1 //
2 // Copyright 2005 The Android Open Source Project
3 //
4 // Handle events, like key input and vsync.
5 //
6 // The goal is to provide an optimized solution for Linux, not an
7 // implementation that works well across all platforms. We expect
8 // events to arrive on file descriptors, so that we can use a select()
9 // select() call to sleep.
10 //
11 // We can't select() on anything but network sockets in Windows, so we
12 // provide an alternative implementation of waitEvent for that platform.
13 //
14 #define LOG_TAG "EventHub"
15
16 //#define LOG_NDEBUG 0
17
18 #include <ui/EventHub.h>
19 #include <ui/KeycodeLabels.h>
20 #include <hardware_legacy/power.h>
21
22 #include <cutils/properties.h>
23 #include <utils/Log.h>
24 #include <utils/Timers.h>
25 #include <utils/threads.h>
26 #include <utils/Errors.h>
27
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32 #include <memory.h>
33 #include <errno.h>
34 #include <assert.h>
35
36 #include "KeyLayoutMap.h"
37
38 #include <string.h>
39 #include <stdint.h>
40 #include <dirent.h>
41 #ifdef HAVE_INOTIFY
42 # include <sys/inotify.h>
43 #endif
44 #ifdef HAVE_ANDROID_OS
45 # include <sys/limits.h> /* not part of Linux */
46 #endif
47 #include <sys/poll.h>
48 #include <sys/ioctl.h>
49
50 /* this macro is used to tell if "bit" is set in "array"
51 * it selects a byte from the array, and does a boolean AND
52 * operation with a byte that only has the relevant bit set.
53 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
54 */
55 #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
56
57 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
58 #define sizeof_bit_array(bits) ((bits + 7) / 8)
59
60 #define ID_MASK 0x0000ffff
61 #define SEQ_MASK 0x7fff0000
62 #define SEQ_SHIFT 16
63
64 #ifndef ABS_MT_TOUCH_MAJOR
65 #define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */
66 #endif
67
68 #ifndef ABS_MT_POSITION_X
69 #define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */
70 #endif
71
72 #ifndef ABS_MT_POSITION_Y
73 #define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */
74 #endif
75
76 #define INDENT " "
77 #define INDENT2 " "
78 #define INDENT3 " "
79
80 namespace android {
81
82 static const char *WAKE_LOCK_ID = "KeyEvents";
83 static const char *device_path = "/dev/input";
84
85 /* return the larger integer */
max(int v1,int v2)86 static inline int max(int v1, int v2)
87 {
88 return (v1 > v2) ? v1 : v2;
89 }
90
toString(bool value)91 static inline const char* toString(bool value) {
92 return value ? "true" : "false";
93 }
94
device_t(int32_t _id,const char * _path,const char * name)95 EventHub::device_t::device_t(int32_t _id, const char* _path, const char* name)
96 : id(_id), path(_path), name(name), classes(0)
97 , keyBitmask(NULL), layoutMap(new KeyLayoutMap()), fd(-1), next(NULL) {
98 }
99
~device_t()100 EventHub::device_t::~device_t() {
101 delete [] keyBitmask;
102 delete layoutMap;
103 }
104
EventHub(void)105 EventHub::EventHub(void)
106 : mError(NO_INIT), mHaveFirstKeyboard(false), mFirstKeyboardId(0)
107 , mDevicesById(0), mNumDevicesById(0)
108 , mOpeningDevices(0), mClosingDevices(0)
109 , mDevices(0), mFDs(0), mFDCount(0), mOpened(false), mNeedToSendFinishedDeviceScan(false)
110 , mInputBufferIndex(0), mInputBufferCount(0), mInputDeviceIndex(0)
111 {
112 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
113 #ifdef EV_SW
114 memset(mSwitches, 0, sizeof(mSwitches));
115 #endif
116 }
117
118 /*
119 * Clean up.
120 */
~EventHub(void)121 EventHub::~EventHub(void)
122 {
123 release_wake_lock(WAKE_LOCK_ID);
124 // we should free stuff here...
125 }
126
errorCheck() const127 status_t EventHub::errorCheck() const
128 {
129 return mError;
130 }
131
getDeviceName(int32_t deviceId) const132 String8 EventHub::getDeviceName(int32_t deviceId) const
133 {
134 AutoMutex _l(mLock);
135 device_t* device = getDeviceLocked(deviceId);
136 if (device == NULL) return String8();
137 return device->name;
138 }
139
getDeviceClasses(int32_t deviceId) const140 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const
141 {
142 AutoMutex _l(mLock);
143 device_t* device = getDeviceLocked(deviceId);
144 if (device == NULL) return 0;
145 return device->classes;
146 }
147
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const148 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
149 RawAbsoluteAxisInfo* outAxisInfo) const {
150 outAxisInfo->clear();
151
152 AutoMutex _l(mLock);
153 device_t* device = getDeviceLocked(deviceId);
154 if (device == NULL) return -1;
155
156 struct input_absinfo info;
157
158 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
159 LOGW("Error reading absolute controller %d for device %s fd %d\n",
160 axis, device->name.string(), device->fd);
161 return -errno;
162 }
163
164 if (info.minimum != info.maximum) {
165 outAxisInfo->valid = true;
166 outAxisInfo->minValue = info.minimum;
167 outAxisInfo->maxValue = info.maximum;
168 outAxisInfo->flat = info.flat;
169 outAxisInfo->fuzz = info.fuzz;
170 }
171 return OK;
172 }
173
getScanCodeState(int32_t deviceId,int32_t scanCode) const174 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
175 if (scanCode >= 0 && scanCode <= KEY_MAX) {
176 AutoMutex _l(mLock);
177
178 device_t* device = getDeviceLocked(deviceId);
179 if (device != NULL) {
180 return getScanCodeStateLocked(device, scanCode);
181 }
182 }
183 return AKEY_STATE_UNKNOWN;
184 }
185
getScanCodeStateLocked(device_t * device,int32_t scanCode) const186 int32_t EventHub::getScanCodeStateLocked(device_t* device, int32_t scanCode) const {
187 uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
188 memset(key_bitmask, 0, sizeof(key_bitmask));
189 if (ioctl(device->fd,
190 EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
191 return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
192 }
193 return AKEY_STATE_UNKNOWN;
194 }
195
getKeyCodeState(int32_t deviceId,int32_t keyCode) const196 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
197 AutoMutex _l(mLock);
198
199 device_t* device = getDeviceLocked(deviceId);
200 if (device != NULL) {
201 return getKeyCodeStateLocked(device, keyCode);
202 }
203 return AKEY_STATE_UNKNOWN;
204 }
205
getKeyCodeStateLocked(device_t * device,int32_t keyCode) const206 int32_t EventHub::getKeyCodeStateLocked(device_t* device, int32_t keyCode) const {
207 Vector<int32_t> scanCodes;
208 device->layoutMap->findScancodes(keyCode, &scanCodes);
209
210 uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
211 memset(key_bitmask, 0, sizeof(key_bitmask));
212 if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
213 #if 0
214 for (size_t i=0; i<=KEY_MAX; i++) {
215 LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
216 }
217 #endif
218 const size_t N = scanCodes.size();
219 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
220 int32_t sc = scanCodes.itemAt(i);
221 //LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
222 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
223 return AKEY_STATE_DOWN;
224 }
225 }
226 return AKEY_STATE_UP;
227 }
228 return AKEY_STATE_UNKNOWN;
229 }
230
getSwitchState(int32_t deviceId,int32_t sw) const231 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
232 #ifdef EV_SW
233 if (sw >= 0 && sw <= SW_MAX) {
234 AutoMutex _l(mLock);
235
236 device_t* device = getDeviceLocked(deviceId);
237 if (device != NULL) {
238 return getSwitchStateLocked(device, sw);
239 }
240 }
241 #endif
242 return AKEY_STATE_UNKNOWN;
243 }
244
getSwitchStateLocked(device_t * device,int32_t sw) const245 int32_t EventHub::getSwitchStateLocked(device_t* device, int32_t sw) const {
246 uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
247 memset(sw_bitmask, 0, sizeof(sw_bitmask));
248 if (ioctl(device->fd,
249 EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
250 return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
251 }
252 return AKEY_STATE_UNKNOWN;
253 }
254
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const255 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
256 const int32_t* keyCodes, uint8_t* outFlags) const {
257 AutoMutex _l(mLock);
258
259 device_t* device = getDeviceLocked(deviceId);
260 if (device != NULL) {
261 return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
262 }
263 return false;
264 }
265
markSupportedKeyCodesLocked(device_t * device,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const266 bool EventHub::markSupportedKeyCodesLocked(device_t* device, size_t numCodes,
267 const int32_t* keyCodes, uint8_t* outFlags) const {
268 if (device->layoutMap == NULL || device->keyBitmask == NULL) {
269 return false;
270 }
271
272 Vector<int32_t> scanCodes;
273 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
274 scanCodes.clear();
275
276 status_t err = device->layoutMap->findScancodes(keyCodes[codeIndex], &scanCodes);
277 if (! err) {
278 // check the possible scan codes identified by the layout map against the
279 // map of codes actually emitted by the driver
280 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
281 if (test_bit(scanCodes[sc], device->keyBitmask)) {
282 outFlags[codeIndex] = 1;
283 break;
284 }
285 }
286 }
287 }
288 return true;
289 }
290
scancodeToKeycode(int32_t deviceId,int scancode,int32_t * outKeycode,uint32_t * outFlags) const291 status_t EventHub::scancodeToKeycode(int32_t deviceId, int scancode,
292 int32_t* outKeycode, uint32_t* outFlags) const
293 {
294 AutoMutex _l(mLock);
295 device_t* device = getDeviceLocked(deviceId);
296
297 if (device != NULL && device->layoutMap != NULL) {
298 status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
299 if (err == NO_ERROR) {
300 return NO_ERROR;
301 }
302 }
303
304 if (mHaveFirstKeyboard) {
305 device = getDeviceLocked(mFirstKeyboardId);
306
307 if (device != NULL && device->layoutMap != NULL) {
308 status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
309 if (err == NO_ERROR) {
310 return NO_ERROR;
311 }
312 }
313 }
314
315 *outKeycode = 0;
316 *outFlags = 0;
317 return NAME_NOT_FOUND;
318 }
319
addExcludedDevice(const char * deviceName)320 void EventHub::addExcludedDevice(const char* deviceName)
321 {
322 AutoMutex _l(mLock);
323
324 String8 name(deviceName);
325 mExcludedDevices.push_back(name);
326 }
327
getDeviceLocked(int32_t deviceId) const328 EventHub::device_t* EventHub::getDeviceLocked(int32_t deviceId) const
329 {
330 if (deviceId == 0) deviceId = mFirstKeyboardId;
331 int32_t id = deviceId & ID_MASK;
332 if (id >= mNumDevicesById || id < 0) return NULL;
333 device_t* dev = mDevicesById[id].device;
334 if (dev == NULL) return NULL;
335 if (dev->id == deviceId) {
336 return dev;
337 }
338 return NULL;
339 }
340
getEvent(RawEvent * outEvent)341 bool EventHub::getEvent(RawEvent* outEvent)
342 {
343 outEvent->deviceId = 0;
344 outEvent->type = 0;
345 outEvent->scanCode = 0;
346 outEvent->keyCode = 0;
347 outEvent->flags = 0;
348 outEvent->value = 0;
349 outEvent->when = 0;
350
351 // Note that we only allow one caller to getEvent(), so don't need
352 // to do locking here... only when adding/removing devices.
353
354 if (!mOpened) {
355 mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
356 mOpened = true;
357 mNeedToSendFinishedDeviceScan = true;
358 }
359
360 for (;;) {
361 // Report any devices that had last been added/removed.
362 if (mClosingDevices != NULL) {
363 device_t* device = mClosingDevices;
364 LOGV("Reporting device closed: id=0x%x, name=%s\n",
365 device->id, device->path.string());
366 mClosingDevices = device->next;
367 if (device->id == mFirstKeyboardId) {
368 outEvent->deviceId = 0;
369 } else {
370 outEvent->deviceId = device->id;
371 }
372 outEvent->type = DEVICE_REMOVED;
373 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
374 delete device;
375 mNeedToSendFinishedDeviceScan = true;
376 return true;
377 }
378
379 if (mOpeningDevices != NULL) {
380 device_t* device = mOpeningDevices;
381 LOGV("Reporting device opened: id=0x%x, name=%s\n",
382 device->id, device->path.string());
383 mOpeningDevices = device->next;
384 if (device->id == mFirstKeyboardId) {
385 outEvent->deviceId = 0;
386 } else {
387 outEvent->deviceId = device->id;
388 }
389 outEvent->type = DEVICE_ADDED;
390 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
391 mNeedToSendFinishedDeviceScan = true;
392 return true;
393 }
394
395 if (mNeedToSendFinishedDeviceScan) {
396 mNeedToSendFinishedDeviceScan = false;
397 outEvent->type = FINISHED_DEVICE_SCAN;
398 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
399 return true;
400 }
401
402 // Grab the next input event.
403 for (;;) {
404 // Consume buffered input events, if any.
405 if (mInputBufferIndex < mInputBufferCount) {
406 const struct input_event& iev = mInputBufferData[mInputBufferIndex++];
407 const device_t* device = mDevices[mInputDeviceIndex];
408
409 LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d", device->path.string(),
410 (int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value);
411 if (device->id == mFirstKeyboardId) {
412 outEvent->deviceId = 0;
413 } else {
414 outEvent->deviceId = device->id;
415 }
416 outEvent->type = iev.type;
417 outEvent->scanCode = iev.code;
418 if (iev.type == EV_KEY) {
419 status_t err = device->layoutMap->map(iev.code,
420 & outEvent->keyCode, & outEvent->flags);
421 LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
422 iev.code, outEvent->keyCode, outEvent->flags, err);
423 if (err != 0) {
424 outEvent->keyCode = AKEYCODE_UNKNOWN;
425 outEvent->flags = 0;
426 }
427 } else {
428 outEvent->keyCode = iev.code;
429 }
430 outEvent->value = iev.value;
431
432 // Use an event timestamp in the same timebase as
433 // java.lang.System.nanoTime() and android.os.SystemClock.uptimeMillis()
434 // as expected by the rest of the system.
435 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
436 return true;
437 }
438
439 // Finish reading all events from devices identified in previous poll().
440 // This code assumes that mInputDeviceIndex is initially 0 and that the
441 // revents member of pollfd is initialized to 0 when the device is first added.
442 // Since mFDs[0] is used for inotify, we process regular events starting at index 1.
443 mInputDeviceIndex += 1;
444 if (mInputDeviceIndex >= mFDCount) {
445 break;
446 }
447
448 const struct pollfd& pfd = mFDs[mInputDeviceIndex];
449 if (pfd.revents & POLLIN) {
450 int32_t readSize = read(pfd.fd, mInputBufferData,
451 sizeof(struct input_event) * INPUT_BUFFER_SIZE);
452 if (readSize < 0) {
453 if (errno != EAGAIN && errno != EINTR) {
454 LOGW("could not get event (errno=%d)", errno);
455 }
456 } else if ((readSize % sizeof(struct input_event)) != 0) {
457 LOGE("could not get event (wrong size: %d)", readSize);
458 } else {
459 mInputBufferCount = readSize / sizeof(struct input_event);
460 mInputBufferIndex = 0;
461 }
462 }
463 }
464
465 #if HAVE_INOTIFY
466 // readNotify() will modify mFDs and mFDCount, so this must be done after
467 // processing all other events.
468 if(mFDs[0].revents & POLLIN) {
469 readNotify(mFDs[0].fd);
470 mFDs[0].revents = 0;
471 continue; // report added or removed devices immediately
472 }
473 #endif
474
475 mInputDeviceIndex = 0;
476
477 // Poll for events. Mind the wake lock dance!
478 // We hold a wake lock at all times except during poll(). This works due to some
479 // subtle choreography. When a device driver has pending (unread) events, it acquires
480 // a kernel wake lock. However, once the last pending event has been read, the device
481 // driver will release the kernel wake lock. To prevent the system from going to sleep
482 // when this happens, the EventHub holds onto its own user wake lock while the client
483 // is processing events. Thus the system can only sleep if there are no events
484 // pending or currently being processed.
485 release_wake_lock(WAKE_LOCK_ID);
486
487 int pollResult = poll(mFDs, mFDCount, -1);
488
489 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
490
491 if (pollResult <= 0) {
492 if (errno != EINTR) {
493 LOGW("poll failed (errno=%d)\n", errno);
494 usleep(100000);
495 }
496 }
497 }
498 }
499
500 /*
501 * Open the platform-specific input device.
502 */
openPlatformInput(void)503 bool EventHub::openPlatformInput(void)
504 {
505 /*
506 * Open platform-specific input device(s).
507 */
508 int res;
509
510 mFDCount = 1;
511 mFDs = (pollfd *)calloc(1, sizeof(mFDs[0]));
512 mDevices = (device_t **)calloc(1, sizeof(mDevices[0]));
513 mFDs[0].events = POLLIN;
514 mFDs[0].revents = 0;
515 mDevices[0] = NULL;
516 #ifdef HAVE_INOTIFY
517 mFDs[0].fd = inotify_init();
518 res = inotify_add_watch(mFDs[0].fd, device_path, IN_DELETE | IN_CREATE);
519 if(res < 0) {
520 LOGE("could not add watch for %s, %s\n", device_path, strerror(errno));
521 }
522 #else
523 /*
524 * The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
525 * We allocate space for it and set it to something invalid.
526 */
527 mFDs[0].fd = -1;
528 #endif
529
530 res = scanDir(device_path);
531 if(res < 0) {
532 LOGE("scan dir failed for %s\n", device_path);
533 }
534
535 return true;
536 }
537
538 // ----------------------------------------------------------------------------
539
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)540 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
541 const uint8_t* end = array + endIndex;
542 array += startIndex;
543 while (array != end) {
544 if (*(array++) != 0) {
545 return true;
546 }
547 }
548 return false;
549 }
550
551 static const int32_t GAMEPAD_KEYCODES[] = {
552 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
553 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
554 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
555 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
556 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
557 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE
558 };
559
openDevice(const char * deviceName)560 int EventHub::openDevice(const char *deviceName) {
561 int version;
562 int fd;
563 struct pollfd *new_mFDs;
564 device_t **new_devices;
565 char **new_device_names;
566 char name[80];
567 char location[80];
568 char idstr[80];
569 struct input_id id;
570
571 LOGV("Opening device: %s", deviceName);
572
573 AutoMutex _l(mLock);
574
575 fd = open(deviceName, O_RDWR);
576 if(fd < 0) {
577 LOGE("could not open %s, %s\n", deviceName, strerror(errno));
578 return -1;
579 }
580
581 if(ioctl(fd, EVIOCGVERSION, &version)) {
582 LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno));
583 return -1;
584 }
585 if(ioctl(fd, EVIOCGID, &id)) {
586 LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno));
587 return -1;
588 }
589 name[sizeof(name) - 1] = '\0';
590 location[sizeof(location) - 1] = '\0';
591 idstr[sizeof(idstr) - 1] = '\0';
592 if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
593 //fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno));
594 name[0] = '\0';
595 }
596
597 // check to see if the device is on our excluded list
598 List<String8>::iterator iter = mExcludedDevices.begin();
599 List<String8>::iterator end = mExcludedDevices.end();
600 for ( ; iter != end; iter++) {
601 const char* test = *iter;
602 if (strcmp(name, test) == 0) {
603 LOGI("ignoring event id %s driver %s\n", deviceName, test);
604 close(fd);
605 return -1;
606 }
607 }
608
609 if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) {
610 //fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno));
611 location[0] = '\0';
612 }
613 if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) {
614 //fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno));
615 idstr[0] = '\0';
616 }
617
618 if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
619 LOGE("Error %d making device file descriptor non-blocking.", errno);
620 close(fd);
621 return -1;
622 }
623
624 int devid = 0;
625 while (devid < mNumDevicesById) {
626 if (mDevicesById[devid].device == NULL) {
627 break;
628 }
629 devid++;
630 }
631 if (devid >= mNumDevicesById) {
632 device_ent* new_devids = (device_ent*)realloc(mDevicesById,
633 sizeof(mDevicesById[0]) * (devid + 1));
634 if (new_devids == NULL) {
635 LOGE("out of memory");
636 return -1;
637 }
638 mDevicesById = new_devids;
639 mNumDevicesById = devid+1;
640 mDevicesById[devid].device = NULL;
641 mDevicesById[devid].seq = 0;
642 }
643
644 mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<<SEQ_SHIFT))&SEQ_MASK;
645 if (mDevicesById[devid].seq == 0) {
646 mDevicesById[devid].seq = 1<<SEQ_SHIFT;
647 }
648
649 new_mFDs = (pollfd*)realloc(mFDs, sizeof(mFDs[0]) * (mFDCount + 1));
650 new_devices = (device_t**)realloc(mDevices, sizeof(mDevices[0]) * (mFDCount + 1));
651 if (new_mFDs == NULL || new_devices == NULL) {
652 LOGE("out of memory");
653 return -1;
654 }
655 mFDs = new_mFDs;
656 mDevices = new_devices;
657
658 #if 0
659 LOGI("add device %d: %s\n", mFDCount, deviceName);
660 LOGI(" bus: %04x\n"
661 " vendor %04x\n"
662 " product %04x\n"
663 " version %04x\n",
664 id.bustype, id.vendor, id.product, id.version);
665 LOGI(" name: \"%s\"\n", name);
666 LOGI(" location: \"%s\"\n"
667 " id: \"%s\"\n", location, idstr);
668 LOGI(" version: %d.%d.%d\n",
669 version >> 16, (version >> 8) & 0xff, version & 0xff);
670 #endif
671
672 device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name);
673 if (device == NULL) {
674 LOGE("out of memory");
675 return -1;
676 }
677
678 device->fd = fd;
679 mFDs[mFDCount].fd = fd;
680 mFDs[mFDCount].events = POLLIN;
681 mFDs[mFDCount].revents = 0;
682
683 // Figure out the kinds of events the device reports.
684
685 uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
686 memset(key_bitmask, 0, sizeof(key_bitmask));
687
688 LOGV("Getting keys...");
689 if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) {
690 //LOGI("MAP\n");
691 //for (int i = 0; i < sizeof(key_bitmask); i++) {
692 // LOGI("%d: 0x%02x\n", i, key_bitmask[i]);
693 //}
694
695 // See if this is a keyboard. Ignore everything in the button range except for
696 // gamepads which are also considered keyboards.
697 if (containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
698 || containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_GAMEPAD),
699 sizeof_bit_array(BTN_DIGI))
700 || containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
701 sizeof_bit_array(KEY_MAX + 1))) {
702 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
703
704 device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
705 if (device->keyBitmask != NULL) {
706 memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
707 } else {
708 delete device;
709 LOGE("out of memory allocating key bitmask");
710 return -1;
711 }
712 }
713 }
714
715 // See if this is a trackball (or mouse).
716 if (test_bit(BTN_MOUSE, key_bitmask)) {
717 uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
718 memset(rel_bitmask, 0, sizeof(rel_bitmask));
719 LOGV("Getting relative controllers...");
720 if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) {
721 if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) {
722 device->classes |= INPUT_DEVICE_CLASS_TRACKBALL;
723 }
724 }
725 }
726
727 // See if this is a touch pad.
728 uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
729 memset(abs_bitmask, 0, sizeof(abs_bitmask));
730 LOGV("Getting absolute controllers...");
731 if (ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask) >= 0) {
732 // Is this a new modern multi-touch driver?
733 if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
734 && test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
735 device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN | INPUT_DEVICE_CLASS_TOUCHSCREEN_MT;
736
737 // Is this an old style single-touch driver?
738 } else if (test_bit(BTN_TOUCH, key_bitmask)
739 && test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) {
740 device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN;
741 }
742 }
743
744 #ifdef EV_SW
745 // figure out the switches this device reports
746 uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
747 memset(sw_bitmask, 0, sizeof(sw_bitmask));
748 bool hasSwitches = false;
749 if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) {
750 for (int i=0; i<EV_SW; i++) {
751 //LOGI("Device 0x%x sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
752 if (test_bit(i, sw_bitmask)) {
753 hasSwitches = true;
754 if (mSwitches[i] == 0) {
755 mSwitches[i] = device->id;
756 }
757 }
758 }
759 }
760 if (hasSwitches) {
761 device->classes |= INPUT_DEVICE_CLASS_SWITCH;
762 }
763 #endif
764
765 if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) {
766 char tmpfn[sizeof(name)];
767 char keylayoutFilename[300];
768
769 // a more descriptive name
770 device->name = name;
771
772 // replace all the spaces with underscores
773 strcpy(tmpfn, name);
774 for (char *p = strchr(tmpfn, ' '); p && *p; p = strchr(tmpfn, ' '))
775 *p = '_';
776
777 // find the .kl file we need for this device
778 const char* root = getenv("ANDROID_ROOT");
779 snprintf(keylayoutFilename, sizeof(keylayoutFilename),
780 "%s/usr/keylayout/%s.kl", root, tmpfn);
781 bool defaultKeymap = false;
782 if (access(keylayoutFilename, R_OK)) {
783 snprintf(keylayoutFilename, sizeof(keylayoutFilename),
784 "%s/usr/keylayout/%s", root, "qwerty.kl");
785 defaultKeymap = true;
786 }
787 status_t status = device->layoutMap->load(keylayoutFilename);
788 if (status) {
789 LOGE("Error %d loading key layout.", status);
790 }
791
792 // tell the world about the devname (the descriptive name)
793 if (!mHaveFirstKeyboard && !defaultKeymap && strstr(name, "-keypad")) {
794 // the built-in keyboard has a well-known device ID of 0,
795 // this device better not go away.
796 mHaveFirstKeyboard = true;
797 mFirstKeyboardId = device->id;
798 property_set("hw.keyboards.0.devname", name);
799 } else {
800 // ensure mFirstKeyboardId is set to -something-.
801 if (mFirstKeyboardId == 0) {
802 mFirstKeyboardId = device->id;
803 }
804 }
805 char propName[100];
806 sprintf(propName, "hw.keyboards.%u.devname", device->id);
807 property_set(propName, name);
808
809 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
810 if (hasKeycodeLocked(device, AKEYCODE_Q)) {
811 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
812 }
813
814 // See if this device has a DPAD.
815 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
816 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
817 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
818 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
819 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
820 device->classes |= INPUT_DEVICE_CLASS_DPAD;
821 }
822
823 // See if this device has a gamepad.
824 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
825 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
826 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
827 break;
828 }
829 }
830
831 LOGI("New keyboard: device->id=0x%x devname='%s' propName='%s' keylayout='%s'\n",
832 device->id, name, propName, keylayoutFilename);
833 }
834
835 // If the device isn't recognized as something we handle, don't monitor it.
836 if (device->classes == 0) {
837 LOGV("Dropping device %s %p, id = %d\n", deviceName, device, devid);
838 close(fd);
839 delete device;
840 return -1;
841 }
842
843 LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
844 deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes);
845
846 LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n",
847 deviceName, device, mFDCount, devid, device->classes);
848
849 mDevicesById[devid].device = device;
850 device->next = mOpeningDevices;
851 mOpeningDevices = device;
852 mDevices[mFDCount] = device;
853
854 mFDCount++;
855 return 0;
856 }
857
hasKeycodeLocked(device_t * device,int keycode) const858 bool EventHub::hasKeycodeLocked(device_t* device, int keycode) const
859 {
860 if (device->keyBitmask == NULL || device->layoutMap == NULL) {
861 return false;
862 }
863
864 Vector<int32_t> scanCodes;
865 device->layoutMap->findScancodes(keycode, &scanCodes);
866 const size_t N = scanCodes.size();
867 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
868 int32_t sc = scanCodes.itemAt(i);
869 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
870 return true;
871 }
872 }
873
874 return false;
875 }
876
closeDevice(const char * deviceName)877 int EventHub::closeDevice(const char *deviceName) {
878 AutoMutex _l(mLock);
879
880 int i;
881 for(i = 1; i < mFDCount; i++) {
882 if(strcmp(mDevices[i]->path.string(), deviceName) == 0) {
883 //LOGD("remove device %d: %s\n", i, deviceName);
884 device_t* device = mDevices[i];
885
886 LOGI("Removed device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
887 device->path.string(), device->name.string(), device->id,
888 mNumDevicesById, mFDCount, mFDs[i].fd, device->classes);
889
890 // Clear this device's entry.
891 int index = (device->id&ID_MASK);
892 mDevicesById[index].device = NULL;
893
894 // Close the file descriptor and compact the fd array.
895 close(mFDs[i].fd);
896 int count = mFDCount - i - 1;
897 memmove(mDevices + i, mDevices + i + 1, sizeof(mDevices[0]) * count);
898 memmove(mFDs + i, mFDs + i + 1, sizeof(mFDs[0]) * count);
899 mFDCount--;
900
901 #ifdef EV_SW
902 for (int j=0; j<EV_SW; j++) {
903 if (mSwitches[j] == device->id) {
904 mSwitches[j] = 0;
905 }
906 }
907 #endif
908
909 device->next = mClosingDevices;
910 mClosingDevices = device;
911
912 if (device->id == mFirstKeyboardId) {
913 LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
914 device->path.string(), mFirstKeyboardId);
915 mFirstKeyboardId = 0;
916 property_set("hw.keyboards.0.devname", NULL);
917 }
918 // clear the property
919 char propName[100];
920 sprintf(propName, "hw.keyboards.%u.devname", device->id);
921 property_set(propName, NULL);
922 return 0;
923 }
924 }
925 LOGE("remove device: %s not found\n", deviceName);
926 return -1;
927 }
928
readNotify(int nfd)929 int EventHub::readNotify(int nfd) {
930 #ifdef HAVE_INOTIFY
931 int res;
932 char devname[PATH_MAX];
933 char *filename;
934 char event_buf[512];
935 int event_size;
936 int event_pos = 0;
937 struct inotify_event *event;
938
939 LOGV("EventHub::readNotify nfd: %d\n", nfd);
940 res = read(nfd, event_buf, sizeof(event_buf));
941 if(res < (int)sizeof(*event)) {
942 if(errno == EINTR)
943 return 0;
944 LOGW("could not get event, %s\n", strerror(errno));
945 return 1;
946 }
947 //printf("got %d bytes of event information\n", res);
948
949 strcpy(devname, device_path);
950 filename = devname + strlen(devname);
951 *filename++ = '/';
952
953 while(res >= (int)sizeof(*event)) {
954 event = (struct inotify_event *)(event_buf + event_pos);
955 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
956 if(event->len) {
957 strcpy(filename, event->name);
958 if(event->mask & IN_CREATE) {
959 openDevice(devname);
960 }
961 else {
962 closeDevice(devname);
963 }
964 }
965 event_size = sizeof(*event) + event->len;
966 res -= event_size;
967 event_pos += event_size;
968 }
969 #endif
970 return 0;
971 }
972
973
scanDir(const char * dirname)974 int EventHub::scanDir(const char *dirname)
975 {
976 char devname[PATH_MAX];
977 char *filename;
978 DIR *dir;
979 struct dirent *de;
980 dir = opendir(dirname);
981 if(dir == NULL)
982 return -1;
983 strcpy(devname, dirname);
984 filename = devname + strlen(devname);
985 *filename++ = '/';
986 while((de = readdir(dir))) {
987 if(de->d_name[0] == '.' &&
988 (de->d_name[1] == '\0' ||
989 (de->d_name[1] == '.' && de->d_name[2] == '\0')))
990 continue;
991 strcpy(filename, de->d_name);
992 openDevice(devname);
993 }
994 closedir(dir);
995 return 0;
996 }
997
dump(String8 & dump)998 void EventHub::dump(String8& dump) {
999 dump.append("Event Hub State:\n");
1000
1001 { // acquire lock
1002 AutoMutex _l(mLock);
1003
1004 dump.appendFormat(INDENT "HaveFirstKeyboard: %s\n", toString(mHaveFirstKeyboard));
1005 dump.appendFormat(INDENT "FirstKeyboardId: 0x%x\n", mFirstKeyboardId);
1006
1007 dump.append(INDENT "Devices:\n");
1008
1009 for (int i = 0; i < mNumDevicesById; i++) {
1010 const device_t* device = mDevicesById[i].device;
1011 if (device) {
1012 if (mFirstKeyboardId == device->id) {
1013 dump.appendFormat(INDENT2 "0x%x: %s (aka device 0 - first keyboard)\n",
1014 device->id, device->name.string());
1015 } else {
1016 dump.appendFormat(INDENT2 "0x%x: %s\n", device->id, device->name.string());
1017 }
1018 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1019 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1020 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", device->keylayoutFilename.string());
1021 }
1022 }
1023 } // release lock
1024 }
1025
1026 }; // namespace android
1027