1 /*
2 *
3 * Bluetooth low-complexity, subband codec (SBC) library
4 *
5 * Copyright (C) 2008-2010 Nokia Corporation
6 * Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org>
7 * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
8 * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27 #include <stdint.h>
28 #include <limits.h>
29 #include <string.h>
30 #include "sbc.h"
31 #include "sbc_math.h"
32 #include "sbc_tables.h"
33
34 #include "sbc_primitives.h"
35 #include "sbc_primitives_mmx.h"
36 #include "sbc_primitives_iwmmxt.h"
37 #include "sbc_primitives_neon.h"
38 #include "sbc_primitives_armv6.h"
39
40 /*
41 * A reference C code of analysis filter with SIMD-friendly tables
42 * reordering and code layout. This code can be used to develop platform
43 * specific SIMD optimizations. Also it may be used as some kind of test
44 * for compiler autovectorization capabilities (who knows, if the compiler
45 * is very good at this stuff, hand optimized assembly may be not strictly
46 * needed for some platform).
47 *
48 * Note: It is also possible to make a simple variant of analysis filter,
49 * which needs only a single constants table without taking care about
50 * even/odd cases. This simple variant of filter can be implemented without
51 * input data permutation. The only thing that would be lost is the
52 * possibility to use pairwise SIMD multiplications. But for some simple
53 * CPU cores without SIMD extensions it can be useful. If anybody is
54 * interested in implementing such variant of a filter, sourcecode from
55 * bluez versions 4.26/4.27 can be used as a reference and the history of
56 * the changes in git repository done around that time may be worth checking.
57 */
58
sbc_analyze_four_simd(const int16_t * in,int32_t * out,const FIXED_T * consts)59 static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
60 const FIXED_T *consts)
61 {
62 FIXED_A t1[4];
63 FIXED_T t2[4];
64 int hop = 0;
65
66 /* rounding coefficient */
67 t1[0] = t1[1] = t1[2] = t1[3] =
68 (FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
69
70 /* low pass polyphase filter */
71 for (hop = 0; hop < 40; hop += 8) {
72 t1[0] += (FIXED_A) in[hop] * consts[hop];
73 t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
74 t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
75 t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
76 t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
77 t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
78 t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
79 t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
80 }
81
82 /* scaling */
83 t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
84 t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
85 t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
86 t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
87
88 /* do the cos transform */
89 t1[0] = (FIXED_A) t2[0] * consts[40 + 0];
90 t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
91 t1[1] = (FIXED_A) t2[0] * consts[40 + 2];
92 t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
93 t1[2] = (FIXED_A) t2[0] * consts[40 + 4];
94 t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
95 t1[3] = (FIXED_A) t2[0] * consts[40 + 6];
96 t1[3] += (FIXED_A) t2[1] * consts[40 + 7];
97
98 t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
99 t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
100 t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
101 t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
102 t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
103 t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
104 t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
105 t1[3] += (FIXED_A) t2[3] * consts[40 + 15];
106
107 out[0] = t1[0] >>
108 (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
109 out[1] = t1[1] >>
110 (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
111 out[2] = t1[2] >>
112 (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
113 out[3] = t1[3] >>
114 (SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
115 }
116
sbc_analyze_eight_simd(const int16_t * in,int32_t * out,const FIXED_T * consts)117 static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
118 const FIXED_T *consts)
119 {
120 FIXED_A t1[8];
121 FIXED_T t2[8];
122 int i, hop;
123
124 /* rounding coefficient */
125 t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
126 (FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
127
128 /* low pass polyphase filter */
129 for (hop = 0; hop < 80; hop += 16) {
130 t1[0] += (FIXED_A) in[hop] * consts[hop];
131 t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
132 t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
133 t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
134 t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
135 t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
136 t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
137 t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
138 t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
139 t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
140 t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
141 t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
142 t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
143 t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
144 t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
145 t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
146 }
147
148 /* scaling */
149 t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
150 t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
151 t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
152 t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
153 t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
154 t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
155 t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
156 t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
157
158
159 /* do the cos transform */
160 t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;
161
162 for (i = 0; i < 4; i++) {
163 t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
164 t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
165 t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
166 t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
167 t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
168 t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
169 t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
170 t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
171 t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
172 t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
173 t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
174 t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
175 t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
176 t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
177 t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
178 t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
179 }
180
181 for (i = 0; i < 8; i++)
182 out[i] = t1[i] >>
183 (SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
184 }
185
sbc_analyze_4b_4s_simd(int16_t * x,int32_t * out,int out_stride)186 static inline void sbc_analyze_4b_4s_simd(int16_t *x,
187 int32_t *out, int out_stride)
188 {
189 /* Analyze blocks */
190 sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
191 out += out_stride;
192 sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
193 out += out_stride;
194 sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
195 out += out_stride;
196 sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
197 }
198
sbc_analyze_4b_8s_simd(int16_t * x,int32_t * out,int out_stride)199 static inline void sbc_analyze_4b_8s_simd(int16_t *x,
200 int32_t *out, int out_stride)
201 {
202 /* Analyze blocks */
203 sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
204 out += out_stride;
205 sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
206 out += out_stride;
207 sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
208 out += out_stride;
209 sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
210 }
211
unaligned16_be(const uint8_t * ptr)212 static inline int16_t unaligned16_be(const uint8_t *ptr)
213 {
214 return (int16_t) ((ptr[0] << 8) | ptr[1]);
215 }
216
unaligned16_le(const uint8_t * ptr)217 static inline int16_t unaligned16_le(const uint8_t *ptr)
218 {
219 return (int16_t) (ptr[0] | (ptr[1] << 8));
220 }
221
222 /*
223 * Internal helper functions for input data processing. In order to get
224 * optimal performance, it is important to have "nsamples", "nchannels"
225 * and "big_endian" arguments used with this inline function as compile
226 * time constants.
227 */
228
sbc_encoder_process_input_s4_internal(int position,const uint8_t * pcm,int16_t X[2][SBC_X_BUFFER_SIZE],int nsamples,int nchannels,int big_endian)229 static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
230 int position,
231 const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
232 int nsamples, int nchannels, int big_endian)
233 {
234 /* handle X buffer wraparound */
235 if (position < nsamples) {
236 if (nchannels > 0)
237 memcpy(&X[0][SBC_X_BUFFER_SIZE - 40], &X[0][position],
238 36 * sizeof(int16_t));
239 if (nchannels > 1)
240 memcpy(&X[1][SBC_X_BUFFER_SIZE - 40], &X[1][position],
241 36 * sizeof(int16_t));
242 position = SBC_X_BUFFER_SIZE - 40;
243 }
244
245 #define PCM(i) (big_endian ? \
246 unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
247
248 /* copy/permutate audio samples */
249 while ((nsamples -= 8) >= 0) {
250 position -= 8;
251 if (nchannels > 0) {
252 int16_t *x = &X[0][position];
253 x[0] = PCM(0 + 7 * nchannels);
254 x[1] = PCM(0 + 3 * nchannels);
255 x[2] = PCM(0 + 6 * nchannels);
256 x[3] = PCM(0 + 4 * nchannels);
257 x[4] = PCM(0 + 0 * nchannels);
258 x[5] = PCM(0 + 2 * nchannels);
259 x[6] = PCM(0 + 1 * nchannels);
260 x[7] = PCM(0 + 5 * nchannels);
261 }
262 if (nchannels > 1) {
263 int16_t *x = &X[1][position];
264 x[0] = PCM(1 + 7 * nchannels);
265 x[1] = PCM(1 + 3 * nchannels);
266 x[2] = PCM(1 + 6 * nchannels);
267 x[3] = PCM(1 + 4 * nchannels);
268 x[4] = PCM(1 + 0 * nchannels);
269 x[5] = PCM(1 + 2 * nchannels);
270 x[6] = PCM(1 + 1 * nchannels);
271 x[7] = PCM(1 + 5 * nchannels);
272 }
273 pcm += 16 * nchannels;
274 }
275 #undef PCM
276
277 return position;
278 }
279
sbc_encoder_process_input_s8_internal(int position,const uint8_t * pcm,int16_t X[2][SBC_X_BUFFER_SIZE],int nsamples,int nchannels,int big_endian)280 static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
281 int position,
282 const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
283 int nsamples, int nchannels, int big_endian)
284 {
285 /* handle X buffer wraparound */
286 if (position < nsamples) {
287 if (nchannels > 0)
288 memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
289 72 * sizeof(int16_t));
290 if (nchannels > 1)
291 memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
292 72 * sizeof(int16_t));
293 position = SBC_X_BUFFER_SIZE - 72;
294 }
295
296 #define PCM(i) (big_endian ? \
297 unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
298
299 /* copy/permutate audio samples */
300 while ((nsamples -= 16) >= 0) {
301 position -= 16;
302 if (nchannels > 0) {
303 int16_t *x = &X[0][position];
304 x[0] = PCM(0 + 15 * nchannels);
305 x[1] = PCM(0 + 7 * nchannels);
306 x[2] = PCM(0 + 14 * nchannels);
307 x[3] = PCM(0 + 8 * nchannels);
308 x[4] = PCM(0 + 13 * nchannels);
309 x[5] = PCM(0 + 9 * nchannels);
310 x[6] = PCM(0 + 12 * nchannels);
311 x[7] = PCM(0 + 10 * nchannels);
312 x[8] = PCM(0 + 11 * nchannels);
313 x[9] = PCM(0 + 3 * nchannels);
314 x[10] = PCM(0 + 6 * nchannels);
315 x[11] = PCM(0 + 0 * nchannels);
316 x[12] = PCM(0 + 5 * nchannels);
317 x[13] = PCM(0 + 1 * nchannels);
318 x[14] = PCM(0 + 4 * nchannels);
319 x[15] = PCM(0 + 2 * nchannels);
320 }
321 if (nchannels > 1) {
322 int16_t *x = &X[1][position];
323 x[0] = PCM(1 + 15 * nchannels);
324 x[1] = PCM(1 + 7 * nchannels);
325 x[2] = PCM(1 + 14 * nchannels);
326 x[3] = PCM(1 + 8 * nchannels);
327 x[4] = PCM(1 + 13 * nchannels);
328 x[5] = PCM(1 + 9 * nchannels);
329 x[6] = PCM(1 + 12 * nchannels);
330 x[7] = PCM(1 + 10 * nchannels);
331 x[8] = PCM(1 + 11 * nchannels);
332 x[9] = PCM(1 + 3 * nchannels);
333 x[10] = PCM(1 + 6 * nchannels);
334 x[11] = PCM(1 + 0 * nchannels);
335 x[12] = PCM(1 + 5 * nchannels);
336 x[13] = PCM(1 + 1 * nchannels);
337 x[14] = PCM(1 + 4 * nchannels);
338 x[15] = PCM(1 + 2 * nchannels);
339 }
340 pcm += 32 * nchannels;
341 }
342 #undef PCM
343
344 return position;
345 }
346
347 /*
348 * Input data processing functions. The data is endian converted if needed,
349 * channels are deintrleaved and audio samples are reordered for use in
350 * SIMD-friendly analysis filter function. The results are put into "X"
351 * array, getting appended to the previous data (or it is better to say
352 * prepended, as the buffer is filled from top to bottom). Old data is
353 * discarded when neededed, but availability of (10 * nrof_subbands)
354 * contiguous samples is always guaranteed for the input to the analysis
355 * filter. This is achieved by copying a sufficient part of old data
356 * to the top of the buffer on buffer wraparound.
357 */
358
sbc_enc_process_input_4s_le(int position,const uint8_t * pcm,int16_t X[2][SBC_X_BUFFER_SIZE],int nsamples,int nchannels)359 static int sbc_enc_process_input_4s_le(int position,
360 const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
361 int nsamples, int nchannels)
362 {
363 if (nchannels > 1)
364 return sbc_encoder_process_input_s4_internal(
365 position, pcm, X, nsamples, 2, 0);
366 else
367 return sbc_encoder_process_input_s4_internal(
368 position, pcm, X, nsamples, 1, 0);
369 }
370
sbc_enc_process_input_4s_be(int position,const uint8_t * pcm,int16_t X[2][SBC_X_BUFFER_SIZE],int nsamples,int nchannels)371 static int sbc_enc_process_input_4s_be(int position,
372 const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
373 int nsamples, int nchannels)
374 {
375 if (nchannels > 1)
376 return sbc_encoder_process_input_s4_internal(
377 position, pcm, X, nsamples, 2, 1);
378 else
379 return sbc_encoder_process_input_s4_internal(
380 position, pcm, X, nsamples, 1, 1);
381 }
382
sbc_enc_process_input_8s_le(int position,const uint8_t * pcm,int16_t X[2][SBC_X_BUFFER_SIZE],int nsamples,int nchannels)383 static int sbc_enc_process_input_8s_le(int position,
384 const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
385 int nsamples, int nchannels)
386 {
387 if (nchannels > 1)
388 return sbc_encoder_process_input_s8_internal(
389 position, pcm, X, nsamples, 2, 0);
390 else
391 return sbc_encoder_process_input_s8_internal(
392 position, pcm, X, nsamples, 1, 0);
393 }
394
sbc_enc_process_input_8s_be(int position,const uint8_t * pcm,int16_t X[2][SBC_X_BUFFER_SIZE],int nsamples,int nchannels)395 static int sbc_enc_process_input_8s_be(int position,
396 const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
397 int nsamples, int nchannels)
398 {
399 if (nchannels > 1)
400 return sbc_encoder_process_input_s8_internal(
401 position, pcm, X, nsamples, 2, 1);
402 else
403 return sbc_encoder_process_input_s8_internal(
404 position, pcm, X, nsamples, 1, 1);
405 }
406
407 /* Supplementary function to count the number of leading zeros */
408
sbc_clz(uint32_t x)409 static inline int sbc_clz(uint32_t x)
410 {
411 #ifdef __GNUC__
412 return __builtin_clz(x);
413 #else
414 /* TODO: this should be replaced with something better if good
415 * performance is wanted when using compilers other than gcc */
416 int cnt = 0;
417 while (x) {
418 cnt++;
419 x >>= 1;
420 }
421 return 32 - cnt;
422 #endif
423 }
424
sbc_calc_scalefactors(int32_t sb_sample_f[16][2][8],uint32_t scale_factor[2][8],int blocks,int channels,int subbands)425 static void sbc_calc_scalefactors(
426 int32_t sb_sample_f[16][2][8],
427 uint32_t scale_factor[2][8],
428 int blocks, int channels, int subbands)
429 {
430 int ch, sb, blk;
431 for (ch = 0; ch < channels; ch++) {
432 for (sb = 0; sb < subbands; sb++) {
433 uint32_t x = 1 << SCALE_OUT_BITS;
434 for (blk = 0; blk < blocks; blk++) {
435 int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
436 if (tmp != 0)
437 x |= tmp - 1;
438 }
439 scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) -
440 sbc_clz(x);
441 }
442 }
443 }
444
sbc_calc_scalefactors_j(int32_t sb_sample_f[16][2][8],uint32_t scale_factor[2][8],int blocks,int subbands)445 static int sbc_calc_scalefactors_j(
446 int32_t sb_sample_f[16][2][8],
447 uint32_t scale_factor[2][8],
448 int blocks, int subbands)
449 {
450 int blk, joint = 0;
451 int32_t tmp0, tmp1;
452 uint32_t x, y;
453
454 /* last subband does not use joint stereo */
455 int sb = subbands - 1;
456 x = 1 << SCALE_OUT_BITS;
457 y = 1 << SCALE_OUT_BITS;
458 for (blk = 0; blk < blocks; blk++) {
459 tmp0 = fabs(sb_sample_f[blk][0][sb]);
460 tmp1 = fabs(sb_sample_f[blk][1][sb]);
461 if (tmp0 != 0)
462 x |= tmp0 - 1;
463 if (tmp1 != 0)
464 y |= tmp1 - 1;
465 }
466 scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(x);
467 scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(y);
468
469 /* the rest of subbands can use joint stereo */
470 while (--sb >= 0) {
471 int32_t sb_sample_j[16][2];
472 x = 1 << SCALE_OUT_BITS;
473 y = 1 << SCALE_OUT_BITS;
474 for (blk = 0; blk < blocks; blk++) {
475 tmp0 = sb_sample_f[blk][0][sb];
476 tmp1 = sb_sample_f[blk][1][sb];
477 sb_sample_j[blk][0] = ASR(tmp0, 1) + ASR(tmp1, 1);
478 sb_sample_j[blk][1] = ASR(tmp0, 1) - ASR(tmp1, 1);
479 tmp0 = fabs(tmp0);
480 tmp1 = fabs(tmp1);
481 if (tmp0 != 0)
482 x |= tmp0 - 1;
483 if (tmp1 != 0)
484 y |= tmp1 - 1;
485 }
486 scale_factor[0][sb] = (31 - SCALE_OUT_BITS) -
487 sbc_clz(x);
488 scale_factor[1][sb] = (31 - SCALE_OUT_BITS) -
489 sbc_clz(y);
490 x = 1 << SCALE_OUT_BITS;
491 y = 1 << SCALE_OUT_BITS;
492 for (blk = 0; blk < blocks; blk++) {
493 tmp0 = fabs(sb_sample_j[blk][0]);
494 tmp1 = fabs(sb_sample_j[blk][1]);
495 if (tmp0 != 0)
496 x |= tmp0 - 1;
497 if (tmp1 != 0)
498 y |= tmp1 - 1;
499 }
500 x = (31 - SCALE_OUT_BITS) - sbc_clz(x);
501 y = (31 - SCALE_OUT_BITS) - sbc_clz(y);
502
503 /* decide whether to use joint stereo for this subband */
504 if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) {
505 joint |= 1 << (subbands - 1 - sb);
506 scale_factor[0][sb] = x;
507 scale_factor[1][sb] = y;
508 for (blk = 0; blk < blocks; blk++) {
509 sb_sample_f[blk][0][sb] = sb_sample_j[blk][0];
510 sb_sample_f[blk][1][sb] = sb_sample_j[blk][1];
511 }
512 }
513 }
514
515 /* bitmask with the information about subbands using joint stereo */
516 return joint;
517 }
518
519 /*
520 * Detect CPU features and setup function pointers
521 */
sbc_init_primitives(struct sbc_encoder_state * state)522 void sbc_init_primitives(struct sbc_encoder_state *state)
523 {
524 /* Default implementation for analyze functions */
525 state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
526 state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;
527
528 /* Default implementation for input reordering / deinterleaving */
529 state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
530 state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
531 state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
532 state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
533
534 /* Default implementation for scale factors calculation */
535 state->sbc_calc_scalefactors = sbc_calc_scalefactors;
536 state->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j;
537 state->implementation_info = "Generic C";
538
539 /* X86/AMD64 optimizations */
540 #ifdef SBC_BUILD_WITH_MMX_SUPPORT
541 sbc_init_primitives_mmx(state);
542 #endif
543
544 /* ARM optimizations */
545 #ifdef SBC_BUILD_WITH_ARMV6_SUPPORT
546 sbc_init_primitives_armv6(state);
547 #endif
548 #ifdef SBC_BUILD_WITH_IWMMXT_SUPPORT
549 sbc_init_primitives_iwmmxt(state);
550 #endif
551 #ifdef SBC_BUILD_WITH_NEON_SUPPORT
552 sbc_init_primitives_neon(state);
553 #endif
554 }
555