• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2009 The Android Open Source Project
3   *
4   * Licensed under the Apache License, Version 2.0 (the "License");
5   * you may not use this file except in compliance with the License.
6   * You may obtain a copy of the License at
7   *
8   *      http://www.apache.org/licenses/LICENSE-2.0
9   *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  /*
18   * This file contains codegen for the Thumb ISA and is intended to be
19   * includes by:
20   *
21   *        Codegen-$(TARGET_ARCH_VARIANT).c
22   *
23   */
24  
25  /*
26   * Reserve 6 bytes at the beginning of the trace
27   *        +----------------------------+
28   *        | prof count addr (4 bytes)  |
29   *        +----------------------------+
30   *        | chain cell offset (2 bytes)|
31   *        +----------------------------+
32   *
33   * ...and then code to increment the execution
34   *
35   * For continuous profiling (12 bytes):
36   *
37   *       mov   r0, pc       @ move adr of "mov r0,pc" + 4 to r0
38   *       sub   r0, #10      @ back up to addr prof count pointer
39   *       ldr   r0, [r0]     @ get address of counter
40   *       ldr   r1, [r0]
41   *       add   r1, #1
42   *       str   r1, [r0]
43   *
44   * For periodic profiling (4 bytes):
45   *       call  TEMPLATE_PERIODIC_PROFILING
46   *
47   * and return the size (in bytes) of the generated code.
48   */
49  
genTraceProfileEntry(CompilationUnit * cUnit)50  static int genTraceProfileEntry(CompilationUnit *cUnit)
51  {
52      intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
53      assert(__BYTE_ORDER == __LITTLE_ENDIAN);
54      newLIR1(cUnit, kArm16BitData, addr & 0xffff);
55      newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
56      cUnit->chainCellOffsetLIR =
57          (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
58      cUnit->headerSize = 6;
59      if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
60          (gDvmJit.profileMode == kTraceProfilingDisabled)) {
61          /* Thumb instruction used directly here to ensure correct size */
62          newLIR2(cUnit, kThumbMovRR_H2L, r0, r15pc);
63          newLIR2(cUnit, kThumbSubRI8, r0, 10);
64          newLIR3(cUnit, kThumbLdrRRI5, r0, r0, 0);
65          newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
66          newLIR2(cUnit, kThumbAddRI8, r1, 1);
67          newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
68          return 12;
69      } else {
70          int opcode = TEMPLATE_PERIODIC_PROFILING;
71          newLIR2(cUnit, kThumbBlx1,
72              (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
73              (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
74          newLIR2(cUnit, kThumbBlx2,
75              (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
76              (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
77          return 4;
78      }
79  }
80  
81  /*
82   * Perform a "reg cmp imm" operation and jump to the PCR region if condition
83   * satisfies.
84   */
genNegFloat(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)85  static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
86                          RegLocation rlSrc)
87  {
88      RegLocation rlResult;
89      rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
90      rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
91      opRegRegImm(cUnit, kOpAdd, rlResult.lowReg,
92                  rlSrc.lowReg, 0x80000000);
93      storeValue(cUnit, rlDest, rlResult);
94  }
95  
genNegDouble(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)96  static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
97                           RegLocation rlSrc)
98  {
99      RegLocation rlResult;
100      rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
101      rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
102      opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg,
103                          0x80000000);
104      genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
105      storeValueWide(cUnit, rlDest, rlResult);
106  }
107  
genMulLong(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)108  static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
109                         RegLocation rlSrc1, RegLocation rlSrc2)
110  {
111      RegLocation rlResult;
112      loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
113      loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
114      genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG);
115      rlResult = dvmCompilerGetReturnWide(cUnit);
116      storeValueWide(cUnit, rlDest, rlResult);
117  }
118  
partialOverlap(int sreg1,int sreg2)119  static bool partialOverlap(int sreg1, int sreg2)
120  {
121      return abs(sreg1 - sreg2) == 1;
122  }
123  
genLong3Addr(CompilationUnit * cUnit,MIR * mir,OpKind firstOp,OpKind secondOp,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)124  static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
125                           OpKind secondOp, RegLocation rlDest,
126                           RegLocation rlSrc1, RegLocation rlSrc2)
127  {
128      RegLocation rlResult;
129      if (partialOverlap(rlSrc1.sRegLow,rlSrc2.sRegLow) ||
130          partialOverlap(rlSrc1.sRegLow,rlDest.sRegLow) ||
131          partialOverlap(rlSrc2.sRegLow,rlDest.sRegLow)) {
132          // Rare case - not enough registers to properly handle
133          genInterpSingleStep(cUnit, mir);
134      } else if (rlDest.sRegLow == rlSrc1.sRegLow) {
135          // Already 2-operand
136          rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
137          rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
138          opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
139          opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
140          storeValueWide(cUnit, rlDest, rlResult);
141      } else if (rlDest.sRegLow == rlSrc2.sRegLow) {
142          // Bad case - must use/clobber Src1 and reassign Dest
143          rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
144          rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
145          opRegReg(cUnit, firstOp, rlSrc1.lowReg, rlResult.lowReg);
146          opRegReg(cUnit, secondOp, rlSrc1.highReg, rlResult.highReg);
147          // Old reg assignments are now invalid
148          dvmCompilerClobber(cUnit, rlResult.lowReg);
149          dvmCompilerClobber(cUnit, rlResult.highReg);
150          dvmCompilerClobber(cUnit, rlSrc1.lowReg);
151          dvmCompilerClobber(cUnit, rlSrc1.highReg);
152          rlDest.location = kLocDalvikFrame;
153          assert(rlSrc1.location == kLocPhysReg);
154          // Reassign registers - rlDest will now get rlSrc1's old regs
155          storeValueWide(cUnit, rlDest, rlSrc1);
156      } else {
157          // Copy Src1 to Dest
158          rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
159          rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, false);
160          loadValueDirectWide(cUnit, rlSrc1, rlResult.lowReg,
161                              rlResult.highReg);
162          rlResult.location = kLocPhysReg;
163          opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
164          opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
165          storeValueWide(cUnit, rlDest, rlResult);
166      }
167  }
168  
dvmCompilerInitializeRegAlloc(CompilationUnit * cUnit)169  void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
170  {
171      int numTemps = sizeof(coreTemps)/sizeof(int);
172      RegisterPool *pool = (RegisterPool *) dvmCompilerNew(sizeof(*pool), true);
173      cUnit->regPool = pool;
174      pool->numCoreTemps = numTemps;
175      pool->coreTemps = (RegisterInfo *)
176              dvmCompilerNew(numTemps * sizeof(*pool->coreTemps), true);
177      pool->numFPTemps = 0;
178      pool->FPTemps = NULL;
179      dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
180      dvmCompilerInitPool(pool->FPTemps, NULL, 0);
181      pool->nullCheckedRegs =
182          dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
183  }
184  
185  /* Export the Dalvik PC assicated with an instruction to the StackSave area */
genExportPC(CompilationUnit * cUnit,MIR * mir)186  static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
187  {
188      ArmLIR *res;
189      int rDPC = dvmCompilerAllocTemp(cUnit);
190      int rAddr = dvmCompilerAllocTemp(cUnit);
191      int offset = offsetof(StackSaveArea, xtra.currentPc);
192      res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
193      newLIR2(cUnit, kThumbMovRR, rAddr, r5FP);
194      newLIR2(cUnit, kThumbSubRI8, rAddr, sizeof(StackSaveArea) - offset);
195      storeWordDisp( cUnit, rAddr, 0, rDPC);
196      return res;
197  }
198  
genMonitor(CompilationUnit * cUnit,MIR * mir)199  static void genMonitor(CompilationUnit *cUnit, MIR *mir)
200  {
201      genMonitorPortable(cUnit, mir);
202  }
203  
genCmpLong(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)204  static void genCmpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest,
205                         RegLocation rlSrc1, RegLocation rlSrc2)
206  {
207      RegLocation rlResult;
208      loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
209      loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
210      genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG);
211      rlResult = dvmCompilerGetReturn(cUnit);
212      storeValue(cUnit, rlDest, rlResult);
213  }
214  
genInlinedAbsFloat(CompilationUnit * cUnit,MIR * mir)215  static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
216  {
217      int offset = offsetof(Thread, interpSave.retval);
218      RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
219      int reg0 = loadValue(cUnit, rlSrc, kCoreReg).lowReg;
220      int signMask = dvmCompilerAllocTemp(cUnit);
221      loadConstant(cUnit, signMask, 0x7fffffff);
222      newLIR2(cUnit, kThumbAndRR, reg0, signMask);
223      dvmCompilerFreeTemp(cUnit, signMask);
224      storeWordDisp(cUnit, r6SELF, offset, reg0);
225      //TUNING: rewrite this to not clobber
226      dvmCompilerClobber(cUnit, reg0);
227      return false;
228  }
229  
genInlinedAbsDouble(CompilationUnit * cUnit,MIR * mir)230  static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
231  {
232      int offset = offsetof(Thread, interpSave.retval);
233      RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
234      RegLocation regSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
235      int reglo = regSrc.lowReg;
236      int reghi = regSrc.highReg;
237      int signMask = dvmCompilerAllocTemp(cUnit);
238      loadConstant(cUnit, signMask, 0x7fffffff);
239      storeWordDisp(cUnit, r6SELF, offset, reglo);
240      newLIR2(cUnit, kThumbAndRR, reghi, signMask);
241      dvmCompilerFreeTemp(cUnit, signMask);
242      storeWordDisp(cUnit, r6SELF, offset + 4, reghi);
243      //TUNING: rewrite this to not clobber
244      dvmCompilerClobber(cUnit, reghi);
245      return false;
246  }
247  
248  /* No select in thumb, so we need to branch.  Thumb2 will do better */
genInlinedMinMaxInt(CompilationUnit * cUnit,MIR * mir,bool isMin)249  static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
250  {
251      int offset = offsetof(Thread, interpSave.retval);
252      RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
253      RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
254      int reg0 = loadValue(cUnit, rlSrc1, kCoreReg).lowReg;
255      int reg1 = loadValue(cUnit, rlSrc2, kCoreReg).lowReg;
256      newLIR2(cUnit, kThumbCmpRR, reg0, reg1);
257      ArmLIR *branch1 = newLIR2(cUnit, kThumbBCond, 2,
258             isMin ? kArmCondLt : kArmCondGt);
259      newLIR2(cUnit, kThumbMovRR, reg0, reg1);
260      ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
261      target->defMask = ENCODE_ALL;
262      newLIR3(cUnit, kThumbStrRRI5, reg0, r6SELF, offset >> 2);
263      branch1->generic.target = (LIR *)target;
264      //TUNING: rewrite this to not clobber
265      dvmCompilerClobber(cUnit,reg0);
266      return false;
267  }
268  
genMultiplyByTwoBitMultiplier(CompilationUnit * cUnit,RegLocation rlSrc,RegLocation rlResult,int lit,int firstBit,int secondBit)269  static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
270          RegLocation rlSrc, RegLocation rlResult, int lit,
271          int firstBit, int secondBit)
272  {
273      // We can't implement "add src, src, src, lsl#shift" on Thumb, so we have
274      // to do a regular multiply.
275      opRegRegImm(cUnit, kOpMul, rlResult.lowReg, rlSrc.lowReg, lit);
276  }
277