• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version='1.0' encoding="ISO-8859-1"?>
2<partintro>
3  <para>
4    This chapter tries to answer the real-life questions of users and presents
5    the most common scenario use cases I could come up with.
6    The use cases are presented from most likely to less likely.
7  </para>
8</partintro>
9
10<chapter id="howto-gobject">
11  <title>How to define and implement a new GObject</title>
12
13  <para>
14    Clearly, this is one of the most common questions people ask: they just
15    want to crank code and implement a subclass of a GObject. Sometimes because
16    they want to create their own class hierarchy, sometimes because they want
17    to subclass one of GTK+'s widget. This chapter will focus on the
18    implementation of a subtype of GObject.
19  </para>
20
21  <sect1 id="howto-gobject-header">
22    <title>Boilerplate header code</title>
23
24    <para>
25      The first step before writing the code for your GObject is to write the
26      type's header which contains the needed type, function and macro
27      definitions. Each of these elements is nothing but a convention which
28      is followed not only by GTK+'s code but also by most users of GObject.
29      If you feel the need not to obey the rules stated below, think about it
30      twice:
31      <itemizedlist>
32        <listitem><para>If your users are a bit accustomed to GTK+ code or any
33        GLib code, they will be a bit surprised and getting used to the
34        conventions you decided upon will take time (money) and will make them
35        grumpy (not a good thing)</para></listitem>
36        <listitem><para>You must assess the fact that these conventions might
37        have been designed by both smart and experienced people: maybe they
38        were at least partly right. Try  to put your ego aside.</para></listitem>
39      </itemizedlist>
40    </para>
41
42    <para>
43      Pick a name convention for your headers and source code and stick to it:
44      <itemizedlist>
45        <listitem><para>use a dash to separate the prefix from the typename:
46        <filename>maman-bar.h</filename> and <filename>maman-bar.c</filename>
47        (this is the convention used by Nautilus and most GNOME libraries).</para></listitem>
48        <listitem><para>use an underscore to separate the prefix from the
49        typename: <filename>maman_bar.h</filename> and
50        <filename>maman_bar.c</filename>.</para></listitem>
51        <listitem><para>Do not separate the prefix from the typename:
52        <filename>mamanbar.h</filename> and <filename>mamanbar.c</filename>.
53        (this is the convention used by GTK+)</para></listitem>
54      </itemizedlist>
55      I personally like the first solution better: it makes reading file names
56      easier for those with poor eyesight like me.
57    </para>
58
59    <para>
60      When you need some private (internal) declarations in several
61      (sub)classes, you can define them in a private header file which
62      is often named by appending the <emphasis>private</emphasis> keyword
63      to the public header name. For example, one could use
64      <filename>maman-bar-private.h</filename>,
65      <filename>maman_bar_private.h</filename> or
66      <filename>mamanbarprivate.h</filename>. Typically, such private header
67      files are not installed.
68    </para>
69
70    <para>
71      The basic conventions for any header which exposes a GType are described
72      in <xref linkend="gtype-conventions"/>. Most GObject-based code also
73      obeys one of of the following conventions: pick one and stick to it.
74      <itemizedlist>
75        <listitem><para>
76            If you want to declare a type named bar with prefix maman, name the type instance
77            <function>MamanBar</function> and its class <function>MamanBarClass</function>
78            (name is case-sensitive). It is customary to declare them with code similar to the
79            following:
80<programlisting>
81/*
82 * Copyright/Licensing information.
83 */
84
85/* inclusion guard */
86#ifndef __MAMAN_BAR_H__
87#define __MAMAN_BAR_H__
88
89#include &lt;glib-object.h&gt;
90/*
91 * Potentially, include other headers on which this header depends.
92 */
93
94/*
95 * Type macros.
96 */
97#define MAMAN_TYPE_BAR                  (maman_bar_get_type ())
98#define MAMAN_BAR(obj)                  (G_TYPE_CHECK_INSTANCE_CAST ((obj), MAMAN_TYPE_BAR, MamanBar))
99#define MAMAN_IS_BAR(obj)               (G_TYPE_CHECK_INSTANCE_TYPE ((obj), MAMAN_TYPE_BAR))
100#define MAMAN_BAR_CLASS(klass)          (G_TYPE_CHECK_CLASS_CAST ((klass), MAMAN_TYPE_BAR, MamanBarClass))
101#define MAMAN_IS_BAR_CLASS(klass)       (G_TYPE_CHECK_CLASS_TYPE ((klass), MAMAN_TYPE_BAR))
102#define MAMAN_BAR_GET_CLASS(obj)        (G_TYPE_INSTANCE_GET_CLASS ((obj), MAMAN_TYPE_BAR, MamanBarClass))
103
104typedef struct _MamanBar        MamanBar;
105typedef struct _MamanBarClass   MamanBarClass;
106
107struct _MamanBar
108{
109  GObject parent_instance;
110
111  /* instance members */
112};
113
114struct _MamanBarClass
115{
116  GObjectClass parent_class;
117
118  /* class members */
119};
120
121/* used by MAMAN_TYPE_BAR */
122GType maman_bar_get_type (void);
123
124/*
125 * Method definitions.
126 */
127
128#endif /* __MAMAN_BAR_H__ */
129</programlisting>
130          </para></listitem>
131        <listitem><para>
132            Most GTK+ types declare their private fields in the public header
133            with a /* private */ comment, relying on their user's intelligence
134            not to try to play with these fields. Fields not marked private
135            are considered public by default. The /* protected */ comment
136            (same semantics as those of C++) is also used, mainly in the GType
137            library, in code written by Tim Janik.
138<programlisting>
139struct _MamanBar
140{
141  GObject parent_instance;
142
143  /*&lt; private &gt;*/
144  int hsize;
145};
146</programlisting>
147          </para></listitem>
148        <listitem><para>
149            All of Nautilus code and a lot of GNOME libraries use private
150            indirection members, as described by Herb Sutter in his Pimpl
151            articles(see <ulink url="http://www.gotw.ca/gotw/024.htm">Compilation Firewalls</ulink>
152            and <ulink url="http://www.gotw.ca/gotw/028.htm">The Fast Pimpl Idiom</ulink>:
153            he summarizes the different issues better than I will).
154<programlisting>
155typedef struct _MamanBarPrivate MamanBarPrivate;
156
157struct _MamanBar
158{
159  GObject parent_instance;
160
161  /*&lt; private &gt;*/
162  MamanBarPrivate *priv;
163};
164</programlisting>
165            <note><simpara>Do not call this <varname>private</varname>, as
166            that is a registered c++ keyword.</simpara></note>
167
168            The private structure is then defined in the .c file, using the
169            g_type_class_add_private() function to notify the presence of
170            a private memory area for each instance and it can either
171            be retrieved using <function>G_TYPE_INSTANCE_GET_PRIVATE()</function>
172            each time is needed, or assigned to the <literal>priv</literal>
173            member of the instance structure inside the object's
174            <function>init</function> function.
175<programlisting>
176#define MAMAN_BAR_GET_PRIVATE(obj) (G_TYPE_INSTANCE_GET_PRIVATE ((obj), MAMAN_TYPE_BAR, MamanBarPrivate))
177
178struct _MamanBarPrivate
179{
180  int hsize;
181}
182
183static void
184maman_bar_class_init (MamanBarClass *klass)
185{
186  g_type_class_add_private (klass, sizeof (MamanBarPrivate));
187}
188
189static void
190maman_bar_init (MamanBar *self)
191{
192  MamanBarPrivate *priv;
193
194  self->priv = priv = MAMAN_BAR_GET_PRIVATE (self);
195
196  priv->hsize = 42;
197}
198</programlisting>
199          </para></listitem>
200
201          <listitem><para>
202            You don't need to free or allocate the private structure, only the
203            objects or pointers that it may contain. Another advantage of this
204            to the previous version is that is lessens memory fragmentation,
205            as the public and private parts of the instance memory are
206            allocated at once.
207          </para></listitem>
208      </itemizedlist>
209    </para>
210
211    <para>
212      Finally, there are different header include conventions. Again, pick one
213      and stick to it. I personally use indifferently any of the two, depending
214      on the codebase I work on: the rule, as always, is consistency.
215      <itemizedlist>
216        <listitem><para>
217            Some people add at the top of their headers a number of #include
218            directives to pull in all the headers needed to compile client
219            code. This allows client code to simply #include "maman-bar.h".
220          </para></listitem>
221        <listitem><para>
222            Other do not #include anything and expect the client to #include
223            themselves the headers they need before including your header. This
224            speeds up compilation because it minimizes the amount of
225            pre-processor work. This can be used in conjunction with the
226            re-declaration of certain unused types in the client code to
227            minimize compile-time dependencies and thus speed up compilation.
228          </para></listitem>
229      </itemizedlist>
230    </para>
231
232  </sect1>
233
234  <sect1 id="howto-gobject-code">
235    <title>Boilerplate code</title>
236
237    <para>
238      In your code, the first step is to #include the needed headers: depending
239      on your header include strategy, this can be as simple as
240      <literal>#include "maman-bar.h"</literal> or as complicated as tens
241      of #include lines ending with <literal>#include "maman-bar.h"</literal>:
242<programlisting>
243/*
244 * Copyright information
245 */
246
247#include "maman-bar.h"
248
249/* If you use Pimpls, include the private structure
250 * definition here. Some people create a maman-bar-private.h header
251 * which is included by the maman-bar.c file and which contains the
252 * definition for this private structure.
253 */
254struct _MamanBarPrivate {
255  int member_1;
256  /* stuff */
257};
258
259/*
260 * forward definitions
261 */
262</programlisting>
263    </para>
264
265    <para>
266      Call the <function>G_DEFINE_TYPE</function> macro using the name
267      of the type, the prefix of the functions and the parent GType to
268      reduce the amount of boilerplate needed. This macro will:
269
270      <itemizedlist>
271        <listitem><simpara>implement the <function>maman_bar_get_type</function>
272        function</simpara></listitem>
273        <listitem><simpara>define a parent class pointer accessible from
274        the whole .c file</simpara></listitem>
275      </itemizedlist>
276
277<programlisting>
278G_DEFINE_TYPE (MamanBar, maman_bar, G_TYPE_OBJECT);
279</programlisting>
280    </para>
281
282    <para>
283      It is also possible to use the
284      <function>G_DEFINE_TYPE_WITH_CODE</function> macro to control the
285      get_type function implementation - for instance, to add a call to
286      <function>G_IMPLEMENT_INTERFACE</function> macro which will
287      call the <function>g_type_implement_interface</function> function.
288    </para>
289  </sect1>
290
291  <sect1 id="howto-gobject-construction">
292    <title>Object Construction</title>
293
294    <para>
295      People often get confused when trying to construct their GObjects because of the
296      sheer number of different ways to hook into the objects's construction process: it is
297      difficult to figure which is the <emphasis>correct</emphasis>, recommended way.
298    </para>
299
300    <para>
301      <xref linkend="gobject-construction-table"/> shows what user-provided functions
302      are invoked during object instantiation and in which order they are invoked.
303      A user looking for the equivalent of the simple C++ constructor function should use
304      the instance_init method. It will be invoked after all the parent's instance_init
305      functions have been invoked. It cannot take arbitrary construction parameters
306      (as in C++) but if your object needs arbitrary parameters to complete initialization,
307      you can use construction properties.
308    </para>
309
310    <para>
311      Construction properties will be set only after all instance_init functions have run.
312      No object reference will be returned to the client of <function><link linkend="g-object-new">g_object_new</link></function>
313      until all the construction properties have been set.
314    </para>
315
316    <para>
317      As such, I would recommend writing the following code first:
318<programlisting>
319static void
320maman_bar_init (MamanBar *self)
321{
322  self->priv = MAMAN_BAR_GET_PRIVATE (self);
323
324  /* initialize all public and private members to reasonable default values. */
325
326  /* If you need specific construction properties to complete initialization,
327   * delay initialization completion until the property is set.
328   */
329}
330</programlisting>
331    </para>
332
333    <para>
334      Now, if you need special construction properties, install the properties in the class_init function,
335      override the set and get methods and implement the get and set methods as described in
336      <xref linkend="gobject-properties"/>. Make sure that these properties use a construct only
337      <type><link linkend="GParamSpec">GParamSpec</link></type> by setting the param spec's flag field to G_PARAM_CONSTRUCT_ONLY: this helps
338      GType ensure that these properties are not set again later by malicious user code.
339<programlisting>
340static void
341bar_class_init (MamanBarClass *klass)
342{
343  GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
344  GParamSpec *maman_param_spec;
345
346  gobject_class->set_property = bar_set_property;
347  gobject_class->get_property = bar_get_property;
348
349  maman_param_spec = g_param_spec_string ("maman",
350                                          "Maman construct prop",
351                                          "Set maman's name",
352                                          "no-name-set" /* default value */,
353                                          G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE);
354  g_object_class_install_property (gobject_class,
355                                   PROP_MAMAN,
356                                   maman_param_spec);
357}
358</programlisting>
359      If you need this, make sure you can build and run code similar to the code shown above. Make sure
360      your construct properties can set correctly during construction, make sure you cannot set them
361      afterwards and make sure that if your users do not call <function><link linkend="g-object-new">g_object_new</link></function>
362      with the required construction properties, these will be initialized with the default values.
363    </para>
364
365    <para>
366      I consider good taste to halt program execution if a construction property is set its
367      default value. This allows you to catch client code which does not give a reasonable
368      value to the construction properties. Of course, you are free to disagree but you
369      should have a good reason to do so.
370    </para>
371
372    <para>
373      Some people sometimes need to construct their object but only after
374      the construction properties have been set. This is possible through
375      the use of the constructor class method as described in
376      <xref linkend="gobject-instantiation"/> or, more simply, using
377      the constructed class method available since GLib 2.12.
378    </para>
379  </sect1>
380
381  <sect1 id="howto-gobject-destruction">
382    <title>Object Destruction</title>
383
384    <para>
385      Again, it is often difficult to figure out which mechanism to use to
386      hook into the object's destruction process: when the last
387      <function><link linkend="g-object-unref">g_object_unref</link></function>
388      function call is made, a lot of things happen as described in
389      <xref linkend="gobject-destruction-table"/>.
390    </para>
391
392    <para>
393      The destruction process of your object might be split in two different
394      phases: dispose and the finalize.
395<programlisting>
396#define MAMAN_BAR_GET_PRIVATE(obj) (G_TYPE_INSTANCE_GET_PRIVATE ((obj), MAMAN_TYPE_BAR, MamanBarPrivate))
397
398struct _MamanBarPrivate
399{
400  GObject *an_object;
401
402  gchar *a_string;
403};
404
405G_DEFINE_TYPE (MamanBar, maman_bar, G_TYPE_OBJECT);
406
407static void
408maman_bar_dispose (GObject *gobject)
409{
410  MamanBar *self = MAMAN_BAR (gobject);
411
412  /*
413   * In dispose, you are supposed to free all types referenced from this
414   * object which might themselves hold a reference to self. Generally,
415   * the most simple solution is to unref all members on which you own a
416   * reference.
417   */
418
419  /* dispose might be called multiple times, so we must guard against
420   * calling g_object_unref() on an invalid GObject.
421   */
422  if (self->priv->an_object)
423    {
424      g_object_unref (self->priv->an_object);
425
426      self->priv->an_object = NULL;
427    }
428
429  /* Chain up to the parent class */
430  G_OBJECT_CLASS (maman_bar_parent_class)->dispose (gobject);
431}
432
433static void
434maman_bar_finalize (GObject *gobject)
435{
436  MamanBar *self = MAMAN_BAR (gobject);
437
438  g_free (self->priv->a_string);
439
440  /* Chain up to the parent class */
441  G_OBJECT_CLASS (maman_bar_parent_class)->finalize (gobject);
442}
443
444static void
445maman_bar_class_init (MamanBarClass *klass)
446{
447  GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
448
449  gobject_class->dispose = maman_bar_dispose;
450  gobject_class->finalize = maman_bar_finalize;
451
452  g_type_class_add_private (klass, sizeof (MamanBarPrivate));
453}
454
455static void
456maman_bar_init (MamanBar *self);
457{
458  self->priv = MAMAN_BAR_GET_PRIVATE (self);
459
460  self->priv->an_object = g_object_new (MAMAN_TYPE_BAZ, NULL);
461  self->priv->a_string = g_strdup ("Maman");
462}
463</programlisting>
464    </para>
465
466    <para>
467      Add similar code to your GObject, make sure the code still builds
468      and runs: dispose and finalize must be called during the last unref.
469    </para>
470
471    <para>
472      It is possible that object methods might be invoked after dispose is
473      run and before finalize runs. GObject does not consider this to be a
474      program error: you must gracefully detect this and neither crash nor
475      warn the user.
476    </para>
477  </sect1>
478
479  <sect1 id="howto-gobject-methods">
480    <title>Object methods</title>
481
482    <para>
483      Just as with C++, there are many different ways to define object
484      methods and extend them: the following list and sections draw on
485      C++ vocabulary. (Readers are expected to know basic C++ buzzwords.
486      Those who have not had to write C++ code recently can refer to e.g.
487      <ulink url="http://www.cplusplus.com/doc/tutorial/"/> to refresh
488      their memories.)
489      <itemizedlist>
490        <listitem><para>
491            non-virtual public methods,
492          </para></listitem>
493        <listitem><para>
494            virtual public methods and
495          </para></listitem>
496        <listitem><para>
497            virtual private methods
498          </para></listitem>
499      </itemizedlist>
500    </para>
501
502    <sect2>
503      <title>Non-virtual public methods</title>
504
505      <para>
506        These are the simplest: you want to provide a simple method which
507        can act on your object. All you need to do is to provide a function
508        prototype in the header and an implementation of that prototype
509        in the source file.
510<programlisting>
511/* declaration in the header. */
512void maman_bar_do_action (MamanBar *self, /* parameters */);
513
514/* implementation in the source file */
515void
516maman_bar_do_action (MamanBar *self, /* parameters */)
517{
518  g_return_if_fail (MAMAN_IS_BAR (self));
519
520  /* do stuff here. */
521}
522</programlisting>
523      </para>
524
525      <para>There is really nothing scary about this.</para>
526    </sect2>
527
528    <sect2>
529      <title>Virtual public methods</title>
530
531      <para>
532        This is the preferred way to create polymorphic GObjects. All you
533        need to do is to define the common method and its class function in
534        the public header, implement the common method in the source file
535        and re-implement the class function in each object which inherits
536        from you.
537<programlisting>
538/* declaration in maman-bar.h. */
539struct _MamanBarClass
540{
541  GObjectClass parent_class;
542
543  /* stuff */
544  void (*do_action) (MamanBar *self, /* parameters */);
545};
546
547void maman_bar_do_action (MamanBar *self, /* parameters */);
548
549/* implementation in maman-bar.c */
550void
551maman_bar_do_action (MamanBar *self, /* parameters */)
552{
553  g_return_if_fail (MAMAN_IS_BAR (self));
554
555  MAMAN_BAR_GET_CLASS (self)->do_action (self, /* parameters */);
556}
557</programlisting>
558        The code above simply redirects the do_action call to the relevant
559        class function. Some users, concerned about performance, do not
560        provide the <function>maman_bar_do_action</function> wrapper function
561        and require users to dereference the class pointer themselves. This
562        is not such a great idea in terms of encapsulation and makes it
563        difficult to change the object's implementation afterwards, should
564        this be needed.
565      </para>
566
567      <para>
568        Other users, also concerned by performance issues, declare
569        the <function>maman_bar_do_action</function> function inline in the
570        header file. This, however, makes it difficult to change the
571        object's implementation later (although easier than requiring users
572        to directly dereference the class function) and is often difficult
573        to write in a portable way (the <emphasis>inline</emphasis> keyword
574        is part of the C99 standard but not every compiler supports it).
575      </para>
576
577      <para>
578        In doubt, unless a user shows you hard numbers about the performance
579        cost of the function call, just implement <function>maman_bar_do_action</function>
580        in the source file.
581      </para>
582
583      <para>
584        Please, note that it is possible for you to provide a default
585        implementation for this class method in the object's
586        <function>class_init</function> function: initialize the
587        klass-&gt;do_action field to a pointer to the actual implementation.
588        You can also make this class method pure virtual by initializing
589        the klass-&gt;do_action field to NULL:
590<programlisting>
591static void
592maman_bar_real_do_action_two (MamanBar *self, /* parameters */)
593{
594  /* Default implementation for the virtual method. */
595}
596
597static void
598maman_bar_class_init (BarClass *klass)
599{
600  /* pure virtual method: mandates implementation in children. */
601  klass->do_action_one = NULL;
602
603  /* merely virtual method. */
604  klass->do_action_two = maman_bar_real_do_action_two;
605}
606
607void
608maman_bar_do_action_one (MamanBar *self, /* parameters */)
609{
610  g_return_if_fail (MAMAN_IS_BAR (self));
611
612  MAMAN_BAR_GET_CLASS (self)->do_action_one (self, /* parameters */);
613}
614
615void
616maman_bar_do_action_two (MamanBar *self, /* parameters */)
617{
618  g_return_if_fail (MAMAN_IS_BAR (self));
619
620  MAMAN_BAR_GET_CLASS (self)->do_action_two (self, /* parameters */);
621}
622</programlisting>
623      </para>
624    </sect2>
625
626    <sect2>
627      <title>Virtual private Methods</title>
628
629      <para>
630        These are very similar to Virtual Public methods. They just don't
631        have a public function to call the function directly. The header
632        file contains only a declaration of the class function:
633<programlisting>
634/* declaration in maman-bar.h. */
635struct _MamanBarClass
636{
637  GObjectClass parent;
638
639  /* stuff */
640  void (* helper_do_specific_action) (MamanBar *self, /* parameters */);
641};
642
643void maman_bar_do_any_action (MamanBar *self, /* parameters */);
644</programlisting>
645        These class functions are often used to delegate part of the job
646        to child classes:
647<programlisting>
648/* this accessor function is static: it is not exported outside of this file. */
649static void
650maman_bar_do_specific_action (MamanBar *self, /* parameters */)
651{
652  MAMAN_BAR_GET_CLASS (self)->do_specific_action (self, /* parameters */);
653}
654
655void
656maman_bar_do_any_action (MamanBar *self, /* parameters */)
657{
658  /* random code here */
659
660  /*
661   * Try to execute the requested action. Maybe the requested action
662   * cannot be implemented here. So, we delegate its implementation
663   * to the child class:
664   */
665  maman_bar_do_specific_action (self, /* parameters */);
666
667  /* other random code here */
668}
669</programlisting>
670      </para>
671
672      <para>
673        Again, it is possible to provide a default implementation for this
674        private virtual class function:
675<programlisting>
676static void
677maman_bar_class_init (MamanBarClass *klass)
678{
679  /* pure virtual method: mandates implementation in children. */
680  klass->do_specific_action_one = NULL;
681
682  /* merely virtual method. */
683  klass->do_specific_action_two = maman_bar_real_do_specific_action_two;
684}
685</programlisting>
686      </para>
687
688      <para>
689        Children can then implement the subclass with code such as:
690<programlisting>
691static void
692maman_bar_subtype_class_init (MamanBarSubTypeClass *klass)
693{
694  MamanBarClass *bar_class = MAMAN_BAR_CLASS (klass);
695
696  /* implement pure virtual class function. */
697  bar_class->do_specific_action_one = maman_bar_subtype_do_specific_action_one;
698}
699</programlisting>
700      </para>
701    </sect2>
702  </sect1>
703
704  <sect1 id="howto-gobject-chainup">
705    <title>Chaining up</title>
706
707    <para>Chaining up is often loosely defined by the following set of
708    conditions:
709      <itemizedlist>
710        <listitem><para>Parent class A defines a public virtual method named <function>foo</function> and
711        provides a default implementation.</para></listitem>
712        <listitem><para>Child class B re-implements method <function>foo</function>.</para></listitem>
713        <listitem><para>In the method B::foo, the child class B calls its parent class method A::foo.</para></listitem>
714      </itemizedlist>
715      There are many uses to this idiom:
716      <itemizedlist>
717        <listitem><para>You need to change the behaviour of a class without modifying its code. You create
718          a subclass to inherit its implementation, re-implement a public virtual method to modify the behaviour
719          slightly and chain up to ensure that the previous behaviour is not really modified, just extended.
720          </para></listitem>
721        <listitem><para>You are lazy, you have access to the source code of the parent class but you don't want
722          to modify it to add method calls to new specialized method calls: it is faster to hack the child class
723          to chain up than to modify the parent to call down.</para></listitem>
724        <listitem><para>You need to implement the Chain Of Responsibility pattern: each object of the inheritance
725          tree chains up to its parent (typically, at the beginning or the end of the method) to ensure that
726          they each handler is run in turn.</para></listitem>
727      </itemizedlist>
728      I am personally not really convinced any of the last two uses are really a good idea but since this
729      programming idiom is often used, this section attempts to explain how to implement it.
730    </para>
731
732    <para>
733      To explicitly chain up to the implementation of the virtual method in the parent class,
734      you first need a handle to the original parent class structure. This pointer can then be used to
735      access the original class function pointer and invoke it directly.
736      <footnote>
737        <para>
738          The <emphasis>original</emphasis> adjective used in this sentence is not innocuous. To fully
739          understand its meaning, you need to recall how class structures are initialized: for each object type,
740          the class structure associated to this object is created by first copying the class structure of its
741          parent type (a simple <function>memcpy</function>) and then by invoking the class_init callback on
742          the resulting class structure. Since the class_init callback is responsible for overwriting the class structure
743          with the user re-implementations of the class methods, we cannot merely use the modified copy of the parent class
744          structure stored in our derived instance. We want to get a copy of the class structure of an instance of the parent
745          class.
746        </para>
747      </footnote>
748    </para>
749
750    <para>The function <function><link linkend="g-type-class-peek-parent">g_type_class_peek_parent</link></function> is used to access the original parent
751    class structure. Its input is a pointer to the class of the derived object and it returns a pointer
752    to the original parent class structure. The code below shows how you could use it:
753<programlisting>
754static void
755b_method_to_call (B *obj, int a)
756{
757  BClass *klass;
758  AClass *parent_class;
759
760  klass = B_GET_CLASS (obj);
761  parent_class = g_type_class_peek_parent (klass);
762
763  /* do stuff before chain up */
764
765  parent_class->method_to_call (obj, a);
766
767  /* do stuff after chain up */
768}
769</programlisting>
770  </para>
771
772  </sect1>
773
774</chapter>
775<!-- End Howto GObject -->
776
777<chapter id="howto-interface">
778  <title>How to define and implement interfaces</title>
779
780  <sect1 id="howto-interface-define">
781    <title>How to define interfaces</title>
782
783  <para>
784    The bulk of interface definition has already been shown in <xref linkend="gtype-non-instantiable-classed"/>
785    but I feel it is needed to show exactly how to create an interface.
786  </para>
787
788  <para>
789    As above, the first step is to get the header right:
790<programlisting>
791#ifndef __MAMAN_IBAZ_H__
792#define __MAMAN_IBAZ_H__
793
794#include &lt;glib-object.h&gt;
795
796#define MAMAN_TYPE_IBAZ                 (maman_ibaz_get_type ())
797#define MAMAN_IBAZ(obj)                 (G_TYPE_CHECK_INSTANCE_CAST ((obj), MAMAN_TYPE_IBAZ, MamanIbaz))
798#define MAMAN_IS_IBAZ(obj)              (G_TYPE_CHECK_INSTANCE_TYPE ((obj), MAMAN_TYPE_IBAZ))
799#define MAMAN_IBAZ_GET_INTERFACE(inst)  (G_TYPE_INSTANCE_GET_INTERFACE ((inst), MAMAN_TYPE_IBAZ, MamanIbazInterface))
800
801
802typedef struct _MamanIbaz               MamanIbaz; /* dummy object */
803typedef struct _MamanIbazInterface      MamanIbazInterface;
804
805struct _MamanIbazInterface
806{
807  GTypeInterface parent_iface;
808
809  void (*do_action) (MamanIbaz *self);
810};
811
812GType maman_ibaz_get_type (void);
813
814void maman_ibaz_do_action (MamanIbaz *self);
815
816#endif /* __MAMAN_IBAZ_H__ */
817</programlisting>
818    This code is the same as the code for a normal <type><link linkend="GType">GType</link></type>
819    which derives from a <type><link linkend="GObject">GObject</link></type> except for a few details:
820    <itemizedlist>
821      <listitem><para>
822        The <function>_GET_CLASS</function> macro is called <function>_GET_INTERFACE</function>
823                  and not implemented with <function><link linkend="G_TYPE_INSTANCE_GET_CLASS">G_TYPE_INSTANCE_GET_CLASS</link></function>
824                  but with <function><link linkend="G_TYPE_INSTANCE_GET_INTERFACE">G_TYPE_INSTANCE_GET_INTERFACE</link></function>.
825      </para></listitem>
826      <listitem><para>
827        The instance type, <type>MamanIbaz</type> is not fully defined: it is
828        used merely as an abstract type which represents an instance of
829        whatever object which implements the interface.
830      </para></listitem>
831      <listitem><para>
832        The parent of the <type>MamanIbazInterface</type> is not
833        <type>GObjectClass</type> but <type>GTypeInterface</type>.
834      </para></listitem>
835    </itemizedlist>
836  </para>
837
838  <para>
839    The implementation of the <type>MamanIbaz</type> type itself is trivial:
840    <itemizedlist>
841      <listitem><para><function>maman_ibaz_get_type</function> registers the
842       type in the type system.
843       </para></listitem>
844      <listitem><para><function>maman_ibaz_base_init</function> is expected
845      to register the interface's signals if there are any (we will see a bit
846      (later how to use them). Make sure to use a static local boolean variable
847      to make sure not to run the initialization code twice (as described in
848      <xref linkend="gtype-non-instantiable-classed-init"/>,
849      <function>base_init</function> is run once for each interface implementation
850      instantiation)</para></listitem>
851      <listitem><para><function>maman_ibaz_do_action</function> dereferences
852      the class structure to access its associated class function and calls it.
853      </para></listitem>
854    </itemizedlist>
855<programlisting>
856static void
857maman_ibaz_base_init (gpointer g_class)
858{
859  static gboolean is_initialized = FALSE;
860
861  if (!is_initialized)
862    {
863      /* add properties and signals to the interface here */
864
865      is_initialized = TRUE;
866    }
867}
868
869GType
870maman_ibaz_get_type (void)
871{
872  static GType iface_type = 0;
873  if (iface_type == 0)
874    {
875      static const GTypeInfo info = {
876        sizeof (MamanIbazInterface),
877        maman_ibaz_base_init,   /* base_init */
878        NULL,   /* base_finalize */
879      };
880
881      iface_type = g_type_register_static (G_TYPE_INTERFACE, "MamanIbaz",
882                                           &amp;info, 0);
883    }
884
885  return iface_type;
886}
887
888void
889maman_ibaz_do_action (MamanIbaz *self)
890{
891  g_return_if_fail (MAMAN_IS_IBAZ (self));
892
893  MAMAN_IBAZ_GET_INTERFACE (self)->do_action (self);
894}
895</programlisting>
896    </para>
897  </sect1>
898
899  <sect1 id="howto-interface-implement">
900    <title>How To define implement an Interface?</title>
901
902    <para>
903      Once the interface is defined, implementing it is rather trivial.
904    </para>
905
906    <para>
907      The first step is to define a normal GObject class, like:
908<programlisting>
909#ifndef __MAMAN_BAZ_H__
910#define __MAMAN_BAZ_H__
911
912#include &lt;glib-object.h&gt;
913
914#define MAMAN_TYPE_BAZ             (maman_baz_get_type ())
915#define MAMAN_BAZ(obj)             (G_TYPE_CHECK_INSTANCE_CAST ((obj), MAMAN_TYPE_BAZ, Mamanbaz))
916#define MAMAN_IS_BAZ(obj)          (G_TYPE_CHECK_INSTANCE_TYPE ((obj), MAMAN_TYPE_BAZ))
917#define MAMAN_BAZ_CLASS(klass)     (G_TYPE_CHECK_CLASS_CAST ((klass), MAMAN_TYPE_BAZ, MamanbazClass))
918#define MAMAN_IS_BAZ_CLASS(klass)  (G_TYPE_CHECK_CLASS_TYPE ((klass), MAMAN_TYPE_BAZ))
919#define MAMAN_BAZ_GET_CLASS(obj)   (G_TYPE_INSTANCE_GET_CLASS ((obj), MAMAN_TYPE_BAZ, MamanbazClass))
920
921
922typedef struct _MamanBaz        MamanBaz;
923typedef struct _MamanBazClass   MamanBazClass;
924
925struct _MamanBaz
926{
927  GObject parent_instance;
928
929  int instance_member;
930};
931
932struct _MamanBazClass
933{
934  GObjectClass parent_class;
935};
936
937GType maman_baz_get_type (void);
938
939#endif /* __MAMAN_BAZ_H__ */
940</programlisting>
941      There is clearly nothing specifically weird or scary about this header:
942      it does not define any weird API or derives from a weird type.
943    </para>
944
945    <para>
946      The second step is to implement <type>MamanBaz</type> by defining
947      its GType. Instead of using <function>G_DEFINE_TYPE</function> we
948      use <function>G_DEFINE_TYPE_WITH_CODE</function> and the
949      <function>G_IMPLEMENT_INTERFACE</function> macros.
950<programlisting>
951static void maman_ibaz_interface_init (MamanIbazInterface *iface);
952
953G_DEFINE_TYPE_WITH_CODE (MamanBar, maman_bar, G_TYPE_OBJECT,
954                         G_IMPLEMENT_INTERFACE (MAMAN_TYPE_IBAZ,
955                                                maman_ibaz_interface_init));
956</programlisting>
957      This definition is very much like all the similar functions we looked
958      at previously. The only interface-specific code present here is the call
959      to <function>G_IMPLEMENT_INTERFACE</function>.
960    </para>
961
962    <note><para>Classes can implement multiple interfaces by using multiple
963    calls to <function>G_IMPLEMENT_INTERFACE</function> inside the call
964    to <function>G_DEFINE_TYPE_WITH_CODE</function>.</para></note>
965
966    <para>
967      <function>maman_baz_interface_init</function>, the interface
968      initialization function: inside it every virtual method of the interface
969      must be assigned to its implementation:
970<programlisting>
971static void
972maman_baz_do_action (MamanBaz *self)
973{
974  g_print ("Baz implementation of IBaz interface Action: 0x%x.\n",
975           self->instance_member);
976}
977
978static void
979maman_ibaz_interface_init (MamanIbazInterface *iface)
980{
981  iface->do_action = baz_do_action;
982}
983
984static void
985maman_baz_init (MamanBaz *self)
986{
987  MamanBaz *self = MAMAN_BAZ (instance);
988  self->instance_member = 0xdeadbeaf;
989}
990</programlisting>
991    </para>
992
993  </sect1>
994
995  <sect1>
996    <title>Interface definition prerequisites</title>
997
998    <para>
999      To specify that an interface requires the presence of other interfaces
1000      when implemented, GObject introduces the concept of
1001      <emphasis>prerequisites</emphasis>: it is possible to associate
1002      a list of prerequisite interfaces to an interface. For example, if
1003      object A wishes to implement interface I1, and if interface I1 has a
1004      prerequisite on interface I2, A has to implement both I1 and I2.
1005    </para>
1006
1007    <para>
1008      The mechanism described above is, in practice, very similar to
1009      Java's interface I1 extends interface I2. The example below shows
1010      the GObject equivalent:
1011<programlisting>
1012  /* inside the GType function of the MamanIbar interface */
1013  type = g_type_register_static (G_TYPE_INTERFACE, "MamanIbar", &amp;info, 0);
1014
1015  /* Make the MamanIbar interface require MamanIbaz interface. */
1016  g_type_interface_add_prerequisite (type, MAMAN_TYPE_IBAZ);
1017</programlisting>
1018      The code shown above adds the MamanIbaz interface to the list of
1019      prerequisites of MamanIbar while the code below shows how an
1020      implementation can implement both interfaces and register their
1021      implementations:
1022<programlisting>
1023static void
1024maman_ibar_do_another_action (MamanIbar *ibar)
1025{
1026  MamanBar *self = MAMAN_BAR (ibar);
1027
1028  g_print ("Bar implementation of IBar interface Another Action: 0x%x.\n",
1029           self->instance_member);
1030}
1031
1032static void
1033maman_ibar_interface_init (MamanIbarInterface *iface)
1034{
1035  iface->do_another_action = maman_ibar_do_another_action;
1036}
1037
1038static void
1039maman_ibaz_do_action (MamanIbaz *ibaz)
1040{
1041  MamanBar *self = MAMAN_BAR (ibaz);
1042
1043  g_print ("Bar implementation of IBaz interface Action: 0x%x.\n",
1044           self->instance_member);
1045}
1046
1047static void
1048maman_ibaz_interface_init (MamanIbazInterface *iface)
1049{
1050  iface->do_action = maman_ibaz_do_action;
1051}
1052
1053static void
1054maman_bar_class_init (MamanBarClass *klass)
1055{
1056
1057}
1058
1059static void
1060maman_bar_init (MamanBar *self)
1061{
1062  self->instance_member = 0x666;
1063}
1064
1065G_DEFINE_TYPE_WITH_CODE (MamanBar, maman_bar, G_TYPE_OBJECT,
1066                         G_IMPLEMENT_INTERFACE (MAMAN_TYPE_IBAZ,
1067                                                maman_ibaz_interface_init)
1068                         G_IMPLEMENT_INTERFACE (MAMAN_TYPE_IBAR,
1069                                                maman_ibar_interface_init));
1070</programlisting>
1071      It is very important to notice that the order in which interface
1072      implementations are added to the main object is not random:
1073      <function><link linkend="g-type-add-interface-static">g_type_add_interface_static</link></function>,
1074      which is called by <function>G_IMPLEMENT_INTERFACE</function>, must be
1075      invoked first on the interfaces which have no prerequisites and then on
1076      the others.
1077    </para>
1078  </sect1>
1079
1080  <sect1 id="howto-interface-properties">
1081    <title>Interface Properties</title>
1082
1083    <para>
1084      Starting from version 2.4 of GLib, GObject interfaces can also have
1085      properties. Declaration of the interface properties is similar to
1086      declaring the properties of ordinary GObject types as explained in
1087      <xref linkend="gobject-properties"/>,
1088      except that <function><link linkend="g-object-interface-install-property">g_object_interface_install_property</link></function> is used to
1089      declare the properties instead of <function><link linkend="g-object-class-install-property">g_object_class_install_property</link></function>.
1090    </para>
1091
1092    <para>
1093      To include a property named 'name' of type <type>string</type> in the
1094      <type>maman_ibaz</type> interface example code above, we only need to
1095      add one
1096      <footnote>
1097        <para>
1098          That really is one line extended to six for the sake of clarity
1099        </para>
1100      </footnote>
1101      line in the <function>maman_ibaz_base_init</function>
1102      <footnote>
1103        <para>
1104          The <function><link linkend="g-object-interface-install-property">g_object_interface_install_property</link></function>
1105          can also be called from <function>class_init</function> but it must
1106          not be called after that point.
1107        </para>
1108      </footnote>
1109      as shown below:
1110<programlisting>
1111static void
1112maman_ibaz_base_init (gpointer g_iface)
1113{
1114  static gboolean is_initialized = FALSE;
1115
1116  if (!is_initialized)
1117    {
1118      g_object_interface_install_property (g_iface,
1119                                           g_param_spec_string ("name",
1120                                                                "Name",
1121                                                                "Name of the MamanIbaz",
1122                                                                "maman",
1123                                                                G_PARAM_READWRITE));
1124      is_initialized = TRUE;
1125    }
1126}
1127</programlisting>
1128    </para>
1129
1130    <para>
1131      One point worth noting is that the declared property wasn't assigned an
1132      integer ID. The reason being that integer IDs of properties are used
1133      only inside the get and set methods and since interfaces do not
1134      implement properties, there is no need to assign integer IDs to
1135      interface properties.
1136    </para>
1137
1138    <para>
1139      An implementation shall declare and define it's properties in the usual
1140      way as explained in <xref linkend="gobject-properties"/>, except for one
1141      small change: it must declare the properties of the interface it
1142      implements using <function><link linkend="g-object-class-override-property">g_object_class_override_property</link></function>
1143      instead of <function><link linkend="g-object-class-install-property">g_object_class_install_property</link></function>.
1144      The following code snippet shows the modifications needed in the
1145      <type>MamanBaz</type> declaration and implementation above:
1146<programlisting>
1147
1148struct _MamanBaz
1149{
1150  GObject parent_instance;
1151
1152  gint instance_member;
1153  gchar *name;
1154};
1155
1156enum
1157{
1158  PROP_0,
1159
1160  PROP_NAME
1161};
1162
1163static void
1164maman_baz_set_property (GObject      *object,
1165                        guint         property_id,
1166                        const GValue *value,
1167                        GParamSpec   *pspec)
1168{
1169  MamanBaz *baz = MAMAN_BAZ (object);
1170  GObject *obj;
1171
1172  switch (prop_id)
1173    {
1174    case ARG_NAME:
1175      g_free (baz->name);
1176      baz->name = g_value_dup_string (value);
1177      break;
1178
1179    default:
1180      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
1181      break;
1182    }
1183}
1184
1185static void
1186maman_baz_get_property (GObject    *object,
1187                        guint       prop_id,
1188                        GValue     *value,
1189                        GParamSpec *pspec)
1190{
1191  MamanBaz *baz = MAMAN_BAZ (object);
1192
1193  switch (prop_id)
1194    {
1195    case ARG_NAME:
1196      g_value_set_string (value, baz->name);
1197      break;
1198
1199    default:
1200      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
1201      break;
1202    }
1203}
1204
1205static void
1206maman_baz_class_init (MamanBazClass *klass)
1207{
1208  GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
1209
1210  gobject_class->set_property = maman_baz_set_property;
1211  gobject_class->get_property = maman_baz_get_property;
1212
1213  g_object_class_override_property (gobject_class, PROP_NAME, "name");
1214}
1215
1216</programlisting>
1217    </para>
1218
1219  </sect1>
1220</chapter>
1221<!-- End Howto Interfaces -->
1222
1223<chapter id="howto-signals">
1224  <title>How to create and use signals</title>
1225
1226  <para>
1227    The signal system which was built in GType is pretty complex and
1228    flexible: it is possible for its users to connect at runtime any
1229    number of callbacks (implemented in any language for which a binding
1230    exists)
1231    <footnote>
1232      <para>A Python callback can be connected to any signal on any
1233      C-based GObject.
1234      </para>
1235    </footnote>
1236    to any signal and to stop the emission of any signal at any
1237    state of the signal emission process. This flexibility makes it
1238    possible to use GSignal for much more than just emit signals which
1239    can be received by numerous clients.
1240  </para>
1241
1242  <sect1 id="howto-simple-signals">
1243    <title>Simple use of signals</title>
1244
1245    <para>
1246      The most basic use of signals is to implement simple event
1247      notification: for example, if we have a MamanFile object, and
1248      if this object has a write method, we might wish to be notified
1249      whenever someone has changed something via our MamanFile instance.
1250      The code below shows how the user can connect a callback to the
1251      "changed" signal.
1252<programlisting>
1253file = g_object_new (MAMAN_FILE_TYPE, NULL);
1254
1255g_signal_connect (file, "changed", G_CALLBACK (changed_event), NULL);
1256
1257maman_file_write (file, buffer, strlen (buffer));
1258</programlisting>
1259    </para>
1260
1261    <para>
1262      The <type>MamanFile</type> signal is registered in the class_init
1263      function:
1264<programlisting>
1265file_signals[CHANGED] =
1266  g_signal_newv ("changed",
1267                 G_TYPE_FROM_CLASS (gobject_class),
1268                 G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
1269                 NULL /* closure */,
1270                 NULL /* accumulator */,
1271                 NULL /* accumulator data */,
1272                 g_cclosure_marshal_VOID__VOID,
1273                 G_TYPE_NONE /* return_type */,
1274                 0     /* n_params */,
1275                 NULL  /* param_types */);
1276</programlisting>
1277      and the signal is emitted in <function>maman_file_write</function>:
1278<programlisting>
1279void
1280maman_file_write (MamanFile    *self,
1281                  const guchar *buffer,
1282                  gssize        size)
1283{
1284  /* First write data. */
1285
1286  /* Then, notify user of data written. */
1287  g_signal_emit (self, file_signals[CHANGED], 0 /* details */);
1288}
1289</programlisting>
1290      As shown above, you can safely set the details parameter to zero if
1291      you do not know what it can be used for. For a discussion of what you
1292      could used it for, see <xref linkend="signal-detail"/>
1293    </para>
1294
1295    <para>
1296      The signature of the signal handler in the above example is defined as
1297      <function>g_cclosure_marshal_VOID__VOID</function>. Its name follows
1298      a simple convention which encodes the function parameter and return value
1299      types in the function name. Specifically, the value in front of the
1300      double underscore is the type of the return value, while the value(s)
1301      after the double underscore denote the parameter types.
1302    </para>
1303
1304    <para>
1305      The header <filename>gobject/gmarshal.h</filename> defines a set of
1306      commonly needed closures that one can use. If you want to have complex
1307      marshallers for your signals you should probably use glib-genmarshal
1308      to autogenerate them from a file containing their return and
1309      parameter types.
1310    </para>
1311  </sect1>
1312
1313<!--
1314  this is utterly wrong and should be completely removed - or rewritten
1315  with a better example than writing a buffer using synchronous signals.
1316
1317  <sect1>
1318    <title>How to provide more flexibility to users?</title>
1319
1320    <para>
1321      The previous implementation does the job but the signal facility of
1322      GObject can be used to provide even more flexibility to this file
1323      change notification mechanism. One of the key ideas is to make the
1324      process of writing data to the file part of the signal emission
1325      process to allow users to be notified either before or after the
1326      data is written to the file.
1327    </para>
1328
1329    <para>
1330      To integrate the process of writing the data to the file into the
1331      signal emission mechanism, we can register a default class closure
1332      for this signal which will be invoked during the signal emission,
1333      just like any other user-connected signal handler.
1334    </para>
1335
1336    <para>
1337      The first step to implement this idea is to change the signature of
1338      the signal: we need to pass around the buffer to write and its size.
1339      To do this, we use our own marshaller which will be generated
1340      through GLib's glib-genmarshal tool. We thus create a file named <filename>marshall.list</filename> which contains
1341      the following single line:
1342<programlisting>
1343VOID:POINTER,UINT
1344</programlisting>
1345      and use the Makefile provided in <filename>sample/signal/Makefile</filename> to generate the file named
1346      <filename>maman-file-complex-marshall.c</filename>. This C file is finally included in
1347      <filename>maman-file-complex.c</filename>.
1348    </para>
1349
1350    <para>
1351      Once the marshaller is present, we register the signal and its marshaller in the class_init function
1352      of the object <type>MamanFileComplex</type> (full source for this object is included in
1353      <filename>sample/signal/maman-file-complex.{h|c}</filename>):
1354<programlisting>
1355GClosure *default_closure;
1356GType param_types[2];
1357
1358default_closure = g_cclosure_new (G_CALLBACK (default_write_signal_handler),
1359                                  (gpointer)0xdeadbeaf /* user_data */,
1360                                  NULL /* destroy_data */);
1361
1362param_types[0] = G_TYPE_POINTER;
1363param_types[1] = G_TYPE_UINT;
1364klass->write_signal_id =
1365  g_signal_newv ("write",
1366                 G_TYPE_FROM_CLASS (g_class),
1367                 G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
1368                 default_closure /* class closure */,
1369                 NULL /* accumulator */,
1370                 NULL /* accu_data */,
1371                 maman_file_complex_VOID__POINTER_UINT,
1372                 G_TYPE_NONE /* return_type */,
1373                 2     /* n_params */,
1374                 param_types /* param_types */);
1375</programlisting>
1376      The code shown above first creates the closure which contains the code to complete the file write. This
1377      closure is registered as the default class_closure of the newly created signal.
1378    </para>
1379
1380    <para>
1381      Of course, you need to implement completely the code for the default closure since I just provided
1382      a skeleton:
1383<programlisting>
1384static void
1385default_write_signal_handler (GObject *obj, guint8 *buffer, guint size, gpointer user_data)
1386{
1387  g_assert (user_data == (gpointer)0xdeadbeaf);
1388  /* Here, we trigger the real file write. */
1389  g_print ("default signal handler: 0x%x %u\n", buffer, size);
1390}
1391</programlisting>
1392    </para>
1393
1394    <para>
1395      Finally, the client code must invoke the <function>maman_file_complex_write</function> function which
1396      triggers the signal emission:
1397<programlisting>
1398void maman_file_complex_write (MamanFileComplex *self, guint8 *buffer, guint size)
1399{
1400  /* trigger event */
1401  g_signal_emit (self,
1402                 MAMAN_FILE_COMPLEX_GET_CLASS (self)->write_signal_id,
1403                 0, /* details */
1404                 buffer, size);
1405}
1406</programlisting>
1407    </para>
1408
1409    <para>
1410      The client code (as shown in <filename>sample/signal/test.c</filename> and below) can now connect signal handlers before
1411      and after the file write is completed: since the default signal handler which does the write itself runs during the
1412      RUN_LAST phase of the signal emission, it will run after all handlers connected with <function><link linkend="g-signal-connect">g_signal_connect</link></function>
1413      and before all handlers connected with <function><link linkend="g-signal-connect-after">g_signal_connect_after</link></function>. If you intent to write a GObject
1414      which emits signals, I would thus urge you to create all your signals with the G_SIGNAL_RUN_LAST such that your users
1415      have a maximum of flexibility as to when to get the event. Here, we combined it with G_SIGNAL_NO_RECURSE and
1416      G_SIGNAL_NO_HOOKS to ensure our users will not try to do really weird things with our GObject. I strongly advise you
1417      to do the same unless you really know why (in which case you really know the inner workings of GSignal by heart and
1418      you are not reading this).
1419    </para>
1420
1421    <para>
1422<programlisting>
1423static void complex_write_event_before (GObject *file, guint8 *buffer, guint size, gpointer user_data)
1424{
1425  g_assert (user_data == NULL);
1426  g_print ("Complex Write event before: 0x%x, %u\n", buffer, size);
1427}
1428
1429static void complex_write_event_after (GObject *file, guint8 *buffer, guint size, gpointer user_data)
1430{
1431  g_assert (user_data == NULL);
1432  g_print ("Complex Write event after: 0x%x, %u\n", buffer, size);
1433}
1434
1435static void test_file_complex (void)
1436{
1437  guint8 buffer[100];
1438  GObject *file;
1439
1440  file = g_object_new (MAMAN_FILE_COMPLEX_TYPE, NULL);
1441
1442  g_signal_connect (G_OBJECT (file), "write",
1443                    (GCallback)complex_write_event_before,
1444                    NULL);
1445
1446  g_signal_connect_after (G_OBJECT (file), "write",
1447                          (GCallback)complex_write_event_after,
1448                          NULL);
1449
1450  maman_file_complex_write (MAMAN_FILE_COMPLEX (file), buffer, 50);
1451
1452  g_object_unref (G_OBJECT (file));
1453}
1454</programlisting>
1455      The code above generates the following output on my machine:
1456<programlisting>
1457Complex Write event before: 0xbfffe280, 50
1458default signal handler: 0xbfffe280 50
1459Complex Write event after: 0xbfffe280, 50
1460</programlisting>
1461    </para>
1462
1463-->
1464
1465<!--
1466  this is also utterly wrong on so many levels that I don't even want
1467  to enumerate them. it's also full of completely irrelevant footnotes
1468  about personal preferences demonstrating a severe lack of whatsoever
1469  clue. the whole idea of storing the signal ids inside the Class
1470  structure is so fundamentally flawed that I'll require a frontal
1471  lobotomy just to forget I've ever seen it.
1472
1473    <sect2>
1474    <title>How most people do the same thing with less code</title>
1475
1476      <para>For many historic reasons related to how the ancestor of GObject used to work in GTK+ 1.x versions,
1477        there is a much <emphasis>simpler</emphasis>
1478        <footnote>
1479          <para>I personally think that this method is horribly mind-twisting: it adds a new indirection
1480          which unnecessarily complicates the overall code path. However, because this method is widely used
1481          by all of GTK+ and GObject code, readers need to understand it. The reason why this is done that way
1482          in most of GTK+ is related to the fact that the ancestor of GObject did not provide any other way to
1483          create a signal with a default handler than this one. Some people have tried to justify that it is done
1484          that way because it is better, faster (I am extremely doubtful about the faster bit. As a matter of fact,
1485          the better bit also mystifies me ;-). I have the feeling no one really knows and everyone does it
1486          because they copy/pasted code from code which did the same. It is probably better to leave this
1487          specific trivia to hacker legends domain...
1488          </para>
1489        </footnote>
1490        way to create a signal with a default handler than to create
1491        a closure by hand and to use the <function><link linkend="g-signal-newv">g_signal_newv</link></function>.
1492      </para>
1493
1494      <para>For example, <function><link linkend="g-signal-new">g_signal_new</link></function> can be used to create a signal which uses a default
1495        handler which is stored in the class structure of the object. More specifically, the class structure
1496        contains a function pointer which is accessed during signal emission to invoke the default handler and
1497        the user is expected to provide to <function><link linkend="g-signal-new">g_signal_new</link></function> the offset from the start of the
1498        class structure to the function pointer.
1499          <footnote>
1500            <para>I would like to point out here that the reason why the default handler of a signal is named everywhere
1501             a class_closure is probably related to the fact that it used to be really a function pointer stored in
1502             the class structure.
1503            </para>
1504          </footnote>
1505      </para>
1506
1507      <para>The following code shows the declaration of the <type>MamanFileSimple</type> class structure which contains
1508        the <function>write</function> function pointer.
1509<programlisting>
1510struct _MamanFileSimpleClass {
1511  GObjectClass parent;
1512
1513  guint write_signal_id;
1514
1515  /* signal default handlers */
1516  void (*write) (MamanFileSimple *self, guint8 *buffer, guint size);
1517};
1518</programlisting>
1519        The <function>write</function> function pointer is initialized in the class_init function of the object
1520        to <function>default_write_signal_handler</function>:
1521<programlisting>
1522static void
1523maman_file_simple_class_init (gpointer g_class,
1524                               gpointer g_class_data)
1525{
1526  GObjectClass *gobject_class = G_OBJECT_CLASS (g_class);
1527  MamanFileSimpleClass *klass = MAMAN_FILE_SIMPLE_CLASS (g_class);
1528
1529  klass->write = default_write_signal_handler;
1530</programlisting>
1531        Finally, the signal is created with <function><link linkend="g-signal-new">g_signal_new</link></function> in the same class_init function:
1532<programlisting>
1533klass->write_signal_id =
1534 g_signal_new ("write",
1535               G_TYPE_FROM_CLASS (g_class),
1536               G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
1537               G_STRUCT_OFFSET (MamanFileSimpleClass, write),
1538               NULL /* accumulator */,
1539               NULL /* accu_data */,
1540               maman_file_complex_VOID__POINTER_UINT,
1541               G_TYPE_NONE /* return_type */,
1542               2     /* n_params */,
1543               G_TYPE_POINTER,
1544               G_TYPE_UINT);
1545</programlisting>
1546        Of note, here, is the 4th argument to the function: it is an integer calculated by the <function><link linkend="G-STRUCT-OFFSET">G_STRUCT_OFFSET</link></function>
1547        macro which indicates the offset of the member <emphasis>write</emphasis> from the start of the
1548        <type>MamanFileSimpleClass</type> class structure.
1549        <footnote>
1550          <para>GSignal uses this offset to create a special wrapper closure
1551           which first retrieves the target function pointer before calling it.
1552          </para>
1553        </footnote>
1554     </para>
1555
1556     <para>
1557       While the complete code for this type of default handler looks less cluttered as shown in
1558       <filename>sample/signal/maman-file-simple.{h|c}</filename>, it contains numerous subtleties.
1559       The main subtle point which everyone must be aware of is that the signature of the default
1560       handler created that way does not have a user_data argument:
1561       <function>default_write_signal_handler</function> is different in
1562       <filename>sample/signal/maman-file-complex.c</filename> and in
1563       <filename>sample/signal/maman-file-simple.c</filename>.
1564     </para>
1565
1566     <para>If you have doubts about which method to use, I would advise you to use the second one which
1567       involves <function><link linkend="g-signal-new">g_signal_new</link></function> rather than <function><link linkend="g-signal-newv">g_signal_newv</link></function>:
1568       it is better to write code which looks like the vast majority of other GTK+/GObject code than to
1569       do it your own way. However, now, you know why.
1570     </para>
1571
1572   </sect2>
1573
1574  </sect1>
1575-->
1576
1577<!--
1578  yet another pointless section. if we are scared of possible abuses
1579  from the users then we should not be mentioning it inside a tutorial
1580  for beginners. but, obviously, there's nothing to be afraid of - it's
1581  just that this section must be completely reworded.
1582
1583  <sect1>
1584    <title>How users can abuse signals (and why some think it is good)</title>
1585
1586    <para>Now that you know how to create signals to which the users can connect easily and at any point in
1587      the signal emission process thanks to <function><link linkend="g-signal-connect">g_signal_connect</link></function>,
1588      <function><link linkend="g-signal-connect-after">g_signal_connect_after</link></function> and G_SIGNAL_RUN_LAST, it is time to look into how your
1589      users can and will screw you. This is also interesting to know how you too, can screw other people.
1590      This will make you feel good and eleet.
1591    </para>
1592
1593    <para>
1594      The users can:
1595      <itemizedlist>
1596         <listitem><para>stop the emission of the signal at anytime</para></listitem>
1597         <listitem><para>override the default handler of the signal if it is stored as a function
1598           pointer in the class structure (which is the preferred way to create a default signal handler,
1599           as discussed in the previous section).</para></listitem>
1600       </itemizedlist>
1601    </para>
1602
1603    <para>
1604      In both cases, the original programmer should be as careful as possible to write code which is
1605      resistant to the fact that the default handler of the signal might not able to run. This is obviously
1606      not the case in the example used in the previous sections since the write to the file depends on whether
1607      or not the default handler runs (however, this might be your goal: to allow the user to prevent the file
1608      write if he wishes to).
1609    </para>
1610
1611    <para>
1612      If all you want to do is to stop the signal emission from one of the callbacks you connected yourself,
1613      you can call <function><link linkend="g-signal-stop-by-name">g_signal_stop_by_name</link></function>. Its use is very simple which is why I won't detail
1614      it further.
1615    </para>
1616
1617    <para>
1618      If the signal's default handler is just a class function pointer, it is also possible to override
1619      it yourself from the class_init function of a type which derives from the parent. That way, when the signal
1620      is emitted, the parent class will use the function provided by the child as a signal default handler.
1621      Of course, it is also possible (and recommended) to chain up from the child to the parent's default signal
1622      handler to ensure the integrity of the parent object.
1623    </para>
1624
1625    <para>
1626      Overriding a class method and chaining up was demonstrated in <xref linkend="howto-gobject-methods"/>
1627      which is why I won't bother to show exactly how to do it here again.
1628    </para>
1629
1630  </sect1>
1631
1632-->
1633
1634</chapter>
1635
1636<!--
1637  <sect2>
1638    <title>Warning on signal creation and default closure</title>
1639
1640    <para>
1641      Most of the existing code I have seen up to now (in both GTK+, GNOME libraries and
1642      many GTK+ and GNOME applications) using signals uses a small
1643      variation of the default handler pattern I have shown in the previous section.
1644    </para>
1645
1646    <para>
1647      Usually, the <function><link linkend="g-signal-new">g_signal_new</link></function> function is preferred over
1648      <function><link linkend="g-signal-newv">g_signal_newv</link></function>. When <function><link linkend="g-signal-new">g_signal_new</link></function>
1649      is used, the default closure is exported as a class function. For example,
1650      <filename>gobject.h</filename> contains the declaration of <type><link linkend="GObjectClass">GObjectClass</link></type>
1651      whose notify class function is the default handler for the <emphasis>notify</emphasis>
1652      signal:
1653<programlisting>
1654struct  _GObjectClass
1655{
1656  GTypeClass   g_type_class;
1657
1658  /* class methods and other stuff. */
1659
1660  /* signals */
1661  void (*notify) (GObject     *object,
1662                  GParamSpec  *pspec);
1663};
1664</programlisting>
1665     </para>
1666
1667     <para>
1668       <filename>gobject.c</filename>'s <function><link linkend="g-object-do-class-init">g_object_do_class_init</link></function> function
1669       registers the <emphasis>notify</emphasis> signal and initializes this class function
1670       to NULL:
1671<programlisting>
1672static void
1673g_object_do_class_init (GObjectClass *class)
1674{
1675
1676  /* Stuff */
1677
1678  class->notify = NULL;
1679
1680  gobject_signals[NOTIFY] =
1681    g_signal_new ("notify",
1682                  G_TYPE_FROM_CLASS (class),
1683                  G_SIGNAL_RUN_FIRST | G_SIGNAL_NO_RECURSE | G_SIGNAL_DETAILED | G_SIGNAL_NO_HOOKS,
1684                  G_STRUCT_OFFSET (GObjectClass, notify),
1685                  NULL, NULL,
1686                  g_cclosure_marshal_VOID__PARAM,
1687                  G_TYPE_NONE,
1688                  1, G_TYPE_PARAM);
1689}
1690</programlisting>
1691       <function><link linkend="g-signal-new">g_signal_new</link></function> creates a <type><link linkend="GClosure">GClosure</link></type> which dereferences the
1692       type's class structure to access the class function pointer and invoke it if it not NULL. The
1693       class function is ignored it is set to NULL.
1694     </para>
1695
1696     <para>
1697       To understand the reason for such a complex scheme to access the signal's default handler,
1698       you must remember the whole reason for the use of these signals. The goal here is to delegate
1699       a part of the process to the user without requiring the user to subclass the object to override
1700       one of the class functions. The alternative to subclassing, that is, the use of signals
1701       to delegate processing to the user, is, however, a bit less optimal in terms of speed: rather
1702       than just dereferencing a function pointer in a class structure, you must start the whole
1703       process of signal emission which is a bit heavyweight.
1704     </para>
1705
1706     <para>
1707       This is why some people decided to use class functions for some signal's default handlers:
1708       rather than having users connect a handler to the signal and stop the signal emission
1709       from within that handler, you just need to override the default class function which is
1710       supposedly more efficient.
1711     </para>
1712
1713    </sect2>
1714-->
1715
1716