     }
134     case IC_UTILITY: {
135       ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)));
136       address = ref.address();
137       break;
138     }
139     default:
140       UNREACHABLE();
141       return;
142   }
143   Add(address, type, id, name);
144 }
145 
146 
Add(Address address,TypeCode type,uint16_t id,const char * name)147 void ExternalReferenceTable::Add(Address address,
148                                  TypeCode type,
149                                  uint16_t id,
150                                  const char* name) {
151   ASSERT_NE(NULL, address);
152   ExternalReferenceEntry entry;
153   entry.address = address;
154   entry.code = EncodeExternal(type, id);
155   entry.name = name;
156   ASSERT_NE(0, entry.code);
157   refs_.Add(entry);
158   if (id > max_id_[type]) max_id_[type] = id;
159 }
160 
161 
PopulateTable()162 void ExternalReferenceTable::PopulateTable() {
163   for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
164     max_id_[type_code] = 0;
165   }
166 
167   // The following populates all of the different type of external references
168   // into the ExternalReferenceTable.
169   //
170   // NOTE: This function was originally 100k of code.  It has since been
171   // rewritten to be mostly table driven, as the callback macro style tends to
172   // very easily cause code bloat.  Please be careful in the future when adding
173   // new references.
174 
175   struct RefTableEntry {
176     TypeCode type;
177     uint16_t id;
178     const char* name;
179   };
180 
181   static const RefTableEntry ref_table[] = {
182   // Builtins
183 #define DEF_ENTRY_C(name, ignored) \
184   { C_BUILTIN, \
185     Builtins::c_##name, \
186     "Builtins::" #name },
187 
188   BUILTIN_LIST_C(DEF_ENTRY_C)
189 #undef DEF_ENTRY_C
190 
191 #define DEF_ENTRY_C(name, ignored) \
192   { BUILTIN, \
193     Builtins::name, \
194     "Builtins::" #name },
195 #define DEF_ENTRY_A(name, kind, state) DEF_ENTRY_C(name, ignored)
196 
197   BUILTIN_LIST_C(DEF_ENTRY_C)
198   BUILTIN_LIST_A(DEF_ENTRY_A)
199   BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
200 #undef DEF_ENTRY_C
201 #undef DEF_ENTRY_A
202 
203   // Runtime functions
204 #define RUNTIME_ENTRY(name, nargs, ressize) \
205   { RUNTIME_FUNCTION, \
206     Runtime::k##name, \
207     "Runtime::" #name },
208 
209   RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
210 #undef RUNTIME_ENTRY
211 
212   // IC utilities
213 #define IC_ENTRY(name) \
214   { IC_UTILITY, \
215     IC::k##name, \
216     "IC::" #name },
217 
218   IC_UTIL_LIST(IC_ENTRY)
219 #undef IC_ENTRY
220   };  // end of ref_table[].
221 
222   for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
223     AddFromId(ref_table[i].type, ref_table[i].id, ref_table[i].name);
224   }
225 
226 #ifdef ENABLE_DEBUGGER_SUPPORT
227   // Debug addresses
228   Add(Debug_Address(Debug::k_after_break_target_address).address(),
229       DEBUG_ADDRESS,
230       Debug::k_after_break_target_address << kDebugIdShift,
231       "Debug::after_break_target_address()");
232   Add(Debug_Address(Debug::k_debug_break_return_address).address(),
233       DEBUG_ADDRESS,
234       Debug::k_debug_break_return_address << kDebugIdShift,
235       "Debug::debug_break_return_address()");
236   const char* debug_register_format = "Debug::register_address(%i)";
237   int dr_format_length = StrLength(debug_register_format);
238   for (int i = 0; i < kNumJSCallerSaved; ++i) {
239     Vector<char> name = Vector<char>::New(dr_format_length + 1);
240     OS::SNPrintF(name, debug_register_format, i);
241     Add(Debug_Address(Debug::k_register_address, i).address(),
242         DEBUG_ADDRESS,
243         Debug::k_register_address << kDebugIdShift | i,
244         name.start());
245   }
246 #endif
247 
248   // Stat counters
249   struct StatsRefTableEntry {
250     StatsCounter* counter;
251     uint16_t id;
252     const char* name;
253   };
254 
255   static const StatsRefTableEntry stats_ref_table[] = {
256 #define COUNTER_ENTRY(name, caption) \
257   { &Counters::name, \
258     Counters::k_##name, \
259     "Counters::" #name },
260 
261   STATS_COUNTER_LIST_1(COUNTER_ENTRY)
262   STATS_COUNTER_LIST_2(COUNTER_ENTRY)
263 #undef COUNTER_ENTRY
264   };  // end of stats_ref_table[].
265 
266   for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
267     Add(reinterpret_cast<Address>(
268             GetInternalPointer(stats_ref_table[i].counter)),
269         STATS_COUNTER,
270         stats_ref_table[i].id,
271         stats_ref_table[i].name);
272   }
273 
274   // Top addresses
275   const char* top_address_format = "Top::%s";
276 
277   const char* AddressNames[] = {
278 #define C(name) #name,
279     TOP_ADDRESS_LIST(C)
280     TOP_ADDRESS_LIST_PROF(C)
281     NULL
282 #undef C
283   };
284 
285   int top_format_length = StrLength(top_address_format) - 2;
286   for (uint16_t i = 0; i < Top::k_top_address_count; ++i) {
287     const char* address_name = AddressNames[i];
288     Vector<char> name =
289         Vector<char>::New(top_format_length + StrLength(address_name) + 1);
290     const char* chars = name.start();
291     OS::SNPrintF(name, top_address_format, address_name);
292     Add(Top::get_address_from_id((Top::AddressId)i), TOP_ADDRESS, i, chars);
293   }
294 
295   // Extensions
296   Add(FUNCTION_ADDR(GCExtension::GC), EXTENSION, 1,
297       "GCExtension::GC");
298 
299   // Accessors
300 #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
301   Add((Address)&Accessors::name, \
302       ACCESSOR, \
303       Accessors::k##name, \
304       "Accessors::" #name);
305 
306   ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
307 #undef ACCESSOR_DESCRIPTOR_DECLARATION
308 
309   // Stub cache tables
310   Add(SCTableReference::keyReference(StubCache::kPrimary).address(),
311       STUB_CACHE_TABLE,
312       1,
313       "StubCache::primary_->key");
314   Add(SCTableReference::valueReference(StubCache::kPrimary).address(),
315       STUB_CACHE_TABLE,
316       2,
317       "StubCache::primary_->value");
318   Add(SCTableReference::keyReference(StubCache::kSecondary).address(),
319       STUB_CACHE_TABLE,
320       3,
321       "StubCache::secondary_->key");
322   Add(SCTableReference::valueReference(StubCache::kSecondary).address(),
323       STUB_CACHE_TABLE,
324       4,
325       "StubCache::secondary_->value");
326 
327   // Runtime entries
328   Add(ExternalReference::perform_gc_function().address(),
329       RUNTIME_ENTRY,
330       1,
331       "Runtime::PerformGC");
332   Add(ExternalReference::random_positive_smi_function().address(),
333       RUNTIME_ENTRY,
334       2,
335       "V8::RandomPositiveSmi");
336 
337   // Miscellaneous
338   Add(ExternalReference::the_hole_value_location().address(),
339       UNCLASSIFIED,
340       2,
341       "Factory::the_hole_value().location()");
342   Add(ExternalReference::roots_address().address(),
343       UNCLASSIFIED,
344       3,
345       "Heap::roots_address()");
346   Add(ExternalReference::address_of_stack_limit().address(),
347       UNCLASSIFIED,
348       4,
349       "StackGuard::address_of_jslimit()");
350   Add(ExternalReference::address_of_real_stack_limit().address(),
351       UNCLASSIFIED,
352       5,
353       "StackGuard::address_of_real_jslimit()");
354   Add(ExternalReference::address_of_regexp_stack_limit().address(),
355       UNCLASSIFIED,
356       6,
357       "RegExpStack::limit_address()");
358   Add(ExternalReference::new_space_start().address(),
359       UNCLASSIFIED,
360       7,
361       "Heap::NewSpaceStart()");
362   Add(ExternalReference::new_space_mask().address(),
363       UNCLASSIFIED,
364       8,
365       "Heap::NewSpaceMask()");
366   Add(ExternalReference::heap_always_allocate_scope_depth().address(),
367       UNCLASSIFIED,
368       9,
369       "Heap::always_allocate_scope_depth()");
370   Add(ExternalReference::new_space_allocation_limit_address().address(),
371       UNCLASSIFIED,
372       10,
373       "Heap::NewSpaceAllocationLimitAddress()");
374   Add(ExternalReference::new_space_allocation_top_address().address(),
375       UNCLASSIFIED,
376       11,
377       "Heap::NewSpaceAllocationTopAddress()");
378 #ifdef ENABLE_DEBUGGER_SUPPORT
379   Add(ExternalReference::debug_break().address(),
380       UNCLASSIFIED,
381       12,
382       "Debug::Break()");
383   Add(ExternalReference::debug_step_in_fp_address().address(),
384       UNCLASSIFIED,
385       13,
386       "Debug::step_in_fp_addr()");
387 #endif
388   Add(ExternalReference::double_fp_operation(Token::ADD).address(),
389       UNCLASSIFIED,
390       14,
391       "add_two_doubles");
392   Add(ExternalReference::double_fp_operation(Token::SUB).address(),
393       UNCLASSIFIED,
394       15,
395       "sub_two_doubles");
396   Add(ExternalReference::double_fp_operation(Token::MUL).address(),
397       UNCLASSIFIED,
398       16,
399       "mul_two_doubles");
400   Add(ExternalReference::double_fp_operation(Token::DIV).address(),
401       UNCLASSIFIED,
402       17,
403       "div_two_doubles");
404   Add(ExternalReference::double_fp_operation(Token::MOD).address(),
405       UNCLASSIFIED,
406       18,
407       "mod_two_doubles");
408   Add(ExternalReference::compare_doubles().address(),
409       UNCLASSIFIED,
410       19,
411       "compare_doubles");
412 #ifdef V8_NATIVE_REGEXP
413   Add(ExternalReference::re_case_insensitive_compare_uc16().address(),
414       UNCLASSIFIED,
415       20,
416       "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
417   Add(ExternalReference::re_check_stack_guard_state().address(),
418       UNCLASSIFIED,
419       21,
420       "RegExpMacroAssembler*::CheckStackGuardState()");
421   Add(ExternalReference::re_grow_stack().address(),
422       UNCLASSIFIED,
423       22,
424       "NativeRegExpMacroAssembler::GrowStack()");
425   Add(ExternalReference::re_word_character_map().address(),
426       UNCLASSIFIED,
427       23,
428       "NativeRegExpMacroAssembler::word_character_map");
429 #endif
430   // Keyed lookup cache.
431   Add(ExternalReference::keyed_lookup_cache_keys().address(),
432       UNCLASSIFIED,
433       24,
434       "KeyedLookupCache::keys()");
435   Add(ExternalReference::keyed_lookup_cache_field_offsets().address(),
436       UNCLASSIFIED,
437       25,
438       "KeyedLookupCache::field_offsets()");
439   Add(ExternalReference::transcendental_cache_array_address().address(),
440       UNCLASSIFIED,
441       26,
442       "TranscendentalCache::caches()");
443 }
444 
445 
ExternalReferenceEncoder()446 ExternalReferenceEncoder::ExternalReferenceEncoder()
447     : encodings_(Match) {
448   ExternalReferenceTable* external_references =
449       ExternalReferenceTable::instance();
450   for (int i = 0; i < external_references->size(); ++i) {
451     Put(external_references->address(i), i);
452   }
453 }
454 
455 
Encode(Address key) const456 uint32_t ExternalReferenceEncoder::Encode(Address key) const {
457   int index = IndexOf(key);
458   return index >=0 ? ExternalReferenceTable::instance()->code(index) : 0;
459 }
460 
461 
NameOfAddress(Address key) const462 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
463   int index = IndexOf(key);
464   return index >=0 ? ExternalReferenceTable::instance()->name(index) : NULL;
465 }
466 
467 
IndexOf(Address key) const468 int ExternalReferenceEncoder::IndexOf(Address key) const {
469   if (key == NULL) return -1;
470   HashMap::Entry* entry =
471       const_cast<HashMap &>(encodings_).Lookup(key, Hash(key), false);
472   return entry == NULL
473       ? -1
474       : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
475 }
476 
477 
Put(Address key,int index)478 void ExternalReferenceEncoder::Put(Address key, int index) {
479   HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
480   entry->value = reinterpret_cast<void *>(index);
481 }
482 
483 
ExternalReferenceDecoder()484 ExternalReferenceDecoder::ExternalReferenceDecoder()
485   : encodings_(NewArray<Address*>(kTypeCodeCount)) {
486   ExternalReferenceTable* external_references =
487       ExternalReferenceTable::instance();
488   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
489     int max = external_references->max_id(type) + 1;
490     encodings_[type] = NewArray<Address>(max + 1);
491   }
492   for (int i = 0; i < external_references->size(); ++i) {
493     Put(external_references->code(i), external_references->address(i));
494   }
495 }
496 
497 
~ExternalReferenceDecoder()498 ExternalReferenceDecoder::~ExternalReferenceDecoder() {
499   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
500     DeleteArray(encodings_[type]);
501   }
502   DeleteArray(encodings_);
503 }
504 
505 
506 bool Serializer::serialization_enabled_ = false;
507 bool Serializer::too_late_to_enable_now_ = false;
508 ExternalReferenceDecoder* Deserializer::external_reference_decoder_ = NULL;
509 
510 
Deserializer(SnapshotByteSource * source)511 Deserializer::Deserializer(SnapshotByteSource* source) : source_(source) {
512 }
513 
514 
515 // This routine both allocates a new object, and also keeps
516 // track of where objects have been allocated so that we can
517 // fix back references when deserializing.
Allocate(int space_index,Space * space,int size)518 Address Deserializer::Allocate(int space_index, Space* space, int size) {
519   Address address;
520   if (!SpaceIsLarge(space_index)) {
521     ASSERT(!SpaceIsPaged(space_index) ||
522            size <= Page::kPageSize - Page::kObjectStartOffset);
523     Object* new_allocation;
524     if (space_index == NEW_SPACE) {
525       new_allocation = reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
526     } else {
527       new_allocation = reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
528     }
529     HeapObject* new_object = HeapObject::cast(new_allocation);
530     ASSERT(!new_object->IsFailure());
531     address = new_object->address();
532     high_water_[space_index] = address + size;
533   } else {
534     ASSERT(SpaceIsLarge(space_index));
535     ASSERT(size > Page::kPageSize - Page::kObjectStartOffset);
536     LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
537     Object* new_allocation;
538     if (space_index == kLargeData) {
539       new_allocation = lo_space->AllocateRaw(size);
540     } else if (space_index == kLargeFixedArray) {
541       new_allocation = lo_space->AllocateRawFixedArray(size);
542     } else {
543       ASSERT_EQ(kLargeCode, space_index);
544       new_allocation = lo_space->AllocateRawCode(size);
545     }
546     ASSERT(!new_allocation->IsFailure());
547     HeapObject* new_object = HeapObject::cast(new_allocation);
548     // Record all large objects in the same space.
549     address = new_object->address();
550     pages_[LO_SPACE].Add(address);
551   }
552   last_object_address_ = address;
553   return address;
554 }
555 
556 
557 // This returns the address of an object that has been described in the
558 // snapshot as being offset bytes back in a particular space.
GetAddressFromEnd(int space)559 HeapObject* Deserializer::GetAddressFromEnd(int space) {
560   int offset = source_->GetInt();
561   ASSERT(!SpaceIsLarge(space));
562   offset <<= kObjectAlignmentBits;
563   return HeapObject::FromAddress(high_water_[space] - offset);
564 }
565 
566 
567 // This returns the address of an object that has been described in the
568 // snapshot as being offset bytes into a particular space.
GetAddressFromStart(int space)569 HeapObject* Deserializer::GetAddressFromStart(int space) {
570   int offset = source_->GetInt();
571   if (SpaceIsLarge(space)) {
572     // Large spaces have one object per 'page'.
573     return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
574   }
575   offset <<= kObjectAlignmentBits;
576   if (space == NEW_SPACE) {
577     // New space has only one space - numbered 0.
578     return HeapObject::FromAddress(pages_[space][0] + offset);
579   }
580   ASSERT(SpaceIsPaged(space));
581   int page_of_pointee = offset >> kPageSizeBits;
582   Address object_address = pages_[space][page_of_pointee] +
583                            (offset & Page::kPageAlignmentMask);
584   return HeapObject::FromAddress(object_address);
585 }
586 
587 
Deserialize()588 void Deserializer::Deserialize() {
589   // Don't GC while deserializing - just expand the heap.
590   AlwaysAllocateScope always_allocate;
591   // Don't use the free lists while deserializing.
592   LinearAllocationScope allocate_linearly;
593   // No active threads.
594   ASSERT_EQ(NULL, ThreadState::FirstInUse());
595   // No active handles.
596   ASSERT(HandleScopeImplementer::instance()->blocks()->is_empty());
597   // Make sure the entire partial snapshot cache is traversed, filling it with
598   // valid object pointers.
599   partial_snapshot_cache_length_ = kPartialSnapshotCacheCapacity;
600   ASSERT_EQ(NULL, external_reference_decoder_);
601   external_reference_decoder_ = new ExternalReferenceDecoder();
602   Heap::IterateStrongRoots(this, VISIT_ONLY_STRONG);
603   Heap::IterateWeakRoots(this, VISIT_ALL);
604 }
605 
606 
DeserializePartial(Object ** root)607 void Deserializer::DeserializePartial(Object** root) {
608   // Don't GC while deserializing - just expand the heap.
609   AlwaysAllocateScope always_allocate;
610   // Don't use the free lists while deserializing.
611   LinearAllocationScope allocate_linearly;
612   if (external_reference_decoder_ == NULL) {
613     external_reference_decoder_ = new ExternalReferenceDecoder();
614   }
615   VisitPointer(root);
616 }
617 
618 
~Deserializer()619 Deserializer::~Deserializer() {
620   ASSERT(source_->AtEOF());
621   if (external_reference_decoder_ != NULL) {
622     delete external_reference_decoder_;
623     external_reference_decoder_ = NULL;
624   }
625 }
626 
627 
628 // This is called on the roots.  It is the driver of the deserialization
629 // process.  It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)630 void Deserializer::VisitPointers(Object** start, Object** end) {
631   // The space must be new space.  Any other space would cause ReadChunk to try
632   // to update the remembered using NULL as the address.
633   ReadChunk(start, end, NEW_SPACE, NULL);
634 }
635 
636 
637 // This routine writes the new object into the pointer provided and then
638 // returns true if the new object was in young space and false otherwise.
639 // The reason for this strange interface is that otherwise the object is
640 // written very late, which means the ByteArray map is not set up by the
641 // time we need to use it to mark the space at the end of a page free (by
642 // making it into a byte array).
ReadObject(int space_number,Space * space,Object ** write_back)643 void Deserializer::ReadObject(int space_number,
644                               Space* space,
645                               Object** write_back) {
646   int size = source_->GetInt() << kObjectAlignmentBits;
647   Address address = Allocate(space_number, space, size);
648   *write_back = HeapObject::FromAddress(address);
649   Object** current = reinterpret_cast<Object**>(address);
650   Object** limit = current + (size >> kPointerSizeLog2);
651   if (FLAG_log_snapshot_positions) {
652     LOG(SnapshotPositionEvent(address, source_->position()));
653   }
654   ReadChunk(current, limit, space_number, address);
655 }
656 
657 
658 #define ONE_CASE_PER_SPACE(base_tag)   \
659   case (base_tag) + NEW_SPACE:         /* NOLINT */ \
660   case (base_tag) + OLD_POINTER_SPACE: /* NOLINT */ \
661   case (base_tag) + OLD_DATA_SPACE:    /* NOLINT */ \
662   case (base_tag) + CODE_SPACE:        /* NOLINT */ \
663   case (base_tag) + MAP_SPACE:         /* NOLINT */ \
664   case (base_tag) + CELL_SPACE:        /* NOLINT */ \
665   case (base_tag) + kLargeData:        /* NOLINT */ \
666   case (base_tag) + kLargeCode:        /* NOLINT */ \
667   case (base_tag) + kLargeFixedArray:  /* NOLINT */
668 
669 
ReadChunk(Object ** current,Object ** limit,int space,Address address)670 void Deserializer::ReadChunk(Object** current,
671                              Object** limit,
672                              int space,
673                              Address address) {
674   while (current < limit) {
675     int data = source_->Get();
676     switch (data) {
677 #define RAW_CASE(index, size)                                      \
678       case RAW_DATA_SERIALIZATION + index: {                       \
679         byte* raw_data_out = reinterpret_cast<byte*>(current);     \
680         source_->CopyRaw(raw_data_out, size);                      \
681         current = reinterpret_cast<Object**>(raw_data_out + size); \
682         break;                                                     \
683       }
684       COMMON_RAW_LENGTHS(RAW_CASE)
685 #undef RAW_CASE
686       case RAW_DATA_SERIALIZATION: {
687         int size = source_->GetInt();
688         byte* raw_data_out = reinterpret_cast<byte*>(current);
689         source_->CopyRaw(raw_data_out, size);
690         current = reinterpret_cast<Object**>(raw_data_out + size);
691         break;
692       }
693       case OBJECT_SERIALIZATION + NEW_SPACE: {
694         ReadObject(NEW_SPACE, Heap::new_space(), current);
695         if (space != NEW_SPACE) {
696           Heap::RecordWrite(address, static_cast<int>(
697               reinterpret_cast<Address>(current) - address));
698         }
699         current++;
700         break;
701       }
702       case OBJECT_SERIALIZATION + OLD_DATA_SPACE:
703         ReadObject(OLD_DATA_SPACE, Heap::old_data_space(), current++);
704         break;
705       case OBJECT_SERIALIZATION + OLD_POINTER_SPACE:
706         ReadObject(OLD_POINTER_SPACE, Heap::old_pointer_space(), current++);
707         break;
708       case OBJECT_SERIALIZATION + MAP_SPACE:
709         ReadObject(MAP_SPACE, Heap::map_space(), current++);
710         break;
711       case OBJECT_SERIALIZATION + CODE_SPACE:
712         ReadObject(CODE_SPACE, Heap::code_space(), current++);
713         break;
714       case OBJECT_SERIALIZATION + CELL_SPACE:
715         ReadObject(CELL_SPACE, Heap::cell_space(), current++);
716         break;
717       case OBJECT_SERIALIZATION + kLargeData:
718         ReadObject(kLargeData, Heap::lo_space(), current++);
719         break;
720       case OBJECT_SERIALIZATION + kLargeCode:
721         ReadObject(kLargeCode, Heap::lo_space(), current++);
722         break;
723       case OBJECT_SERIALIZATION + kLargeFixedArray:
724         ReadObject(kLargeFixedArray, Heap::lo_space(), current++);
725         break;
726       case CODE_OBJECT_SERIALIZATION + kLargeCode: {
727         Object* new_code_object = NULL;
728         ReadObject(kLargeCode, Heap::lo_space(), &new_code_object);
729         Code* code_object = reinterpret_cast<Code*>(new_code_object);
730         // Setting a branch/call to another code object from code.
731         Address location_of_branch_data = reinterpret_cast<Address>(current);
732         Assembler::set_target_at(location_of_branch_data,
733                                  code_object->instruction_start());
734         location_of_branch_data += Assembler::kCallTargetSize;
735         current = reinterpret_cast<Object**>(location_of_branch_data);
736         break;
737       }
738       case CODE_OBJECT_SERIALIZATION + CODE_SPACE: {
739         Object* new_code_object = NULL;
740         ReadObject(CODE_SPACE, Heap::code_space(), &new_code_object);
741         Code* code_object = reinterpret_cast<Code*>(new_code_object);
742         // Setting a branch/call to another code object from code.
743         Address location_of_branch_data = reinterpret_cast<Address>(current);
744         Assembler::set_target_at(location_of_branch_data,
745                                  code_object->instruction_start());
746         location_of_branch_data += Assembler::kCallTargetSize;
747         current = reinterpret_cast<Object**>(location_of_branch_data);
748         break;
749       }
750       ONE_CASE_PER_SPACE(BACKREF_SERIALIZATION) {
751         // Write a backreference to an object we unpacked earlier.
752         int backref_space = (data & kSpaceMask);
753         if (backref_space == NEW_SPACE && space != NEW_SPACE) {
754           Heap::RecordWrite(address, static_cast<int>(
755               reinterpret_cast<Address>(current) - address));
756         }
757         *current++ = GetAddressFromEnd(backref_space);
758         break;
759       }
760       ONE_CASE_PER_SPACE(REFERENCE_SERIALIZATION) {
761         // Write a reference to an object we unpacked earlier.
762         int reference_space = (data & kSpaceMask);
763         if (reference_space == NEW_SPACE && space != NEW_SPACE) {
764           Heap::RecordWrite(address, static_cast<int>(
765               reinterpret_cast<Address>(current) - address));
766         }
767         *current++ = GetAddressFromStart(reference_space);
768         break;
769       }
770 #define COMMON_REFS_CASE(index, reference_space, address)                      \
771       case REFERENCE_SERIALIZATION + index: {                                  \
772         ASSERT(SpaceIsPaged(reference_space));                                 \
773         Address object_address =                                               \
774             pages_[reference_space][0] + (address << kObjectAlignmentBits);    \
775         *current++ = HeapObject::FromAddress(object_address);                  \
776         break;                                                                 \
777       }
778       COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
779 #undef COMMON_REFS_CASE
780       ONE_CASE_PER_SPACE(CODE_BACKREF_SERIALIZATION) {
781         int backref_space = (data & kSpaceMask);
782         // Can't use Code::cast because heap is not set up yet and assertions
783         // will fail.
784         Code* code_object =
785             reinterpret_cast<Code*>(GetAddressFromEnd(backref_space));
786         // Setting a branch/call to previously decoded code object from code.
787         Address location_of_branch_data = reinterpret_cast<Address>(current);
788         Assembler::set_target_at(location_of_branch_data,
789                                  code_object->instruction_start());
790         location_of_branch_data += Assembler::kCallTargetSize;
791         current = reinterpret_cast<Object**>(location_of_branch_data);
792         break;
793       }
794       ONE_CASE_PER_SPACE(CODE_REFERENCE_SERIALIZATION) {
795         int backref_space = (data & kSpaceMask);
796         // Can't use Code::cast because heap is not set up yet and assertions
797         // will fail.
798         Code* code_object =
799             reinterpret_cast<Code*>(GetAddressFromStart(backref_space));
800         // Setting a branch/call to previously decoded code object from code.
801         Address location_of_branch_data = reinterpret_cast<Address>(current);
802         Assembler::set_target_at(location_of_branch_data,
803                                  code_object->instruction_start());
804         location_of_branch_data += Assembler::kCallTargetSize;
805         current = reinterpret_cast<Object**>(location_of_branch_data);
806         break;
807       }
808       case EXTERNAL_REFERENCE_SERIALIZATION: {
809         int reference_id = source_->GetInt();
810         Address address = external_reference_decoder_->Decode(reference_id);
811         *current++ = reinterpret_cast<Object*>(address);
812         break;
813       }
814       case EXTERNAL_BRANCH_TARGET_SERIALIZATION: {
815         int reference_id = source_->GetInt();
816         Address address = external_reference_decoder_->Decode(reference_id);
817         Address location_of_branch_data = reinterpret_cast<Address>(current);
818         Assembler::set_external_target_at(location_of_branch_data, address);
819         location_of_branch_data += Assembler::kExternalTargetSize;
820         current = reinterpret_cast<Object**>(location_of_branch_data);
821         break;
822       }
823       case START_NEW_PAGE_SERIALIZATION: {
824         int space = source_->Get();
825         pages_[space].Add(last_object_address_);
826         break;
827       }
828       case NATIVES_STRING_RESOURCE: {
829         int index = source_->Get();
830         Vector<const char> source_vector = Natives::GetScriptSource(index);
831         NativesExternalStringResource* resource =
832             new NativesExternalStringResource(source_vector.start());
833         *current++ = reinterpret_cast<Object*>(resource);
834         break;
835       }
836       case ROOT_SERIALIZATION: {
837         int root_id = source_->GetInt();
838         *current++ = Heap::roots_address()[root_id];
839         break;
840       }
841       case PARTIAL_SNAPSHOT_CACHE_ENTRY: {
842         int cache_index = source_->GetInt();
843         *current++ = partial_snapshot_cache_[cache_index];
844         break;
845       }
846       case SYNCHRONIZE: {
847         // If we get here then that indicates that you have a mismatch between
848         // the number of GC roots when serializing and deserializing.
849         UNREACHABLE();
850       }
851       default:
852         UNREACHABLE();
853     }
854   }
855   ASSERT_EQ(current, limit);
856 }
857 
858 
PutInt(uintptr_t integer,const char * description)859 void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
860   const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
861   for (int shift = max_shift; shift > 0; shift -= 7) {
862     if (integer >= static_cast<uintptr_t>(1u) << shift) {
863       Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
864     }
865   }
866   PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
867 }
868 
869 #ifdef DEBUG
870 
Synchronize(const char * tag)871 void Deserializer::Synchronize(const char* tag) {
872   int data = source_->Get();
873   // If this assert fails then that indicates that you have a mismatch between
874   // the number of GC roots when serializing and deserializing.
875   ASSERT_EQ(SYNCHRONIZE, data);
876   do {
877     int character = source_->Get();
878     if (character == 0) break;
879     if (FLAG_debug_serialization) {
880       PrintF("%c", character);
881     }
882   } while (true);
883   if (FLAG_debug_serialization) {
884     PrintF("\n");
885   }
886 }
887 
888 
Synchronize(const char * tag)889 void Serializer::Synchronize(const char* tag) {
890   sink_->Put(SYNCHRONIZE, tag);
891   int character;
892   do {
893     character = *tag++;
894     sink_->PutSection(character, "TagCharacter");
895   } while (character != 0);
896 }
897 
898 #endif
899 
Serializer(SnapshotByteSink * sink)900 Serializer::Serializer(SnapshotByteSink* sink)
901     : sink_(sink),
902       current_root_index_(0),
903       external_reference_encoder_(new ExternalReferenceEncoder),
904       large_object_total_(0) {
905   for (int i = 0; i <= LAST_SPACE; i++) {
906     fullness_[i] = 0;
907   }
908 }
909 
910 
~Serializer()911 Serializer::~Serializer() {
912   delete external_reference_encoder_;
913 }
914 
915 
SerializeStrongReferences()916 void StartupSerializer::SerializeStrongReferences() {
917   // No active threads.
918   CHECK_EQ(NULL, ThreadState::FirstInUse());
919   // No active or weak handles.
920   CHECK(HandleScopeImplementer::instance()->blocks()->is_empty());
921   CHECK_EQ(0, GlobalHandles::NumberOfWeakHandles());
922   // We don't support serializing installed extensions.
923   for (RegisteredExtension* ext = RegisteredExtension::first_extension();
924        ext != NULL;
925        ext = ext->next()) {
926     CHECK_NE(v8::INSTALLED, ext->state());
927   }
928   Heap::IterateStrongRoots(this, VISIT_ONLY_STRONG);
929 }
930 
931 
Serialize(Object ** object)932 void PartialSerializer::Serialize(Object** object) {
933   this->VisitPointer(object);
934 
935   // After we have done the partial serialization the partial snapshot cache
936   // will contain some references needed to decode the partial snapshot.  We
937   // fill it up with undefineds so it has a predictable length so the
938   // deserialization code doesn't need to know the length.
939   for (int index = partial_snapshot_cache_length_;
940        index < kPartialSnapshotCacheCapacity;
941        index++) {
942     partial_snapshot_cache_[index] = Heap::undefined_value();
943     startup_serializer_->VisitPointer(&partial_snapshot_cache_[index]);
944   }
945   partial_snapshot_cache_length_ = kPartialSnapshotCacheCapacity;
946 }
947 
948 
VisitPointers(Object ** start,Object ** end)949 void Serializer::VisitPointers(Object** start, Object** end) {
950   for (Object** current = start; current < end; current++) {
951     if ((*current)->IsSmi()) {
952       sink_->Put(RAW_DATA_SERIALIZATION, "RawData");
953       sink_->PutInt(kPointerSize, "length");
954       for (int i = 0; i < kPointerSize; i++) {
955         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
956       }
957     } else {
958       SerializeObject(*current, TAGGED_REPRESENTATION);
959     }
960   }
961 }
962 
963 
964 Object* SerializerDeserializer::partial_snapshot_cache_[
965     kPartialSnapshotCacheCapacity];
966 int SerializerDeserializer::partial_snapshot_cache_length_ = 0;
967 
968 
969 // This ensures that the partial snapshot cache keeps things alive during GC and
970 // tracks their movement.  When it is called during serialization of the startup
971 // snapshot the partial snapshot is empty, so nothing happens.  When the partial
972 // (context) snapshot is created, this array is populated with the pointers that
973 // the partial snapshot will need. As that happens we emit serialized objects to
974 // the startup snapshot that correspond to the elements of this cache array.  On
975 // deserialization we therefore need to visit the cache array.  This fills it up
976 // with pointers to deserialized objects.
Iterate(ObjectVisitor * visitor)977 void SerializerDeserializer::Iterate(ObjectVisitor *visitor) {
978   visitor->VisitPointers(
979       &partial_snapshot_cache_[0],
980       &partial_snapshot_cache_[partial_snapshot_cache_length_]);
981 }
982 
983 
984 // When deserializing we need to set the size of the snapshot cache.  This means
985 // the root iteration code (above) will iterate over array elements, writing the
986 // references to deserialized objects in them.
SetSnapshotCacheSize(int size)987 void SerializerDeserializer::SetSnapshotCacheSize(int size) {
988   partial_snapshot_cache_length_ = size;
989 }
990 
991 
PartialSnapshotCacheIndex(HeapObject * heap_object)992 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
993   for (int i = 0; i < partial_snapshot_cache_length_; i++) {
994     Object* entry = partial_snapshot_cache_[i];
995     if (entry == heap_object) return i;
996   }
997 
998   // We didn't find the object in the cache.  So we add it to the cache and
999   // then visit the pointer so that it becomes part of the startup snapshot
1000   // and we can refer to it from the partial snapshot.
1001   int length = partial_snapshot_cache_length_;
1002   CHECK(length < kPartialSnapshotCacheCapacity);
1003   partial_snapshot_cache_[length] = heap_object;
1004   startup_serializer_->VisitPointer(&partial_snapshot_cache_[length]);
1005   // We don't recurse from the startup snapshot generator into the partial
1006   // snapshot generator.
1007   ASSERT(length == partial_snapshot_cache_length_);
1008   return partial_snapshot_cache_length_++;
1009 }
1010 
1011 
RootIndex(HeapObject * heap_object)1012 int PartialSerializer::RootIndex(HeapObject* heap_object) {
1013   for (int i = 0; i < Heap::kRootListLength; i++) {
1014     Object* root = Heap::roots_address()[i];
1015     if (root == heap_object) return i;
1016   }
1017   return kInvalidRootIndex;
1018 }
1019 
1020 
1021 // Encode the location of an already deserialized object in order to write its
1022 // location into a later object.  We can encode the location as an offset from
1023 // the start of the deserialized objects or as an offset backwards from the
1024 // current allocation pointer.
SerializeReferenceToPreviousObject(int space,int address,ReferenceRepresentation reference_representation)1025 void Serializer::SerializeReferenceToPreviousObject(
1026     int space,
1027     int address,
1028     ReferenceRepresentation reference_representation) {
1029   int offset = CurrentAllocationAddress(space) - address;
1030   bool from_start = true;
1031   if (SpaceIsPaged(space)) {
1032     // For paged space it is simple to encode back from current allocation if
1033     // the object is on the same page as the current allocation pointer.
1034     if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
1035         (address >> kPageSizeBits)) {
1036       from_start = false;
1037       address = offset;
1038     }
1039   } else if (space == NEW_SPACE) {
1040     // For new space it is always simple to encode back from current allocation.
1041     if (offset < address) {
1042       from_start = false;
1043       address = offset;
1044     }
1045   }
1046   // If we are actually dealing with real offsets (and not a numbering of
1047   // all objects) then we should shift out the bits that are always 0.
1048   if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
1049   // On some architectures references between code objects are encoded
1050   // specially (as relative offsets).  Such references have their own
1051   // special tags to simplify the deserializer.
1052   if (reference_representation == CODE_TARGET_REPRESENTATION) {
1053     if (from_start) {
1054       sink_->Put(CODE_REFERENCE_SERIALIZATION + space, "RefCodeSer");
1055       sink_->PutInt(address, "address");
1056     } else {
1057       sink_->Put(CODE_BACKREF_SERIALIZATION + space, "BackRefCodeSer");
1058       sink_->PutInt(address, "address");
1059     }
1060   } else {
1061     // Regular absolute references.
1062     CHECK_EQ(TAGGED_REPRESENTATION, reference_representation);
1063     if (from_start) {
1064       // There are some common offsets that have their own specialized encoding.
1065 #define COMMON_REFS_CASE(tag, common_space, common_offset)               \
1066       if (space == common_space && address == common_offset) {           \
1067         sink_->PutSection(tag + REFERENCE_SERIALIZATION, "RefSer");      \
1068       } else  /* NOLINT */
1069       COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
1070 #undef COMMON_REFS_CASE
1071       {  /* NOLINT */
1072         sink_->Put(REFERENCE_SERIALIZATION + space, "RefSer");
1073         sink_->PutInt(address, "address");
1074       }
1075     } else {
1076       sink_->Put(BACKREF_SERIALIZATION + space, "BackRefSer");
1077       sink_->PutInt(address, "address");
1078     }
1079   }
1080 }
1081 
1082 
SerializeObject(Object * o,ReferenceRepresentation reference_representation)1083 void StartupSerializer::SerializeObject(
1084     Object* o,
1085     ReferenceRepresentation reference_representation) {
1086   CHECK(o->IsHeapObject());
1087   HeapObject* heap_object = HeapObject::cast(o);
1088 
1089   if (address_mapper_.IsMapped(heap_object)) {
1090     int space = SpaceOfAlreadySerializedObject(heap_object);
1091     int address = address_mapper_.MappedTo(heap_object);
1092     SerializeReferenceToPreviousObject(space,
1093                                        address,
1094                                        reference_representation);
1095   } else {
1096     // Object has not yet been serialized.  Serialize it here.
1097     ObjectSerializer object_serializer(this,
1098                                        heap_object,
1099                                        sink_,
1100                                        reference_representation);
1101     object_serializer.Serialize();
1102   }
1103 }
1104 
1105 
SerializeWeakReferences()1106 void StartupSerializer::SerializeWeakReferences() {
1107   for (int i = partial_snapshot_cache_length_;
1108        i < kPartialSnapshotCacheCapacity;
1109        i++) {
1110     sink_->Put(ROOT_SERIALIZATION, "RootSerialization");
1111     sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
1112   }
1113   Heap::IterateWeakRoots(this, VISIT_ALL);
1114 }
1115 
1116 
SerializeObject(Object * o,ReferenceRepresentation reference_representation)1117 void PartialSerializer::SerializeObject(
1118     Object* o,
1119     ReferenceRepresentation reference_representation) {
1120   CHECK(o->IsHeapObject());
1121   HeapObject* heap_object = HeapObject::cast(o);
1122 
1123   int root_index;
1124   if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
1125     sink_->Put(ROOT_SERIALIZATION, "RootSerialization");
1126     sink_->PutInt(root_index, "root_index");
1127     return;
1128   }
1129 
1130   if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1131     int cache_index = PartialSnapshotCacheIndex(heap_object);
1132     sink_->Put(PARTIAL_SNAPSHOT_CACHE_ENTRY, "PartialSnapshotCache");
1133     sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1134     return;
1135   }
1136 
1137   // Pointers from the partial snapshot to the objects in the startup snapshot
1138   // should go through the root array or through the partial snapshot cache.
1139   // If this is not the case you may have to add something to the root array.
1140   ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1141   // All the symbols that the partial snapshot needs should be either in the
1142   // root table or in the partial snapshot cache.
1143   ASSERT(!heap_object->IsSymbol());
1144 
1145   if (address_mapper_.IsMapped(heap_object)) {
1146     int space = SpaceOfAlreadySerializedObject(heap_object);
1147     int address = address_mapper_.MappedTo(heap_object);
1148     SerializeReferenceToPreviousObject(space,
1149                                        address,
1150                                        reference_representation);
1151   } else {
1152     // Object has not yet been serialized.  Serialize it here.
1153     ObjectSerializer serializer(this,
1154                                 heap_object,
1155                                 sink_,
1156                                 reference_representation);
1157     serializer.Serialize();
1158   }
1159 }
1160 
1161 
Serialize()1162 void Serializer::ObjectSerializer::Serialize() {
1163   int space = Serializer::SpaceOfObject(object_);
1164   int size = object_->Size();
1165 
1166   if (reference_representation_ == TAGGED_REPRESENTATION) {
1167     sink_->Put(OBJECT_SERIALIZATION + space, "ObjectSerialization");
1168   } else {
1169     CHECK_EQ(CODE_TARGET_REPRESENTATION, reference_representation_);
1170     sink_->Put(CODE_OBJECT_SERIALIZATION + space, "ObjectSerialization");
1171   }
1172   sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1173 
1174   LOG(SnapshotPositionEvent(object_->address(), sink_->Position()));
1175 
1176   // Mark this object as already serialized.
1177   bool start_new_page;
1178   int offset = serializer_->Allocate(space, size, &start_new_page);
1179   serializer_->address_mapper()->AddMapping(object_, offset);
1180   if (start_new_page) {
1181     sink_->Put(START_NEW_PAGE_SERIALIZATION, "NewPage");
1182     sink_->PutSection(space, "NewPageSpace");
1183   }
1184 
1185   // Serialize the map (first word of the object).
1186   serializer_->SerializeObject(object_->map(), TAGGED_REPRESENTATION);
1187 
1188   // Serialize the rest of the object.
1189   CHECK_EQ(0, bytes_processed_so_far_);
1190   bytes_processed_so_far_ = kPointerSize;
1191   object_->IterateBody(object_->map()->instance_type(), size, this);
1192   OutputRawData(object_->address() + size);
1193 }
1194 
1195 
VisitPointers(Object ** start,Object ** end)1196 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1197                                                  Object** end) {
1198   Object** current = start;
1199   while (current < end) {
1200     while (current < end && (*current)->IsSmi()) current++;
1201     if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1202 
1203     while (current < end && !(*current)->IsSmi()) {
1204       serializer_->SerializeObject(*current, TAGGED_REPRESENTATION);
1205       bytes_processed_so_far_ += kPointerSize;
1206       current++;
1207     }
1208   }
1209 }
1210 
1211 
VisitExternalReferences(Address * start,Address * end)1212 void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
1213                                                            Address* end) {
1214   Address references_start = reinterpret_cast<Address>(start);
1215   OutputRawData(references_start);
1216 
1217   for (Address* current = start; current < end; current++) {
1218     sink_->Put(EXTERNAL_REFERENCE_SERIALIZATION, "ExternalReference");
1219     int reference_id = serializer_->EncodeExternalReference(*current);
1220     sink_->PutInt(reference_id, "reference id");
1221   }
1222   bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
1223 }
1224 
1225 
VisitRuntimeEntry(RelocInfo * rinfo)1226 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1227   Address target_start = rinfo->target_address_address();
1228   OutputRawData(target_start);
1229   Address target = rinfo->target_address();
1230   uint32_t encoding = serializer_->EncodeExternalReference(target);
1231   CHECK(target == NULL ? encoding == 0 : encoding != 0);
1232   sink_->Put(EXTERNAL_BRANCH_TARGET_SERIALIZATION, "ExternalReference");
1233   sink_->PutInt(encoding, "reference id");
1234   bytes_processed_so_far_ += Assembler::kExternalTargetSize;
1235 }
1236 
1237 
VisitCodeTarget(RelocInfo * rinfo)1238 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1239   CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
1240   Address target_start = rinfo->target_address_address();
1241   OutputRawData(target_start);
1242   Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1243   serializer_->SerializeObject(target, CODE_TARGET_REPRESENTATION);
1244   bytes_processed_so_far_ += Assembler::kCallTargetSize;
1245 }
1246 
1247 
VisitExternalAsciiString(v8::String::ExternalAsciiStringResource ** resource_pointer)1248 void Serializer::ObjectSerializer::VisitExternalAsciiString(
1249     v8::String::ExternalAsciiStringResource** resource_pointer) {
1250   Address references_start = reinterpret_cast<Address>(resource_pointer);
1251   OutputRawData(references_start);
1252   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1253     Object* source = Heap::natives_source_cache()->get(i);
1254     if (!source->IsUndefined()) {
1255       ExternalAsciiString* string = ExternalAsciiString::cast(source);
1256       typedef v8::String::ExternalAsciiStringResource Resource;
1257       Resource* resource = string->resource();
1258       if (resource == *resource_pointer) {
1259         sink_->Put(NATIVES_STRING_RESOURCE, "NativesStringResource");
1260         sink_->PutSection(i, "NativesStringResourceEnd");
1261         bytes_processed_so_far_ += sizeof(resource);
1262         return;
1263       }
1264     }
1265   }
1266   // One of the strings in the natives cache should match the resource.  We
1267   // can't serialize any other kinds of external strings.
1268   UNREACHABLE();
1269 }
1270 
1271 
OutputRawData(Address up_to)1272 void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
1273   Address object_start = object_->address();
1274   int up_to_offset = static_cast<int>(up_to - object_start);
1275   int skipped = up_to_offset - bytes_processed_so_far_;
1276   // This assert will fail if the reloc info gives us the target_address_address
1277   // locations in a non-ascending order.  Luckily that doesn't happen.
1278   ASSERT(skipped >= 0);
1279   if (skipped != 0) {
1280     Address base = object_start + bytes_processed_so_far_;
1281 #define RAW_CASE(index, length)                                                \
1282     if (skipped == length) {                                                   \
1283       sink_->PutSection(RAW_DATA_SERIALIZATION + index, "RawDataFixed");       \
1284     } else  /* NOLINT */
1285     COMMON_RAW_LENGTHS(RAW_CASE)
1286 #undef RAW_CASE
1287     {  /* NOLINT */
1288       sink_->Put(RAW_DATA_SERIALIZATION, "RawData");
1289       sink_->PutInt(skipped, "length");
1290     }
1291     for (int i = 0; i < skipped; i++) {
1292       unsigned int data = base[i];
1293       sink_->PutSection(data, "Byte");
1294     }
1295     bytes_processed_so_far_ += skipped;
1296   }
1297 }
1298 
1299 
SpaceOfObject(HeapObject * object)1300 int Serializer::SpaceOfObject(HeapObject* object) {
1301   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1302     AllocationSpace s = static_cast<AllocationSpace>(i);
1303     if (Heap::InSpace(object, s)) {
1304       if (i == LO_SPACE) {
1305         if (object->IsCode()) {
1306           return kLargeCode;
1307         } else if (object->IsFixedArray()) {
1308           return kLargeFixedArray;
1309         } else {
1310           return kLargeData;
1311         }
1312       }
1313       return i;
1314     }
1315   }
1316   UNREACHABLE();
1317   return 0;
1318 }
1319 
1320 
SpaceOfAlreadySerializedObject(HeapObject * object)1321 int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
1322   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1323     AllocationSpace s = static_cast<AllocationSpace>(i);
1324     if (Heap::InSpace(object, s)) {
1325       return i;
1326     }
1327   }
1328   UNREACHABLE();
1329   return 0;
1330 }
1331 
1332 
Allocate(int space,int size,bool * new_page)1333 int Serializer::Allocate(int space, int size, bool* new_page) {
1334   CHECK(space >= 0 && space < kNumberOfSpaces);
1335   if (SpaceIsLarge(space)) {
1336     // In large object space we merely number the objects instead of trying to
1337     // determine some sort of address.
1338     *new_page = true;
1339     large_object_total_ += size;
1340     return fullness_[LO_SPACE]++;
1341   }
1342   *new_page = false;
1343   if (fullness_[space] == 0) {
1344     *new_page = true;
1345   }
1346   if (SpaceIsPaged(space)) {
1347     // Paged spaces are a little special.  We encode their addresses as if the
1348     // pages were all contiguous and each page were filled up in the range
1349     // 0 - Page::kObjectAreaSize.  In practice the pages may not be contiguous
1350     // and allocation does not start at offset 0 in the page, but this scheme
1351     // means the deserializer can get the page number quickly by shifting the
1352     // serialized address.
1353     CHECK(IsPowerOf2(Page::kPageSize));
1354     int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
1355     CHECK(size <= Page::kObjectAreaSize);
1356     if (used_in_this_page + size > Page::kObjectAreaSize) {
1357       *new_page = true;
1358       fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
1359     }
1360   }
1361   int allocation_address = fullness_[space];
1362   fullness_[space] = allocation_address + size;
1363   return allocation_address;
1364 }
1365 
1366 
1367 } }  // namespace v8::internal
1368