• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 /* __FBSDID("$FreeBSD: src/lib/msun/src/s_fmal.c,v 1.2 2005/03/18 02:27:59 das Exp $"); */
29 
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
33 
34 /*
35  * Fused multiply-add: Compute x * y + z with a single rounding error.
36  *
37  * We use scaling to avoid overflow/underflow, along with the
38  * canonical precision-doubling technique adapted from:
39  *
40  *	Dekker, T.  A Floating-Point Technique for Extending the
41  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
42  */
43 long double
fmal(long double x,long double y,long double z)44 fmal(long double x, long double y, long double z)
45 {
46 #if LDBL_MANT_DIG == 64
47 	static const long double split = 0x1p32L + 1.0;
48 #elif LDBL_MANT_DIG == 113
49 	static const long double split = 0x1p57L + 1.0;
50 #endif
51 	long double xs, ys, zs;
52 	long double c, cc, hx, hy, p, q, tx, ty;
53 	long double r, rr, s;
54 	int oround;
55 	int ex, ey, ez;
56 	int spread;
57 
58 	if (z == 0.0)
59 		return (x * y);
60 	if (x == 0.0 || y == 0.0)
61 		return (x * y + z);
62 
63 	/* Results of frexp() are undefined for these cases. */
64 	if (!isfinite(x) || !isfinite(y) || !isfinite(z))
65 		return (x * y + z);
66 
67 	xs = frexpl(x, &ex);
68 	ys = frexpl(y, &ey);
69 	zs = frexpl(z, &ez);
70 	oround = fegetround();
71 	spread = ex + ey - ez;
72 
73 	/*
74 	 * If x * y and z are many orders of magnitude apart, the scaling
75 	 * will overflow, so we handle these cases specially.  Rounding
76 	 * modes other than FE_TONEAREST are painful.
77 	 */
78 	if (spread > LDBL_MANT_DIG * 2) {
79 		fenv_t env;
80 		feraiseexcept(FE_INEXACT);
81 		switch(oround) {
82 		case FE_TONEAREST:
83 			return (x * y);
84 		case FE_TOWARDZERO:
85 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
86 				return (x * y);
87 			feholdexcept(&env);
88 			r = x * y;
89 			if (!fetestexcept(FE_INEXACT))
90 				r = nextafterl(r, 0);
91 			feupdateenv(&env);
92 			return (r);
93 		case FE_DOWNWARD:
94 			if (z > 0.0)
95 				return (x * y);
96 			feholdexcept(&env);
97 			r = x * y;
98 			if (!fetestexcept(FE_INEXACT))
99 				r = nextafterl(r, -INFINITY);
100 			feupdateenv(&env);
101 			return (r);
102 		default:	/* FE_UPWARD */
103 			if (z < 0.0)
104 				return (x * y);
105 			feholdexcept(&env);
106 			r = x * y;
107 			if (!fetestexcept(FE_INEXACT))
108 				r = nextafterl(r, INFINITY);
109 			feupdateenv(&env);
110 			return (r);
111 		}
112 	}
113 	if (spread < -LDBL_MANT_DIG) {
114 		feraiseexcept(FE_INEXACT);
115 		if (!isnormal(z))
116 			feraiseexcept(FE_UNDERFLOW);
117 		switch (oround) {
118 		case FE_TONEAREST:
119 			return (z);
120 		case FE_TOWARDZERO:
121 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
122 				return (z);
123 			else
124 				return (nextafterl(z, 0));
125 		case FE_DOWNWARD:
126 			if (x > 0.0 ^ y < 0.0)
127 				return (z);
128 			else
129 				return (nextafterl(z, -INFINITY));
130 		default:	/* FE_UPWARD */
131 			if (x > 0.0 ^ y < 0.0)
132 				return (nextafterl(z, INFINITY));
133 			else
134 				return (z);
135 		}
136 	}
137 
138 	/*
139 	 * Use Dekker's algorithm to perform the multiplication and
140 	 * subsequent addition in twice the machine precision.
141 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
142 	 */
143 	fesetround(FE_TONEAREST);
144 
145 	p = xs * split;
146 	hx = xs - p;
147 	hx += p;
148 	tx = xs - hx;
149 
150 	p = ys * split;
151 	hy = ys - p;
152 	hy += p;
153 	ty = ys - hy;
154 
155 	p = hx * hy;
156 	q = hx * ty + tx * hy;
157 	c = p + q;
158 	cc = p - c + q + tx * ty;
159 
160 	zs = ldexpl(zs, -spread);
161 	r = c + zs;
162 	s = r - c;
163 	rr = (c - (r - s)) + (zs - s) + cc;
164 
165 	spread = ex + ey;
166 	if (spread + ilogbl(r) > -16383) {
167 		fesetround(oround);
168 		r = r + rr;
169 	} else {
170 		/*
171 		 * The result is subnormal, so we round before scaling to
172 		 * avoid double rounding.
173 		 */
174 		p = ldexpl(copysignl(0x1p-16382L, r), -spread);
175 		c = r + p;
176 		s = c - r;
177 		cc = (r - (c - s)) + (p - s) + rr;
178 		fesetround(oround);
179 		r = (c + cc) - p;
180 	}
181 	return (ldexpl(r, spread));
182 }
183