• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_SORTED_VECTOR_H
18 #define ANDROID_SORTED_VECTOR_H
19 
20 #include <assert.h>
21 #include <stdint.h>
22 #include <sys/types.h>
23 
24 #include <utils/Vector.h>
25 #include <utils/VectorImpl.h>
26 #include <utils/TypeHelpers.h>
27 
28 // ---------------------------------------------------------------------------
29 
30 namespace android {
31 
32 template <class TYPE>
33 class SortedVector : private SortedVectorImpl
34 {
35 public:
36             typedef TYPE    value_type;
37 
38     /*!
39      * Constructors and destructors
40      */
41 
42                             SortedVector();
43                             SortedVector(const SortedVector<TYPE>& rhs);
44     virtual                 ~SortedVector();
45 
46     /*! copy operator */
47     const SortedVector<TYPE>&   operator = (const SortedVector<TYPE>& rhs) const;
48     SortedVector<TYPE>&         operator = (const SortedVector<TYPE>& rhs);
49 
50     /*
51      * empty the vector
52      */
53 
clear()54     inline  void            clear()             { VectorImpl::clear(); }
55 
56     /*!
57      * vector stats
58      */
59 
60     //! returns number of items in the vector
size()61     inline  size_t          size() const                { return VectorImpl::size(); }
62     //! returns wether or not the vector is empty
isEmpty()63     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
64     //! returns how many items can be stored without reallocating the backing store
capacity()65     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
66     //! setst the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)67     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
68 
69     /*!
70      * C-style array access
71      */
72 
73     //! read-only C-style access
74     inline  const TYPE*     array() const;
75 
76     //! read-write C-style access. BE VERY CAREFUL when modifying the array
77     //! you ust keep it sorted! You usually don't use this function.
78             TYPE*           editArray();
79 
80             //! finds the index of an item
81             ssize_t         indexOf(const TYPE& item) const;
82 
83             //! finds where this item should be inserted
84             size_t          orderOf(const TYPE& item) const;
85 
86 
87     /*!
88      * accessors
89      */
90 
91     //! read-only access to an item at a given index
92     inline  const TYPE&     operator [] (size_t index) const;
93     //! alternate name for operator []
94     inline  const TYPE&     itemAt(size_t index) const;
95     //! stack-usage of the vector. returns the top of the stack (last element)
96             const TYPE&     top() const;
97     //! same as operator [], but allows to access the vector backward (from the end) with a negative index
98             const TYPE&     mirrorItemAt(ssize_t index) const;
99 
100     /*!
101      * modifing the array
102      */
103 
104             //! add an item in the right place (and replace the one that is there)
105             ssize_t         add(const TYPE& item);
106 
107             //! editItemAt() MUST NOT change the order of this item
editItemAt(size_t index)108             TYPE&           editItemAt(size_t index) {
109                 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
110             }
111 
112             //! merges a vector into this one
113             ssize_t         merge(const Vector<TYPE>& vector);
114             ssize_t         merge(const SortedVector<TYPE>& vector);
115 
116             //! removes an item
117             ssize_t         remove(const TYPE&);
118 
119     //! remove several items
120     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
121     //! remove one item
removeAt(size_t index)122     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
123 
124 protected:
125     virtual void    do_construct(void* storage, size_t num) const;
126     virtual void    do_destroy(void* storage, size_t num) const;
127     virtual void    do_copy(void* dest, const void* from, size_t num) const;
128     virtual void    do_splat(void* dest, const void* item, size_t num) const;
129     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
130     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
131     virtual int     do_compare(const void* lhs, const void* rhs) const;
132 };
133 
134 
135 // ---------------------------------------------------------------------------
136 // No user serviceable parts from here...
137 // ---------------------------------------------------------------------------
138 
139 template<class TYPE> inline
SortedVector()140 SortedVector<TYPE>::SortedVector()
141     : SortedVectorImpl(sizeof(TYPE),
142                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
143                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
144                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
145                 )
146 {
147 }
148 
149 template<class TYPE> inline
SortedVector(const SortedVector<TYPE> & rhs)150 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
151     : SortedVectorImpl(rhs) {
152 }
153 
154 template<class TYPE> inline
~SortedVector()155 SortedVector<TYPE>::~SortedVector() {
156     finish_vector();
157 }
158 
159 template<class TYPE> inline
160 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
161     SortedVectorImpl::operator = (rhs);
162     return *this;
163 }
164 
165 template<class TYPE> inline
166 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
167     SortedVectorImpl::operator = (rhs);
168     return *this;
169 }
170 
171 template<class TYPE> inline
array()172 const TYPE* SortedVector<TYPE>::array() const {
173     return static_cast<const TYPE *>(arrayImpl());
174 }
175 
176 template<class TYPE> inline
editArray()177 TYPE* SortedVector<TYPE>::editArray() {
178     return static_cast<TYPE *>(editArrayImpl());
179 }
180 
181 
182 template<class TYPE> inline
183 const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
184     assert( index<size() );
185     return *(array() + index);
186 }
187 
188 template<class TYPE> inline
itemAt(size_t index)189 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
190     return operator[](index);
191 }
192 
193 template<class TYPE> inline
mirrorItemAt(ssize_t index)194 const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const {
195     assert( (index>0 ? index : -index)<size() );
196     return *(array() + ((index<0) ? (size()-index) : index));
197 }
198 
199 template<class TYPE> inline
top()200 const TYPE& SortedVector<TYPE>::top() const {
201     return *(array() + size() - 1);
202 }
203 
204 template<class TYPE> inline
add(const TYPE & item)205 ssize_t SortedVector<TYPE>::add(const TYPE& item) {
206     return SortedVectorImpl::add(&item);
207 }
208 
209 template<class TYPE> inline
indexOf(const TYPE & item)210 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
211     return SortedVectorImpl::indexOf(&item);
212 }
213 
214 template<class TYPE> inline
orderOf(const TYPE & item)215 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
216     return SortedVectorImpl::orderOf(&item);
217 }
218 
219 template<class TYPE> inline
merge(const Vector<TYPE> & vector)220 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
221     return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
222 }
223 
224 template<class TYPE> inline
merge(const SortedVector<TYPE> & vector)225 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
226     return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
227 }
228 
229 template<class TYPE> inline
remove(const TYPE & item)230 ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
231     return SortedVectorImpl::remove(&item);
232 }
233 
234 template<class TYPE> inline
removeItemsAt(size_t index,size_t count)235 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
236     return VectorImpl::removeItemsAt(index, count);
237 }
238 
239 // ---------------------------------------------------------------------------
240 
241 template<class TYPE>
do_construct(void * storage,size_t num)242 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
243     construct_type( reinterpret_cast<TYPE*>(storage), num );
244 }
245 
246 template<class TYPE>
do_destroy(void * storage,size_t num)247 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
248     destroy_type( reinterpret_cast<TYPE*>(storage), num );
249 }
250 
251 template<class TYPE>
do_copy(void * dest,const void * from,size_t num)252 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
253     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
254 }
255 
256 template<class TYPE>
do_splat(void * dest,const void * item,size_t num)257 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
258     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
259 }
260 
261 template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)262 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
263     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
264 }
265 
266 template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)267 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
268     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
269 }
270 
271 template<class TYPE>
do_compare(const void * lhs,const void * rhs)272 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
273     return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
274 }
275 
276 }; // namespace android
277 
278 
279 // ---------------------------------------------------------------------------
280 
281 #endif // ANDROID_SORTED_VECTOR_H
282