• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.net;
18 
19 import android.os.SystemClock;
20 import android.util.Config;
21 import android.util.Log;
22 
23 import java.io.IOException;
24 import java.net.DatagramPacket;
25 import java.net.DatagramSocket;
26 import java.net.InetAddress;
27 
28 /**
29  * {@hide}
30  *
31  * Simple SNTP client class for retrieving network time.
32  *
33  * Sample usage:
34  * <pre>SntpClient client = new SntpClient();
35  * if (client.requestTime("time.foo.com")) {
36  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
37  * }
38  * </pre>
39  */
40 public class SntpClient
41 {
42     private static final String TAG = "SntpClient";
43 
44     private static final int REFERENCE_TIME_OFFSET = 16;
45     private static final int ORIGINATE_TIME_OFFSET = 24;
46     private static final int RECEIVE_TIME_OFFSET = 32;
47     private static final int TRANSMIT_TIME_OFFSET = 40;
48     private static final int NTP_PACKET_SIZE = 48;
49 
50     private static final int NTP_PORT = 123;
51     private static final int NTP_MODE_CLIENT = 3;
52     private static final int NTP_VERSION = 3;
53 
54     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
55     // 70 years plus 17 leap days
56     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
57 
58     // system time computed from NTP server response
59     private long mNtpTime;
60 
61     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
62     private long mNtpTimeReference;
63 
64     // round trip time in milliseconds
65     private long mRoundTripTime;
66 
67     /**
68      * Sends an SNTP request to the given host and processes the response.
69      *
70      * @param host host name of the server.
71      * @param timeout network timeout in milliseconds.
72      * @return true if the transaction was successful.
73      */
requestTime(String host, int timeout)74     public boolean requestTime(String host, int timeout) {
75         DatagramSocket socket = null;
76         try {
77             socket = new DatagramSocket();
78             socket.setSoTimeout(timeout);
79             InetAddress address = InetAddress.getByName(host);
80             byte[] buffer = new byte[NTP_PACKET_SIZE];
81             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT);
82 
83             // set mode = 3 (client) and version = 3
84             // mode is in low 3 bits of first byte
85             // version is in bits 3-5 of first byte
86             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
87 
88             // get current time and write it to the request packet
89             long requestTime = System.currentTimeMillis();
90             long requestTicks = SystemClock.elapsedRealtime();
91             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
92 
93             socket.send(request);
94 
95             // read the response
96             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
97             socket.receive(response);
98             long responseTicks = SystemClock.elapsedRealtime();
99             long responseTime = requestTime + (responseTicks - requestTicks);
100 
101             // extract the results
102             long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
103             long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
104             long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
105             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
106             // receiveTime = originateTime + transit + skew
107             // responseTime = transmitTime + transit - skew
108             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
109             //             = ((originateTime + transit + skew - originateTime) +
110             //                (transmitTime - (transmitTime + transit - skew)))/2
111             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
112             //             = (transit + skew - transit + skew)/2
113             //             = (2 * skew)/2 = skew
114             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
115             // if (Config.LOGD) Log.d(TAG, "round trip: " + roundTripTime + " ms");
116             // if (Config.LOGD) Log.d(TAG, "clock offset: " + clockOffset + " ms");
117 
118             // save our results - use the times on this side of the network latency
119             // (response rather than request time)
120             mNtpTime = responseTime + clockOffset;
121             mNtpTimeReference = responseTicks;
122             mRoundTripTime = roundTripTime;
123         } catch (Exception e) {
124             if (Config.LOGD) Log.d(TAG, "request time failed: " + e);
125             return false;
126         } finally {
127             if (socket != null) {
128                 socket.close();
129             }
130         }
131 
132         return true;
133     }
134 
135     /**
136      * Returns the time computed from the NTP transaction.
137      *
138      * @return time value computed from NTP server response.
139      */
getNtpTime()140     public long getNtpTime() {
141         return mNtpTime;
142     }
143 
144     /**
145      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
146      * corresponding to the NTP time.
147      *
148      * @return reference clock corresponding to the NTP time.
149      */
getNtpTimeReference()150     public long getNtpTimeReference() {
151         return mNtpTimeReference;
152     }
153 
154     /**
155      * Returns the round trip time of the NTP transaction
156      *
157      * @return round trip time in milliseconds.
158      */
getRoundTripTime()159     public long getRoundTripTime() {
160         return mRoundTripTime;
161     }
162 
163     /**
164      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
165      */
read32(byte[] buffer, int offset)166     private long read32(byte[] buffer, int offset) {
167         byte b0 = buffer[offset];
168         byte b1 = buffer[offset+1];
169         byte b2 = buffer[offset+2];
170         byte b3 = buffer[offset+3];
171 
172         // convert signed bytes to unsigned values
173         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
174         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
175         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
176         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
177 
178         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
179     }
180 
181     /**
182      * Reads the NTP time stamp at the given offset in the buffer and returns
183      * it as a system time (milliseconds since January 1, 1970).
184      */
readTimeStamp(byte[] buffer, int offset)185     private long readTimeStamp(byte[] buffer, int offset) {
186         long seconds = read32(buffer, offset);
187         long fraction = read32(buffer, offset + 4);
188         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
189     }
190 
191     /**
192      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
193      * at the given offset in the buffer.
194      */
writeTimeStamp(byte[] buffer, int offset, long time)195     private void writeTimeStamp(byte[] buffer, int offset, long time) {
196         long seconds = time / 1000L;
197         long milliseconds = time - seconds * 1000L;
198         seconds += OFFSET_1900_TO_1970;
199 
200         // write seconds in big endian format
201         buffer[offset++] = (byte)(seconds >> 24);
202         buffer[offset++] = (byte)(seconds >> 16);
203         buffer[offset++] = (byte)(seconds >> 8);
204         buffer[offset++] = (byte)(seconds >> 0);
205 
206         long fraction = milliseconds * 0x100000000L / 1000L;
207         // write fraction in big endian format
208         buffer[offset++] = (byte)(fraction >> 24);
209         buffer[offset++] = (byte)(fraction >> 16);
210         buffer[offset++] = (byte)(fraction >> 8);
211         // low order bits should be random data
212         buffer[offset++] = (byte)(Math.random() * 255.0);
213     }
214 }
215