• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_pump_glib.h"
6 
7 #include <fcntl.h>
8 #include <math.h>
9 
10 #include <gtk/gtk.h>
11 #include <glib.h>
12 
13 #include "base/eintr_wrapper.h"
14 #include "base/logging.h"
15 #include "base/threading/platform_thread.h"
16 
17 namespace {
18 
19 // We send a byte across a pipe to wakeup the event loop.
20 const char kWorkScheduled = '\0';
21 
22 // Return a timeout suitable for the glib loop, -1 to block forever,
23 // 0 to return right away, or a timeout in milliseconds from now.
GetTimeIntervalMilliseconds(const base::TimeTicks & from)24 int GetTimeIntervalMilliseconds(const base::TimeTicks& from) {
25   if (from.is_null())
26     return -1;
27 
28   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
29   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
30   // 6?  It should be 6 to avoid executing delayed work too early.
31   int delay = static_cast<int>(
32       ceil((from - base::TimeTicks::Now()).InMillisecondsF()));
33 
34   // If this value is negative, then we need to run delayed work soon.
35   return delay < 0 ? 0 : delay;
36 }
37 
38 // A brief refresher on GLib:
39 //     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40 // On each iteration of the GLib pump, it calls each source's Prepare function.
41 // This function should return TRUE if it wants GLib to call its Dispatch, and
42 // FALSE otherwise.  It can also set a timeout in this case for the next time
43 // Prepare should be called again (it may be called sooner).
44 //     After the Prepare calls, GLib does a poll to check for events from the
45 // system.  File descriptors can be attached to the sources.  The poll may block
46 // if none of the Prepare calls returned TRUE.  It will block indefinitely, or
47 // by the minimum time returned by a source in Prepare.
48 //     After the poll, GLib calls Check for each source that returned FALSE
49 // from Prepare.  The return value of Check has the same meaning as for Prepare,
50 // making Check a second chance to tell GLib we are ready for Dispatch.
51 //     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
52 // returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
53 // (i.e., you can call Run from them), but Prepare and Check cannot.
54 //     Finalize is called when the source is destroyed.
55 // NOTE: It is common for subsytems to want to process pending events while
56 // doing intensive work, for example the flash plugin. They usually use the
57 // following pattern (recommended by the GTK docs):
58 // while (gtk_events_pending()) {
59 //   gtk_main_iteration();
60 // }
61 //
62 // gtk_events_pending just calls g_main_context_pending, which does the
63 // following:
64 // - Call prepare on all the sources.
65 // - Do the poll with a timeout of 0 (not blocking).
66 // - Call check on all the sources.
67 // - *Does not* call dispatch on the sources.
68 // - Return true if any of prepare() or check() returned true.
69 //
70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
71 // thing, respecting the timeout for the poll (and block, although it is
72 // expected not to if gtk_events_pending returned true), and call dispatch.
73 //
74 // Thus it is important to only return true from prepare or check if we
75 // actually have events or work to do. We also need to make sure we keep
76 // internal state consistent so that if prepare/check return true when called
77 // from gtk_events_pending, they will still return true when called right
78 // after, from gtk_main_iteration.
79 //
80 // For the GLib pump we try to follow the Windows UI pump model:
81 // - Whenever we receive a wakeup event or the timer for delayed work expires,
82 // we run DoWork and/or DoDelayedWork. That part will also run in the other
83 // event pumps.
84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85 // loop, around event handling.
86 
87 struct WorkSource : public GSource {
88   base::MessagePumpForUI* pump;
89 };
90 
WorkSourcePrepare(GSource * source,gint * timeout_ms)91 gboolean WorkSourcePrepare(GSource* source,
92                            gint* timeout_ms) {
93   *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94   // We always return FALSE, so that our timeout is honored.  If we were
95   // to return TRUE, the timeout would be considered to be 0 and the poll
96   // would never block.  Once the poll is finished, Check will be called.
97   return FALSE;
98 }
99 
WorkSourceCheck(GSource * source)100 gboolean WorkSourceCheck(GSource* source) {
101   // Only return TRUE if Dispatch should be called.
102   return static_cast<WorkSource*>(source)->pump->HandleCheck();
103 }
104 
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)105 gboolean WorkSourceDispatch(GSource* source,
106                             GSourceFunc unused_func,
107                             gpointer unused_data) {
108 
109   static_cast<WorkSource*>(source)->pump->HandleDispatch();
110   // Always return TRUE so our source stays registered.
111   return TRUE;
112 }
113 
114 // I wish these could be const, but g_source_new wants non-const.
115 GSourceFuncs WorkSourceFuncs = {
116   WorkSourcePrepare,
117   WorkSourceCheck,
118   WorkSourceDispatch,
119   NULL
120 };
121 
122 }  // namespace
123 
124 
125 namespace base {
126 
127 struct MessagePumpForUI::RunState {
128   Delegate* delegate;
129   Dispatcher* dispatcher;
130 
131   // Used to flag that the current Run() invocation should return ASAP.
132   bool should_quit;
133 
134   // Used to count how many Run() invocations are on the stack.
135   int run_depth;
136 
137   // This keeps the state of whether the pump got signaled that there was new
138   // work to be done. Since we eat the message on the wake up pipe as soon as
139   // we get it, we keep that state here to stay consistent.
140   bool has_work;
141 };
142 
MessagePumpForUI()143 MessagePumpForUI::MessagePumpForUI()
144     : state_(NULL),
145       context_(g_main_context_default()),
146       wakeup_gpollfd_(new GPollFD) {
147   // Create our wakeup pipe, which is used to flag when work was scheduled.
148   int fds[2];
149   CHECK_EQ(pipe(fds), 0);
150   wakeup_pipe_read_  = fds[0];
151   wakeup_pipe_write_ = fds[1];
152   wakeup_gpollfd_->fd = wakeup_pipe_read_;
153   wakeup_gpollfd_->events = G_IO_IN;
154 
155   work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
156   static_cast<WorkSource*>(work_source_)->pump = this;
157   g_source_add_poll(work_source_, wakeup_gpollfd_.get());
158   // Use a low priority so that we let other events in the queue go first.
159   g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
160   // This is needed to allow Run calls inside Dispatch.
161   g_source_set_can_recurse(work_source_, TRUE);
162   g_source_attach(work_source_, context_);
163   gdk_event_handler_set(&EventDispatcher, this, NULL);
164 }
165 
~MessagePumpForUI()166 MessagePumpForUI::~MessagePumpForUI() {
167   gdk_event_handler_set(reinterpret_cast<GdkEventFunc>(gtk_main_do_event),
168                         this, NULL);
169   g_source_destroy(work_source_);
170   g_source_unref(work_source_);
171   close(wakeup_pipe_read_);
172   close(wakeup_pipe_write_);
173 }
174 
RunWithDispatcher(Delegate * delegate,Dispatcher * dispatcher)175 void MessagePumpForUI::RunWithDispatcher(Delegate* delegate,
176                                          Dispatcher* dispatcher) {
177 #ifndef NDEBUG
178   // Make sure we only run this on one thread.  GTK only has one message pump
179   // so we can only have one UI loop per process.
180   static base::PlatformThreadId thread_id = base::PlatformThread::CurrentId();
181   DCHECK(thread_id == base::PlatformThread::CurrentId()) <<
182       "Running MessagePumpForUI on two different threads; "
183       "this is unsupported by GLib!";
184 #endif
185 
186   RunState state;
187   state.delegate = delegate;
188   state.dispatcher = dispatcher;
189   state.should_quit = false;
190   state.run_depth = state_ ? state_->run_depth + 1 : 1;
191   state.has_work = false;
192 
193   RunState* previous_state = state_;
194   state_ = &state;
195 
196   // We really only do a single task for each iteration of the loop.  If we
197   // have done something, assume there is likely something more to do.  This
198   // will mean that we don't block on the message pump until there was nothing
199   // more to do.  We also set this to true to make sure not to block on the
200   // first iteration of the loop, so RunAllPending() works correctly.
201   bool more_work_is_plausible = true;
202 
203   // We run our own loop instead of using g_main_loop_quit in one of the
204   // callbacks.  This is so we only quit our own loops, and we don't quit
205   // nested loops run by others.  TODO(deanm): Is this what we want?
206   for (;;) {
207     // Don't block if we think we have more work to do.
208     bool block = !more_work_is_plausible;
209 
210     more_work_is_plausible = RunOnce(context_, block);
211     if (state_->should_quit)
212       break;
213 
214     more_work_is_plausible |= state_->delegate->DoWork();
215     if (state_->should_quit)
216       break;
217 
218     more_work_is_plausible |=
219         state_->delegate->DoDelayedWork(&delayed_work_time_);
220     if (state_->should_quit)
221       break;
222 
223     if (more_work_is_plausible)
224       continue;
225 
226     more_work_is_plausible = state_->delegate->DoIdleWork();
227     if (state_->should_quit)
228       break;
229   }
230 
231   state_ = previous_state;
232 }
233 
RunOnce(GMainContext * context,bool block)234 bool MessagePumpForUI::RunOnce(GMainContext* context, bool block) {
235   // g_main_context_iteration returns true if events have been dispatched.
236   return g_main_context_iteration(context, block);
237 }
238 
239 // Return the timeout we want passed to poll.
HandlePrepare()240 int MessagePumpForUI::HandlePrepare() {
241   // We know we have work, but we haven't called HandleDispatch yet. Don't let
242   // the pump block so that we can do some processing.
243   if (state_ &&  // state_ may be null during tests.
244       state_->has_work)
245     return 0;
246 
247   // We don't think we have work to do, but make sure not to block
248   // longer than the next time we need to run delayed work.
249   return GetTimeIntervalMilliseconds(delayed_work_time_);
250 }
251 
HandleCheck()252 bool MessagePumpForUI::HandleCheck() {
253   if (!state_)  // state_ may be null during tests.
254     return false;
255 
256   // We should only ever have a single message on the wakeup pipe, since we
257   // are only signaled when the queue went from empty to non-empty.  The glib
258   // poll will tell us whether there was data, so this read shouldn't block.
259   if (wakeup_gpollfd_->revents & G_IO_IN) {
260     char msg;
261     if (HANDLE_EINTR(read(wakeup_pipe_read_, &msg, 1)) != 1 || msg != '!') {
262       NOTREACHED() << "Error reading from the wakeup pipe.";
263     }
264     // Since we ate the message, we need to record that we have more work,
265     // because HandleCheck() may be called without HandleDispatch being called
266     // afterwards.
267     state_->has_work = true;
268   }
269 
270   if (state_->has_work)
271     return true;
272 
273   if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
274     // The timer has expired. That condition will stay true until we process
275     // that delayed work, so we don't need to record this differently.
276     return true;
277   }
278 
279   return false;
280 }
281 
HandleDispatch()282 void MessagePumpForUI::HandleDispatch() {
283   state_->has_work = false;
284   if (state_->delegate->DoWork()) {
285     // NOTE: on Windows at this point we would call ScheduleWork (see
286     // MessagePumpForUI::HandleWorkMessage in message_pump_win.cc). But here,
287     // instead of posting a message on the wakeup pipe, we can avoid the
288     // syscalls and just signal that we have more work.
289     state_->has_work = true;
290   }
291 
292   if (state_->should_quit)
293     return;
294 
295   state_->delegate->DoDelayedWork(&delayed_work_time_);
296 }
297 
AddObserver(Observer * observer)298 void MessagePumpForUI::AddObserver(Observer* observer) {
299   observers_.AddObserver(observer);
300 }
301 
RemoveObserver(Observer * observer)302 void MessagePumpForUI::RemoveObserver(Observer* observer) {
303   observers_.RemoveObserver(observer);
304 }
305 
DispatchEvents(GdkEvent * event)306 void MessagePumpForUI::DispatchEvents(GdkEvent* event) {
307   WillProcessEvent(event);
308   if (state_ && state_->dispatcher) { // state_ may be null during tests.
309     if (!state_->dispatcher->Dispatch(event))
310       state_->should_quit = true;
311   } else {
312     gtk_main_do_event(event);
313   }
314   DidProcessEvent(event);
315 }
316 
Run(Delegate * delegate)317 void MessagePumpForUI::Run(Delegate* delegate) {
318   RunWithDispatcher(delegate, NULL);
319 }
320 
Quit()321 void MessagePumpForUI::Quit() {
322   if (state_) {
323     state_->should_quit = true;
324   } else {
325     NOTREACHED() << "Quit called outside Run!";
326   }
327 }
328 
ScheduleWork()329 void MessagePumpForUI::ScheduleWork() {
330   // This can be called on any thread, so we don't want to touch any state
331   // variables as we would then need locks all over.  This ensures that if
332   // we are sleeping in a poll that we will wake up.
333   char msg = '!';
334   if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
335     NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
336   }
337 }
338 
ScheduleDelayedWork(const TimeTicks & delayed_work_time)339 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
340   // We need to wake up the loop in case the poll timeout needs to be
341   // adjusted.  This will cause us to try to do work, but that's ok.
342   delayed_work_time_ = delayed_work_time;
343   ScheduleWork();
344 }
345 
GetDispatcher()346 MessagePumpForUI::Dispatcher* MessagePumpForUI::GetDispatcher() {
347   return state_ ? state_->dispatcher : NULL;
348 }
349 
WillProcessEvent(GdkEvent * event)350 void MessagePumpForUI::WillProcessEvent(GdkEvent* event) {
351   FOR_EACH_OBSERVER(Observer, observers_, WillProcessEvent(event));
352 }
353 
DidProcessEvent(GdkEvent * event)354 void MessagePumpForUI::DidProcessEvent(GdkEvent* event) {
355   FOR_EACH_OBSERVER(Observer, observers_, DidProcessEvent(event));
356 }
357 
358 // static
EventDispatcher(GdkEvent * event,gpointer data)359 void MessagePumpForUI::EventDispatcher(GdkEvent* event, gpointer data) {
360   MessagePumpForUI* message_pump = reinterpret_cast<MessagePumpForUI*>(data);
361   message_pump->DispatchEvents(event);
362 }
363 
364 }  // namespace base
365