1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_SORTED_VECTOR_H
18 #define ANDROID_SORTED_VECTOR_H
19
20 #include <assert.h>
21 #include <stdint.h>
22 #include <sys/types.h>
23
24 #include <utils/Vector.h>
25 #include <utils/VectorImpl.h>
26 #include <utils/TypeHelpers.h>
27
28 // ---------------------------------------------------------------------------
29
30 namespace android {
31
32 template <class TYPE>
33 class SortedVector : private SortedVectorImpl
34 {
35 public:
36 typedef TYPE value_type;
37
38 /*!
39 * Constructors and destructors
40 */
41
42 SortedVector();
43 SortedVector(const SortedVector<TYPE>& rhs);
44 virtual ~SortedVector();
45
46 /*! copy operator */
47 const SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const;
48 SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs);
49
50 /*
51 * empty the vector
52 */
53
clear()54 inline void clear() { VectorImpl::clear(); }
55
56 /*!
57 * vector stats
58 */
59
60 //! returns number of items in the vector
size()61 inline size_t size() const { return VectorImpl::size(); }
62 //! returns wether or not the vector is empty
isEmpty()63 inline bool isEmpty() const { return VectorImpl::isEmpty(); }
64 //! returns how many items can be stored without reallocating the backing store
capacity()65 inline size_t capacity() const { return VectorImpl::capacity(); }
66 //! setst the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)67 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); }
68
69 /*!
70 * C-style array access
71 */
72
73 //! read-only C-style access
74 inline const TYPE* array() const;
75
76 //! read-write C-style access. BE VERY CAREFUL when modifying the array
77 //! you ust keep it sorted! You usually don't use this function.
78 TYPE* editArray();
79
80 //! finds the index of an item
81 ssize_t indexOf(const TYPE& item) const;
82
83 //! finds where this item should be inserted
84 size_t orderOf(const TYPE& item) const;
85
86
87 /*!
88 * accessors
89 */
90
91 //! read-only access to an item at a given index
92 inline const TYPE& operator [] (size_t index) const;
93 //! alternate name for operator []
94 inline const TYPE& itemAt(size_t index) const;
95 //! stack-usage of the vector. returns the top of the stack (last element)
96 const TYPE& top() const;
97 //! same as operator [], but allows to access the vector backward (from the end) with a negative index
98 const TYPE& mirrorItemAt(ssize_t index) const;
99
100 /*!
101 * modifing the array
102 */
103
104 //! add an item in the right place (and replace the one that is there)
105 ssize_t add(const TYPE& item);
106
107 //! editItemAt() MUST NOT change the order of this item
editItemAt(size_t index)108 TYPE& editItemAt(size_t index) {
109 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
110 }
111
112 //! merges a vector into this one
113 ssize_t merge(const Vector<TYPE>& vector);
114 ssize_t merge(const SortedVector<TYPE>& vector);
115
116 //! removes an item
117 ssize_t remove(const TYPE&);
118
119 //! remove several items
120 inline ssize_t removeItemsAt(size_t index, size_t count = 1);
121 //! remove one item
removeAt(size_t index)122 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); }
123
124 protected:
125 virtual void do_construct(void* storage, size_t num) const;
126 virtual void do_destroy(void* storage, size_t num) const;
127 virtual void do_copy(void* dest, const void* from, size_t num) const;
128 virtual void do_splat(void* dest, const void* item, size_t num) const;
129 virtual void do_move_forward(void* dest, const void* from, size_t num) const;
130 virtual void do_move_backward(void* dest, const void* from, size_t num) const;
131 virtual int do_compare(const void* lhs, const void* rhs) const;
132 };
133
134
135 // ---------------------------------------------------------------------------
136 // No user serviceable parts from here...
137 // ---------------------------------------------------------------------------
138
139 template<class TYPE> inline
SortedVector()140 SortedVector<TYPE>::SortedVector()
141 : SortedVectorImpl(sizeof(TYPE),
142 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0)
143 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0)
144 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0))
145 )
146 {
147 }
148
149 template<class TYPE> inline
SortedVector(const SortedVector<TYPE> & rhs)150 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
151 : SortedVectorImpl(rhs) {
152 }
153
154 template<class TYPE> inline
~SortedVector()155 SortedVector<TYPE>::~SortedVector() {
156 finish_vector();
157 }
158
159 template<class TYPE> inline
160 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
161 SortedVectorImpl::operator = (rhs);
162 return *this;
163 }
164
165 template<class TYPE> inline
166 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
167 SortedVectorImpl::operator = (rhs);
168 return *this;
169 }
170
171 template<class TYPE> inline
array()172 const TYPE* SortedVector<TYPE>::array() const {
173 return static_cast<const TYPE *>(arrayImpl());
174 }
175
176 template<class TYPE> inline
editArray()177 TYPE* SortedVector<TYPE>::editArray() {
178 return static_cast<TYPE *>(editArrayImpl());
179 }
180
181
182 template<class TYPE> inline
183 const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
184 assert( index<size() );
185 return *(array() + index);
186 }
187
188 template<class TYPE> inline
itemAt(size_t index)189 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
190 return operator[](index);
191 }
192
193 template<class TYPE> inline
mirrorItemAt(ssize_t index)194 const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const {
195 assert( (index>0 ? index : -index)<size() );
196 return *(array() + ((index<0) ? (size()-index) : index));
197 }
198
199 template<class TYPE> inline
top()200 const TYPE& SortedVector<TYPE>::top() const {
201 return *(array() + size() - 1);
202 }
203
204 template<class TYPE> inline
add(const TYPE & item)205 ssize_t SortedVector<TYPE>::add(const TYPE& item) {
206 return SortedVectorImpl::add(&item);
207 }
208
209 template<class TYPE> inline
indexOf(const TYPE & item)210 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
211 return SortedVectorImpl::indexOf(&item);
212 }
213
214 template<class TYPE> inline
orderOf(const TYPE & item)215 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
216 return SortedVectorImpl::orderOf(&item);
217 }
218
219 template<class TYPE> inline
merge(const Vector<TYPE> & vector)220 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
221 return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
222 }
223
224 template<class TYPE> inline
merge(const SortedVector<TYPE> & vector)225 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
226 return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
227 }
228
229 template<class TYPE> inline
remove(const TYPE & item)230 ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
231 return SortedVectorImpl::remove(&item);
232 }
233
234 template<class TYPE> inline
removeItemsAt(size_t index,size_t count)235 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
236 return VectorImpl::removeItemsAt(index, count);
237 }
238
239 // ---------------------------------------------------------------------------
240
241 template<class TYPE>
do_construct(void * storage,size_t num)242 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
243 construct_type( reinterpret_cast<TYPE*>(storage), num );
244 }
245
246 template<class TYPE>
do_destroy(void * storage,size_t num)247 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
248 destroy_type( reinterpret_cast<TYPE*>(storage), num );
249 }
250
251 template<class TYPE>
do_copy(void * dest,const void * from,size_t num)252 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
253 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
254 }
255
256 template<class TYPE>
do_splat(void * dest,const void * item,size_t num)257 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
258 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
259 }
260
261 template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)262 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
263 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
264 }
265
266 template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)267 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
268 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
269 }
270
271 template<class TYPE>
do_compare(const void * lhs,const void * rhs)272 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
273 return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
274 }
275
276 }; // namespace android
277
278
279 // ---------------------------------------------------------------------------
280
281 #endif // ANDROID_SORTED_VECTOR_H
282