• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 **
3 ** Copyright 2008, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 #define LOG_TAG "FakeCamera"
19 #include <utils/Log.h>
20 
21 #include <string.h>
22 #include <stdlib.h>
23 #include <utils/String8.h>
24 
25 #include "FakeCamera.h"
26 
27 
28 namespace android {
29 
30 // TODO: All this rgb to yuv should probably be in a util class.
31 
32 // TODO: I think something is wrong in this class because the shadow is kBlue
33 // and the square color should alternate between kRed and kGreen. However on the
34 // emulator screen these are all shades of gray. Y seems ok but the U and V are
35 // probably not.
36 
37 static int tables_initialized = 0;
38 uint8_t *gYTable, *gCbTable, *gCrTable;
39 
40 static int
clamp(int x)41 clamp(int  x)
42 {
43     if (x > 255) return 255;
44     if (x < 0)   return 0;
45     return x;
46 }
47 
48 /* the equation used by the video code to translate YUV to RGB looks like this
49  *
50  *    Y  = (Y0 - 16)*k0
51  *    Cb = Cb0 - 128
52  *    Cr = Cr0 - 128
53  *
54  *    G = ( Y - k1*Cr - k2*Cb )
55  *    R = ( Y + k3*Cr )
56  *    B = ( Y + k4*Cb )
57  *
58  */
59 
60 static const double  k0 = 1.164;
61 static const double  k1 = 0.813;
62 static const double  k2 = 0.391;
63 static const double  k3 = 1.596;
64 static const double  k4 = 2.018;
65 
66 /* let's try to extract the value of Y
67  *
68  *   G + k1/k3*R + k2/k4*B = Y*( 1 + k1/k3 + k2/k4 )
69  *
70  *   Y  = ( G + k1/k3*R + k2/k4*B ) / (1 + k1/k3 + k2/k4)
71  *   Y0 = ( G0 + k1/k3*R0 + k2/k4*B0 ) / ((1 + k1/k3 + k2/k4)*k0) + 16
72  *
73  * let define:
74  *   kYr = k1/k3
75  *   kYb = k2/k4
76  *   kYy = k0 * ( 1 + kYr + kYb )
77  *
78  * we have:
79  *    Y  = ( G + kYr*R + kYb*B )
80  *    Y0 = clamp[ Y/kYy + 16 ]
81  */
82 
83 static const double kYr = k1/k3;
84 static const double kYb = k2/k4;
85 static const double kYy = k0*( 1. + kYr + kYb );
86 
87 static void
initYtab(void)88 initYtab( void )
89 {
90     const  int imax = (int)( (kYr + kYb)*(31 << 2) + (61 << 3) + 0.1 );
91     int    i;
92 
93     gYTable = (uint8_t *)malloc(imax);
94 
95     for(i=0; i<imax; i++) {
96         int  x = (int)(i/kYy + 16.5);
97         if (x < 16) x = 16;
98         else if (x > 235) x = 235;
99         gYTable[i] = (uint8_t) x;
100     }
101 }
102 
103 /*
104  *   the source is RGB565, so adjust for 8-bit range of input values:
105  *
106  *   G = (pixels >> 3) & 0xFC;
107  *   R = (pixels >> 8) & 0xF8;
108  *   B = (pixels & 0x1f) << 3;
109  *
110  *   R2 = (pixels >> 11)      R = R2*8
111  *   B2 = (pixels & 0x1f)     B = B2*8
112  *
113  *   kYr*R = kYr2*R2 =>  kYr2 = kYr*8
114  *   kYb*B = kYb2*B2 =>  kYb2 = kYb*8
115  *
116  *   we want to use integer multiplications:
117  *
118  *   SHIFT1 = 9
119  *
120  *   (ALPHA*R2) >> SHIFT1 == R*kYr  =>  ALPHA = kYr*8*(1 << SHIFT1)
121  *
122  *   ALPHA = kYr*(1 << (SHIFT1+3))
123  *   BETA  = kYb*(1 << (SHIFT1+3))
124  */
125 
126 static const int  SHIFT1  = 9;
127 static const int  ALPHA   = (int)( kYr*(1 << (SHIFT1+3)) + 0.5 );
128 static const int  BETA    = (int)( kYb*(1 << (SHIFT1+3)) + 0.5 );
129 
130 /*
131  *  now let's try to get the values of Cb and Cr
132  *
133  *  R-B = (k3*Cr - k4*Cb)
134  *
135  *    k3*Cr = k4*Cb + (R-B)
136  *    k4*Cb = k3*Cr - (R-B)
137  *
138  *  R-G = (k1+k3)*Cr + k2*Cb
139  *      = (k1+k3)*Cr + k2/k4*(k3*Cr - (R-B)/k0)
140  *      = (k1 + k3 + k2*k3/k4)*Cr - k2/k4*(R-B)
141  *
142  *  kRr*Cr = (R-G) + kYb*(R-B)
143  *
144  *  Cr  = ((R-G) + kYb*(R-B))/kRr
145  *  Cr0 = clamp(Cr + 128)
146  */
147 
148 static const double  kRr = (k1 + k3 + k2*k3/k4);
149 
150 static void
initCrtab(void)151 initCrtab( void )
152 {
153     uint8_t *pTable;
154     int i;
155 
156     gCrTable = (uint8_t *)malloc(768*2);
157 
158     pTable = gCrTable + 384;
159     for(i=-384; i<384; i++)
160         pTable[i] = (uint8_t) clamp( i/kRr + 128.5 );
161 }
162 
163 /*
164  *  B-G = (k2 + k4)*Cb + k1*Cr
165  *      = (k2 + k4)*Cb + k1/k3*(k4*Cb + (R-B))
166  *      = (k2 + k4 + k1*k4/k3)*Cb + k1/k3*(R-B)
167  *
168  *  kBb*Cb = (B-G) - kYr*(R-B)
169  *
170  *  Cb   = ((B-G) - kYr*(R-B))/kBb
171  *  Cb0  = clamp(Cb + 128)
172  *
173  */
174 
175 static const double  kBb = (k2 + k4 + k1*k4/k3);
176 
177 static void
initCbtab(void)178 initCbtab( void )
179 {
180     uint8_t *pTable;
181     int i;
182 
183     gCbTable = (uint8_t *)malloc(768*2);
184 
185     pTable = gCbTable + 384;
186     for(i=-384; i<384; i++)
187         pTable[i] = (uint8_t) clamp( i/kBb + 128.5 );
188 }
189 
190 /*
191  *   SHIFT2 = 16
192  *
193  *   DELTA = kYb*(1 << SHIFT2)
194  *   GAMMA = kYr*(1 << SHIFT2)
195  */
196 
197 static const int  SHIFT2 = 16;
198 static const int  DELTA  = kYb*(1 << SHIFT2);
199 static const int  GAMMA  = kYr*(1 << SHIFT2);
200 
ccrgb16toyuv_wo_colorkey(uint8_t * rgb16,uint8_t * yuv420,uint32_t * param,uint8_t * table[])201 int32_t ccrgb16toyuv_wo_colorkey(uint8_t *rgb16, uint8_t *yuv420,
202         uint32_t *param, uint8_t *table[])
203 {
204     uint16_t *inputRGB = (uint16_t*)rgb16;
205     uint8_t *outYUV = yuv420;
206     int32_t width_dst = param[0];
207     int32_t height_dst = param[1];
208     int32_t pitch_dst = param[2];
209     int32_t mheight_dst = param[3];
210     int32_t pitch_src = param[4];
211     uint8_t *y_tab = table[0];
212     uint8_t *cb_tab = table[1];
213     uint8_t *cr_tab = table[2];
214 
215     int32_t size16 = pitch_dst*mheight_dst;
216     int32_t i,j,count;
217     int32_t ilimit,jlimit;
218     uint8_t *tempY,*tempU,*tempV;
219     uint16_t pixels;
220     int   tmp;
221 uint32_t temp;
222 
223     tempY = outYUV;
224     tempU = outYUV + (height_dst * pitch_dst);
225     tempV = tempU + 1;
226 
227     jlimit = height_dst;
228     ilimit = width_dst;
229 
230     for(j=0; j<jlimit; j+=1)
231     {
232         for (i=0; i<ilimit; i+=2)
233         {
234             int32_t   G_ds = 0, B_ds = 0, R_ds = 0;
235             uint8_t   y0, y1, u, v;
236 
237             pixels =  inputRGB[i];
238             temp = (BETA*(pixels & 0x001F) + ALPHA*(pixels>>11) );
239             y0   = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)];
240 
241             G_ds    += (pixels>>1) & 0x03E0;
242             B_ds    += (pixels<<5) & 0x03E0;
243             R_ds    += (pixels>>6) & 0x03E0;
244 
245             pixels =  inputRGB[i+1];
246             temp = (BETA*(pixels & 0x001F) + ALPHA*(pixels>>11) );
247             y1   = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)];
248 
249             G_ds    += (pixels>>1) & 0x03E0;
250             B_ds    += (pixels<<5) & 0x03E0;
251             R_ds    += (pixels>>6) & 0x03E0;
252 
253             R_ds >>= 1;
254             B_ds >>= 1;
255             G_ds >>= 1;
256 
257             tmp = R_ds - B_ds;
258 
259             u = cb_tab[(((B_ds-G_ds)<<SHIFT2) - GAMMA*tmp)>>(SHIFT2+2)];
260             v = cr_tab[(((R_ds-G_ds)<<SHIFT2) + DELTA*tmp)>>(SHIFT2+2)];
261 
262             tempY[0] = y0;
263             tempY[1] = y1;
264             tempY += 2;
265 
266             if ((j&1) == 0) {
267                 tempU[0] = u;
268                 tempV[0] = v;
269                 tempU += 2;
270                 tempV += 2;
271             }
272         }
273 
274         inputRGB += pitch_src;
275     }
276 
277     return 1;
278 }
279 
280 #define min(a,b) ((a)<(b)?(a):(b))
281 #define max(a,b) ((a)>(b)?(a):(b))
282 
convert_rgb16_to_yuv420(uint8_t * rgb,uint8_t * yuv,int width,int height)283 static void convert_rgb16_to_yuv420(uint8_t *rgb, uint8_t *yuv, int width, int height)
284 {
285     if (!tables_initialized) {
286         initYtab();
287         initCrtab();
288         initCbtab();
289         tables_initialized = 1;
290     }
291 
292     uint32_t param[6];
293     param[0] = (uint32_t) width;
294     param[1] = (uint32_t) height;
295     param[2] = (uint32_t) width;
296     param[3] = (uint32_t) height;
297     param[4] = (uint32_t) width;
298     param[5] = (uint32_t) 0;
299 
300     uint8_t *table[3];
301     table[0] = gYTable;
302     table[1] = gCbTable + 384;
303     table[2] = gCrTable + 384;
304 
305     ccrgb16toyuv_wo_colorkey(rgb, yuv, param, table);
306 }
307 
308 const int FakeCamera::kRed;
309 const int FakeCamera::kGreen;
310 const int FakeCamera::kBlue;
311 
FakeCamera(int width,int height)312 FakeCamera::FakeCamera(int width, int height)
313           : mTmpRgb16Buffer(0)
314 {
315     setSize(width, height);
316 }
317 
~FakeCamera()318 FakeCamera::~FakeCamera()
319 {
320     delete[] mTmpRgb16Buffer;
321 }
322 
setSize(int width,int height)323 void FakeCamera::setSize(int width, int height)
324 {
325     mWidth = width;
326     mHeight = height;
327     mCounter = 0;
328     mCheckX = 0;
329     mCheckY = 0;
330 
331     // This will cause it to be reallocated on the next call
332     // to getNextFrameAsYuv420().
333     delete[] mTmpRgb16Buffer;
334     mTmpRgb16Buffer = 0;
335 }
336 
getNextFrameAsRgb565(uint16_t * buffer)337 void FakeCamera::getNextFrameAsRgb565(uint16_t *buffer)
338 {
339     int size = mWidth / 10;
340 
341     drawCheckerboard(buffer, size);
342 
343     int x = ((mCounter*3)&255);
344     if(x>128) x = 255 - x;
345     int y = ((mCounter*5)&255);
346     if(y>128) y = 255 - y;
347 
348     drawSquare(buffer, x*size/32, y*size/32, (size*5)>>1, (mCounter&0x100)?kRed:kGreen, kBlue);
349 
350     mCounter++;
351 }
352 
getNextFrameAsYuv420(uint8_t * buffer)353 void FakeCamera::getNextFrameAsYuv420(uint8_t *buffer)
354 {
355     if (mTmpRgb16Buffer == 0)
356         mTmpRgb16Buffer = new uint16_t[mWidth * mHeight];
357 
358     getNextFrameAsRgb565(mTmpRgb16Buffer);
359     convert_rgb16_to_yuv420((uint8_t*)mTmpRgb16Buffer, buffer, mWidth, mHeight);
360 }
361 
drawSquare(uint16_t * dst,int x,int y,int size,int color,int shadow)362 void FakeCamera::drawSquare(uint16_t *dst, int x, int y, int size, int color, int shadow)
363 {
364     int square_xstop, square_ystop, shadow_xstop, shadow_ystop;
365 
366     square_xstop = min(mWidth, x+size);
367     square_ystop = min(mHeight, y+size);
368     shadow_xstop = min(mWidth, x+size+(size/4));
369     shadow_ystop = min(mHeight, y+size+(size/4));
370 
371     // Do the shadow.
372     uint16_t *sh = &dst[(y+(size/4))*mWidth];
373     for (int j = y + (size/4); j < shadow_ystop; j++) {
374         for (int i = x + (size/4); i < shadow_xstop; i++) {
375             sh[i] &= shadow;
376         }
377         sh += mWidth;
378     }
379 
380     // Draw the square.
381     uint16_t *sq = &dst[y*mWidth];
382     for (int j = y; j < square_ystop; j++) {
383         for (int i = x; i < square_xstop; i++) {
384             sq[i] = color;
385         }
386         sq += mWidth;
387     }
388 }
389 
drawCheckerboard(uint16_t * dst,int size)390 void FakeCamera::drawCheckerboard(uint16_t *dst, int size)
391 {
392     bool black = true;
393 
394     if((mCheckX/size)&1)
395         black = false;
396     if((mCheckY/size)&1)
397         black = !black;
398 
399     int county = mCheckY%size;
400     int checkxremainder = mCheckX%size;
401 
402     for(int y=0;y<mHeight;y++) {
403         int countx = checkxremainder;
404         bool current = black;
405         for(int x=0;x<mWidth;x++) {
406             dst[y*mWidth+x] = current?0:0xffff;
407             if(countx++ >= size) {
408                 countx=0;
409                 current = !current;
410             }
411         }
412         if(county++ >= size) {
413             county=0;
414             black = !black;
415         }
416     }
417     mCheckX += 3;
418     mCheckY++;
419 }
420 
421 
dump(int fd) const422 void FakeCamera::dump(int fd) const
423 {
424     const size_t SIZE = 256;
425     char buffer[SIZE];
426     String8 result;
427     snprintf(buffer, 255, " width x height (%d x %d), counter (%d), check x-y coordinate(%d, %d)\n", mWidth, mHeight, mCounter, mCheckX, mCheckY);
428     result.append(buffer);
429     ::write(fd, result.string(), result.size());
430 }
431 
432 
433 }; // namespace android
434