1# Copyright 2008 the V8 project authors. All rights reserved. 2# Redistribution and use in source and binary forms, with or without 3# modification, are permitted provided that the following conditions are 4# met: 5# 6# * Redistributions of source code must retain the above copyright 7# notice, this list of conditions and the following disclaimer. 8# * Redistributions in binary form must reproduce the above 9# copyright notice, this list of conditions and the following 10# disclaimer in the documentation and/or other materials provided 11# with the distribution. 12# * Neither the name of Google Inc. nor the names of its 13# contributors may be used to endorse or promote products derived 14# from this software without specific prior written permission. 15# 16# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 29class Node(object): 30 """Nodes in the splay tree.""" 31 32 def __init__(self, key, value): 33 self.key = key 34 self.value = value 35 self.left = None 36 self.right = None 37 38 39class KeyNotFoundError(Exception): 40 """KeyNotFoundError is raised when removing a non-existing node.""" 41 42 def __init__(self, key): 43 self.key = key 44 45 46class SplayTree(object): 47 """The splay tree itself is just a reference to the root of the tree.""" 48 49 def __init__(self): 50 """Create a new SplayTree.""" 51 self.root = None 52 53 def IsEmpty(self): 54 """Is the SplayTree empty?""" 55 return not self.root 56 57 def Insert(self, key, value): 58 """Insert a new node in the SplayTree.""" 59 # If the tree is empty, insert the new node. 60 if self.IsEmpty(): 61 self.root = Node(key, value) 62 return 63 # Splay on the key to move the last node on the search path for 64 # the key to the root of the tree. 65 self.Splay(key) 66 # Ignore repeated insertions with the same key. 67 if self.root.key == key: 68 return 69 # Insert the new node. 70 node = Node(key, value) 71 if key > self.root.key: 72 node.left = self.root 73 node.right = self.root.right 74 self.root.right = None 75 else: 76 node.right = self.root 77 node.left = self.root.left 78 self.root.left = None 79 self.root = node 80 81 def Remove(self, key): 82 """Remove the node with the given key from the SplayTree.""" 83 # Raise exception for key that is not found if the tree is empty. 84 if self.IsEmpty(): 85 raise KeyNotFoundError(key) 86 # Splay on the key to move the node with the given key to the top. 87 self.Splay(key) 88 # Raise exception for key that is not found. 89 if self.root.key != key: 90 raise KeyNotFoundError(key) 91 removed = self.root 92 # Link out the root node. 93 if not self.root.left: 94 # No left child, so the new tree is just the right child. 95 self.root = self.root.right 96 else: 97 # Left child exists. 98 right = self.root.right 99 # Make the original left child the new root. 100 self.root = self.root.left 101 # Splay to make sure that the new root has an empty right child. 102 self.Splay(key) 103 # Insert the original right child as the right child of the new 104 # root. 105 self.root.right = right 106 return removed 107 108 def Find(self, key): 109 """Returns the node with the given key or None if no such node exists.""" 110 if self.IsEmpty(): 111 return None 112 self.Splay(key) 113 if self.root.key == key: 114 return self.root 115 return None 116 117 def FindMax(self): 118 """Returns the node with the largest key value.""" 119 if self.IsEmpty(): 120 return None 121 current = self.root 122 while current.right != None: 123 current = current.right 124 return current 125 126 # Returns the node with the smallest key value. 127 def FindMin(self): 128 if self.IsEmpty(): 129 return None 130 current = self.root 131 while current.left != None: 132 current = current.left 133 return current 134 135 def FindGreatestsLessThan(self, key): 136 """Returns node with greatest key less than or equal to the given key.""" 137 if self.IsEmpty(): 138 return None 139 # Splay on the key to move the node with the given key or the last 140 # node on the search path to the top of the tree. 141 self.Splay(key) 142 # Now the result is either the root node or the greatest node in 143 # the left subtree. 144 if self.root.key <= key: 145 return self.root 146 else: 147 tmp = self.root 148 self.root = self.root.left 149 result = self.FindMax() 150 self.root = tmp 151 return result 152 153 def ExportValueList(self): 154 """Returns a list containing all the values of the nodes in the tree.""" 155 result = [] 156 nodes_to_visit = [self.root] 157 while len(nodes_to_visit) > 0: 158 node = nodes_to_visit.pop() 159 if not node: 160 continue 161 result.append(node.value) 162 nodes_to_visit.append(node.left) 163 nodes_to_visit.append(node.right) 164 return result 165 166 def Splay(self, key): 167 """Perform splay operation. 168 169 Perform the splay operation for the given key. Moves the node with 170 the given key to the top of the tree. If no node has the given 171 key, the last node on the search path is moved to the top of the 172 tree. 173 174 This uses the simplified top-down splaying algorithm from: 175 176 "Self-adjusting Binary Search Trees" by Sleator and Tarjan 177 178 """ 179 if self.IsEmpty(): 180 return 181 # Create a dummy node. The use of the dummy node is a bit 182 # counter-intuitive: The right child of the dummy node will hold 183 # the L tree of the algorithm. The left child of the dummy node 184 # will hold the R tree of the algorithm. Using a dummy node, left 185 # and right will always be nodes and we avoid special cases. 186 dummy = left = right = Node(None, None) 187 current = self.root 188 while True: 189 if key < current.key: 190 if not current.left: 191 break 192 if key < current.left.key: 193 # Rotate right. 194 tmp = current.left 195 current.left = tmp.right 196 tmp.right = current 197 current = tmp 198 if not current.left: 199 break 200 # Link right. 201 right.left = current 202 right = current 203 current = current.left 204 elif key > current.key: 205 if not current.right: 206 break 207 if key > current.right.key: 208 # Rotate left. 209 tmp = current.right 210 current.right = tmp.left 211 tmp.left = current 212 current = tmp 213 if not current.right: 214 break 215 # Link left. 216 left.right = current 217 left = current 218 current = current.right 219 else: 220 break 221 # Assemble. 222 left.right = current.left 223 right.left = current.right 224 current.left = dummy.right 225 current.right = dummy.left 226 self.root = current 227