1 // Copyright (c) 2009-2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/sparse_control.h"
6
7 #include "base/format_macros.h"
8 #include "base/logging.h"
9 #include "base/message_loop.h"
10 #include "base/string_util.h"
11 #include "base/stringprintf.h"
12 #include "base/time.h"
13 #include "net/base/io_buffer.h"
14 #include "net/base/net_errors.h"
15 #include "net/disk_cache/backend_impl.h"
16 #include "net/disk_cache/entry_impl.h"
17 #include "net/disk_cache/file.h"
18 #include "net/disk_cache/net_log_parameters.h"
19
20 using base::Time;
21
22 namespace {
23
24 // Stream of the sparse data index.
25 const int kSparseIndex = 2;
26
27 // Stream of the sparse data.
28 const int kSparseData = 1;
29
30 // We can have up to 64k children.
31 const int kMaxMapSize = 8 * 1024;
32
33 // The maximum number of bytes that a child can store.
34 const int kMaxEntrySize = 0x100000;
35
36 // The size of each data block (tracked by the child allocation bitmap).
37 const int kBlockSize = 1024;
38
39 // Returns the name of a child entry given the base_name and signature of the
40 // parent and the child_id.
41 // If the entry is called entry_name, child entries will be named something
42 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
43 // number of the particular child.
GenerateChildName(const std::string & base_name,int64 signature,int64 child_id)44 std::string GenerateChildName(const std::string& base_name, int64 signature,
45 int64 child_id) {
46 return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
47 signature, child_id);
48 }
49
50 // This class deletes the children of a sparse entry.
51 class ChildrenDeleter
52 : public base::RefCounted<ChildrenDeleter>,
53 public disk_cache::FileIOCallback {
54 public:
ChildrenDeleter(disk_cache::BackendImpl * backend,const std::string & name)55 ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
56 : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
57
58 virtual void OnFileIOComplete(int bytes_copied);
59
60 // Two ways of deleting the children: if we have the children map, use Start()
61 // directly, otherwise pass the data address to ReadData().
62 void Start(char* buffer, int len);
63 void ReadData(disk_cache::Addr address, int len);
64
65 private:
66 friend class base::RefCounted<ChildrenDeleter>;
~ChildrenDeleter()67 ~ChildrenDeleter() {}
68
69 void DeleteChildren();
70
71 base::WeakPtr<disk_cache::BackendImpl> backend_;
72 std::string name_;
73 disk_cache::Bitmap children_map_;
74 int64 signature_;
75 scoped_array<char> buffer_;
76 DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
77 };
78
79 // This is the callback of the file operation.
OnFileIOComplete(int bytes_copied)80 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
81 char* buffer = buffer_.release();
82 Start(buffer, bytes_copied);
83 }
84
Start(char * buffer,int len)85 void ChildrenDeleter::Start(char* buffer, int len) {
86 buffer_.reset(buffer);
87 if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
88 return Release();
89
90 // Just copy the information from |buffer|, delete |buffer| and start deleting
91 // the child entries.
92 disk_cache::SparseData* data =
93 reinterpret_cast<disk_cache::SparseData*>(buffer);
94 signature_ = data->header.signature;
95
96 int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
97 children_map_.Resize(num_bits, false);
98 children_map_.SetMap(data->bitmap, num_bits / 32);
99 buffer_.reset();
100
101 DeleteChildren();
102 }
103
ReadData(disk_cache::Addr address,int len)104 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
105 DCHECK(address.is_block_file());
106 if (!backend_)
107 return Release();
108
109 disk_cache::File* file(backend_->File(address));
110 if (!file)
111 return Release();
112
113 size_t file_offset = address.start_block() * address.BlockSize() +
114 disk_cache::kBlockHeaderSize;
115
116 buffer_.reset(new char[len]);
117 bool completed;
118 if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
119 return Release();
120
121 if (completed)
122 OnFileIOComplete(len);
123
124 // And wait until OnFileIOComplete gets called.
125 }
126
DeleteChildren()127 void ChildrenDeleter::DeleteChildren() {
128 int child_id = 0;
129 if (!children_map_.FindNextSetBit(&child_id) || !backend_) {
130 // We are done. Just delete this object.
131 return Release();
132 }
133 std::string child_name = GenerateChildName(name_, signature_, child_id);
134 backend_->SyncDoomEntry(child_name);
135 children_map_.Set(child_id, false);
136
137 // Post a task to delete the next child.
138 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
139 this, &ChildrenDeleter::DeleteChildren));
140 }
141
142 // Returns the NetLog event type corresponding to a SparseOperation.
GetSparseEventType(disk_cache::SparseControl::SparseOperation operation)143 net::NetLog::EventType GetSparseEventType(
144 disk_cache::SparseControl::SparseOperation operation) {
145 switch (operation) {
146 case disk_cache::SparseControl::kReadOperation:
147 return net::NetLog::TYPE_SPARSE_READ;
148 case disk_cache::SparseControl::kWriteOperation:
149 return net::NetLog::TYPE_SPARSE_WRITE;
150 case disk_cache::SparseControl::kGetRangeOperation:
151 return net::NetLog::TYPE_SPARSE_GET_RANGE;
152 default:
153 NOTREACHED();
154 return net::NetLog::TYPE_CANCELLED;
155 }
156 }
157
158 // Logs the end event for |operation| on a child entry. Range operations log
159 // no events for each child they search through.
LogChildOperationEnd(const net::BoundNetLog & net_log,disk_cache::SparseControl::SparseOperation operation,int result)160 void LogChildOperationEnd(const net::BoundNetLog& net_log,
161 disk_cache::SparseControl::SparseOperation operation,
162 int result) {
163 if (net_log.IsLoggingAllEvents()) {
164 net::NetLog::EventType event_type;
165 switch (operation) {
166 case disk_cache::SparseControl::kReadOperation:
167 event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
168 break;
169 case disk_cache::SparseControl::kWriteOperation:
170 event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
171 break;
172 case disk_cache::SparseControl::kGetRangeOperation:
173 return;
174 default:
175 NOTREACHED();
176 return;
177 }
178 net_log.EndEventWithNetErrorCode(event_type, result);
179 }
180 }
181
182 } // namespace.
183
184 namespace disk_cache {
185
SparseControl(EntryImpl * entry)186 SparseControl::SparseControl(EntryImpl* entry)
187 : entry_(entry),
188 child_(NULL),
189 operation_(kNoOperation),
190 init_(false),
191 child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
192 ALLOW_THIS_IN_INITIALIZER_LIST(
193 child_callback_(this, &SparseControl::OnChildIOCompleted)),
194 user_callback_(NULL) {
195 }
196
~SparseControl()197 SparseControl::~SparseControl() {
198 if (child_)
199 CloseChild();
200 if (init_)
201 WriteSparseData();
202 }
203
Init()204 int SparseControl::Init() {
205 DCHECK(!init_);
206
207 // We should not have sparse data for the exposed entry.
208 if (entry_->GetDataSize(kSparseData))
209 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
210
211 // Now see if there is something where we store our data.
212 int rv = net::OK;
213 int data_len = entry_->GetDataSize(kSparseIndex);
214 if (!data_len) {
215 rv = CreateSparseEntry();
216 } else {
217 rv = OpenSparseEntry(data_len);
218 }
219
220 if (rv == net::OK)
221 init_ = true;
222 return rv;
223 }
224
CouldBeSparse() const225 bool SparseControl::CouldBeSparse() const {
226 DCHECK(!init_);
227
228 if (entry_->GetDataSize(kSparseData))
229 return false;
230
231 // We don't verify the data, just see if it could be there.
232 return (entry_->GetDataSize(kSparseIndex) != 0);
233 }
234
StartIO(SparseOperation op,int64 offset,net::IOBuffer * buf,int buf_len,net::CompletionCallback * callback)235 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
236 int buf_len, net::CompletionCallback* callback) {
237 DCHECK(init_);
238 // We don't support simultaneous IO for sparse data.
239 if (operation_ != kNoOperation)
240 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
241
242 if (offset < 0 || buf_len < 0)
243 return net::ERR_INVALID_ARGUMENT;
244
245 // We only support up to 64 GB.
246 if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0)
247 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
248
249 DCHECK(!user_buf_);
250 DCHECK(!user_callback_);
251
252 if (!buf && (op == kReadOperation || op == kWriteOperation))
253 return 0;
254
255 // Copy the operation parameters.
256 operation_ = op;
257 offset_ = offset;
258 user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
259 buf_len_ = buf_len;
260 user_callback_ = callback;
261
262 result_ = 0;
263 pending_ = false;
264 finished_ = false;
265 abort_ = false;
266
267 if (entry_->net_log().IsLoggingAllEvents()) {
268 entry_->net_log().BeginEvent(
269 GetSparseEventType(operation_),
270 make_scoped_refptr(new SparseOperationParameters(offset_, buf_len_)));
271 }
272 DoChildrenIO();
273
274 if (!pending_) {
275 // Everything was done synchronously.
276 operation_ = kNoOperation;
277 user_buf_ = NULL;
278 user_callback_ = NULL;
279 return result_;
280 }
281
282 return net::ERR_IO_PENDING;
283 }
284
GetAvailableRange(int64 offset,int len,int64 * start)285 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
286 DCHECK(init_);
287 // We don't support simultaneous IO for sparse data.
288 if (operation_ != kNoOperation)
289 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
290
291 DCHECK(start);
292
293 range_found_ = false;
294 int result = StartIO(kGetRangeOperation, offset, NULL, len, NULL);
295 if (range_found_) {
296 *start = offset_;
297 return result;
298 }
299
300 // This is a failure. We want to return a valid start value in any case.
301 *start = offset;
302 return result < 0 ? result : 0; // Don't mask error codes to the caller.
303 }
304
CancelIO()305 void SparseControl::CancelIO() {
306 if (operation_ == kNoOperation)
307 return;
308 abort_ = true;
309 }
310
ReadyToUse(net::CompletionCallback * completion_callback)311 int SparseControl::ReadyToUse(net::CompletionCallback* completion_callback) {
312 if (!abort_)
313 return net::OK;
314
315 // We'll grab another reference to keep this object alive because we just have
316 // one extra reference due to the pending IO operation itself, but we'll
317 // release that one before invoking user_callback_.
318 entry_->AddRef(); // Balanced in DoAbortCallbacks.
319 abort_callbacks_.push_back(completion_callback);
320 return net::ERR_IO_PENDING;
321 }
322
323 // Static
DeleteChildren(EntryImpl * entry)324 void SparseControl::DeleteChildren(EntryImpl* entry) {
325 DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
326 int data_len = entry->GetDataSize(kSparseIndex);
327 if (data_len < static_cast<int>(sizeof(SparseData)) ||
328 entry->GetDataSize(kSparseData))
329 return;
330
331 int map_len = data_len - sizeof(SparseHeader);
332 if (map_len > kMaxMapSize || map_len % 4)
333 return;
334
335 char* buffer;
336 Addr address;
337 entry->GetData(kSparseIndex, &buffer, &address);
338 if (!buffer && !address.is_initialized())
339 return;
340
341 entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN, NULL);
342
343 ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_,
344 entry->GetKey());
345 // The object will self destruct when finished.
346 deleter->AddRef();
347
348 if (buffer) {
349 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
350 deleter, &ChildrenDeleter::Start, buffer, data_len));
351 } else {
352 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
353 deleter, &ChildrenDeleter::ReadData, address, data_len));
354 }
355 }
356
357 // We are going to start using this entry to store sparse data, so we have to
358 // initialize our control info.
CreateSparseEntry()359 int SparseControl::CreateSparseEntry() {
360 if (CHILD_ENTRY & entry_->GetEntryFlags())
361 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
362
363 memset(&sparse_header_, 0, sizeof(sparse_header_));
364 sparse_header_.signature = Time::Now().ToInternalValue();
365 sparse_header_.magic = kIndexMagic;
366 sparse_header_.parent_key_len = entry_->GetKey().size();
367 children_map_.Resize(kNumSparseBits, true);
368
369 // Save the header. The bitmap is saved in the destructor.
370 scoped_refptr<net::IOBuffer> buf(
371 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
372
373 int rv = entry_->WriteData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL,
374 false);
375 if (rv != sizeof(sparse_header_)) {
376 DLOG(ERROR) << "Unable to save sparse_header_";
377 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
378 }
379
380 entry_->SetEntryFlags(PARENT_ENTRY);
381 return net::OK;
382 }
383
384 // We are opening an entry from disk. Make sure that our control data is there.
OpenSparseEntry(int data_len)385 int SparseControl::OpenSparseEntry(int data_len) {
386 if (data_len < static_cast<int>(sizeof(SparseData)))
387 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
388
389 if (entry_->GetDataSize(kSparseData))
390 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
391
392 if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
393 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
394
395 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
396 int map_len = data_len - sizeof(sparse_header_);
397 if (map_len > kMaxMapSize || map_len % 4)
398 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
399
400 scoped_refptr<net::IOBuffer> buf(
401 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
402
403 // Read header.
404 int rv = entry_->ReadData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL);
405 if (rv != static_cast<int>(sizeof(sparse_header_)))
406 return net::ERR_CACHE_READ_FAILURE;
407
408 // The real validation should be performed by the caller. This is just to
409 // double check.
410 if (sparse_header_.magic != kIndexMagic ||
411 sparse_header_.parent_key_len !=
412 static_cast<int>(entry_->GetKey().size()))
413 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
414
415 // Read the actual bitmap.
416 buf = new net::IOBuffer(map_len);
417 rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf, map_len,
418 NULL);
419 if (rv != map_len)
420 return net::ERR_CACHE_READ_FAILURE;
421
422 // Grow the bitmap to the current size and copy the bits.
423 children_map_.Resize(map_len * 8, false);
424 children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
425 return net::OK;
426 }
427
OpenChild()428 bool SparseControl::OpenChild() {
429 DCHECK_GE(result_, 0);
430
431 std::string key = GenerateChildKey();
432 if (child_) {
433 // Keep using the same child or open another one?.
434 if (key == child_->GetKey())
435 return true;
436 CloseChild();
437 }
438
439 // See if we are tracking this child.
440 if (!ChildPresent())
441 return ContinueWithoutChild(key);
442
443 child_ = entry_->backend_->OpenEntryImpl(key);
444 if (!child_)
445 return ContinueWithoutChild(key);
446
447 EntryImpl* child = static_cast<EntryImpl*>(child_);
448 if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
449 child->GetDataSize(kSparseIndex) <
450 static_cast<int>(sizeof(child_data_)))
451 return KillChildAndContinue(key, false);
452
453 scoped_refptr<net::WrappedIOBuffer> buf(
454 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
455
456 // Read signature.
457 int rv = child_->ReadData(kSparseIndex, 0, buf, sizeof(child_data_), NULL);
458 if (rv != sizeof(child_data_))
459 return KillChildAndContinue(key, true); // This is a fatal failure.
460
461 if (child_data_.header.signature != sparse_header_.signature ||
462 child_data_.header.magic != kIndexMagic)
463 return KillChildAndContinue(key, false);
464
465 if (child_data_.header.last_block_len < 0 ||
466 child_data_.header.last_block_len > kBlockSize) {
467 // Make sure these values are always within range.
468 child_data_.header.last_block_len = 0;
469 child_data_.header.last_block = -1;
470 }
471
472 return true;
473 }
474
CloseChild()475 void SparseControl::CloseChild() {
476 scoped_refptr<net::WrappedIOBuffer> buf(
477 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
478
479 // Save the allocation bitmap before closing the child entry.
480 int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
481 NULL, false);
482 if (rv != sizeof(child_data_))
483 DLOG(ERROR) << "Failed to save child data";
484 child_->Release();
485 child_ = NULL;
486 }
487
GenerateChildKey()488 std::string SparseControl::GenerateChildKey() {
489 return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
490 offset_ >> 20);
491 }
492
493 // We are deleting the child because something went wrong.
KillChildAndContinue(const std::string & key,bool fatal)494 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
495 SetChildBit(false);
496 child_->DoomImpl();
497 child_->Release();
498 child_ = NULL;
499 if (fatal) {
500 result_ = net::ERR_CACHE_READ_FAILURE;
501 return false;
502 }
503 return ContinueWithoutChild(key);
504 }
505
506 // We were not able to open this child; see what we can do.
ContinueWithoutChild(const std::string & key)507 bool SparseControl::ContinueWithoutChild(const std::string& key) {
508 if (kReadOperation == operation_)
509 return false;
510 if (kGetRangeOperation == operation_)
511 return true;
512
513 child_ = entry_->backend_->CreateEntryImpl(key);
514 if (!child_) {
515 child_ = NULL;
516 result_ = net::ERR_CACHE_READ_FAILURE;
517 return false;
518 }
519 // Write signature.
520 InitChildData();
521 return true;
522 }
523
ChildPresent()524 bool SparseControl::ChildPresent() {
525 int child_bit = static_cast<int>(offset_ >> 20);
526 if (children_map_.Size() <= child_bit)
527 return false;
528
529 return children_map_.Get(child_bit);
530 }
531
SetChildBit(bool value)532 void SparseControl::SetChildBit(bool value) {
533 int child_bit = static_cast<int>(offset_ >> 20);
534
535 // We may have to increase the bitmap of child entries.
536 if (children_map_.Size() <= child_bit)
537 children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
538
539 children_map_.Set(child_bit, value);
540 }
541
WriteSparseData()542 void SparseControl::WriteSparseData() {
543 scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
544 reinterpret_cast<const char*>(children_map_.GetMap())));
545
546 int len = children_map_.ArraySize() * 4;
547 int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf, len,
548 NULL, false);
549 if (rv != len) {
550 DLOG(ERROR) << "Unable to save sparse map";
551 }
552 }
553
VerifyRange()554 bool SparseControl::VerifyRange() {
555 DCHECK_GE(result_, 0);
556
557 child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
558 child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
559
560 // We can write to (or get info from) anywhere in this child.
561 if (operation_ != kReadOperation)
562 return true;
563
564 // Check that there are no holes in this range.
565 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
566 int start = child_offset_ >> 10;
567 if (child_map_.FindNextBit(&start, last_bit, false)) {
568 // Something is not here.
569 DCHECK_GE(child_data_.header.last_block_len, 0);
570 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
571 int partial_block_len = PartialBlockLength(start);
572 if (start == child_offset_ >> 10) {
573 // It looks like we don't have anything.
574 if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
575 return false;
576 }
577
578 // We have the first part.
579 child_len_ = (start << 10) - child_offset_;
580 if (partial_block_len) {
581 // We may have a few extra bytes.
582 child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
583 }
584 // There is no need to read more after this one.
585 buf_len_ = child_len_;
586 }
587 return true;
588 }
589
UpdateRange(int result)590 void SparseControl::UpdateRange(int result) {
591 if (result <= 0 || operation_ != kWriteOperation)
592 return;
593
594 DCHECK_GE(child_data_.header.last_block_len, 0);
595 DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
596
597 // Write the bitmap.
598 int first_bit = child_offset_ >> 10;
599 int block_offset = child_offset_ & (kBlockSize - 1);
600 if (block_offset && (child_data_.header.last_block != first_bit ||
601 child_data_.header.last_block_len < block_offset)) {
602 // The first block is not completely filled; ignore it.
603 first_bit++;
604 }
605
606 int last_bit = (child_offset_ + result) >> 10;
607 block_offset = (child_offset_ + result) & (kBlockSize - 1);
608
609 // This condition will hit with the following criteria:
610 // 1. The first byte doesn't follow the last write.
611 // 2. The first byte is in the middle of a block.
612 // 3. The first byte and the last byte are in the same block.
613 if (first_bit > last_bit)
614 return;
615
616 if (block_offset && !child_map_.Get(last_bit)) {
617 // The last block is not completely filled; save it for later.
618 child_data_.header.last_block = last_bit;
619 child_data_.header.last_block_len = block_offset;
620 } else {
621 child_data_.header.last_block = -1;
622 }
623
624 child_map_.SetRange(first_bit, last_bit, true);
625 }
626
PartialBlockLength(int block_index) const627 int SparseControl::PartialBlockLength(int block_index) const {
628 if (block_index == child_data_.header.last_block)
629 return child_data_.header.last_block_len;
630
631 // This may be the last stored index.
632 int entry_len = child_->GetDataSize(kSparseData);
633 if (block_index == entry_len >> 10)
634 return entry_len & (kBlockSize - 1);
635
636 // This is really empty.
637 return 0;
638 }
639
InitChildData()640 void SparseControl::InitChildData() {
641 // We know the real type of child_.
642 EntryImpl* child = static_cast<EntryImpl*>(child_);
643 child->SetEntryFlags(CHILD_ENTRY);
644
645 memset(&child_data_, 0, sizeof(child_data_));
646 child_data_.header = sparse_header_;
647
648 scoped_refptr<net::WrappedIOBuffer> buf(
649 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
650
651 int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
652 NULL, false);
653 if (rv != sizeof(child_data_))
654 DLOG(ERROR) << "Failed to save child data";
655 SetChildBit(true);
656 }
657
DoChildrenIO()658 void SparseControl::DoChildrenIO() {
659 while (DoChildIO()) continue;
660
661 // Range operations are finished synchronously, often without setting
662 // |finished_| to true.
663 if (kGetRangeOperation == operation_ &&
664 entry_->net_log().IsLoggingAllEvents()) {
665 entry_->net_log().EndEvent(
666 net::NetLog::TYPE_SPARSE_GET_RANGE,
667 make_scoped_refptr(
668 new GetAvailableRangeResultParameters(offset_, result_)));
669 }
670 if (finished_) {
671 if (kGetRangeOperation != operation_ &&
672 entry_->net_log().IsLoggingAllEvents()) {
673 entry_->net_log().EndEvent(GetSparseEventType(operation_), NULL);
674 }
675 if (pending_)
676 DoUserCallback();
677 }
678 }
679
DoChildIO()680 bool SparseControl::DoChildIO() {
681 finished_ = true;
682 if (!buf_len_ || result_ < 0)
683 return false;
684
685 if (!OpenChild())
686 return false;
687
688 if (!VerifyRange())
689 return false;
690
691 // We have more work to do. Let's not trigger a callback to the caller.
692 finished_ = false;
693 net::CompletionCallback* callback = user_callback_ ? &child_callback_ : NULL;
694
695 int rv = 0;
696 switch (operation_) {
697 case kReadOperation:
698 if (entry_->net_log().IsLoggingAllEvents()) {
699 entry_->net_log().BeginEvent(
700 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
701 make_scoped_refptr(new SparseReadWriteParameters(
702 child_->net_log().source(),
703 child_len_)));
704 }
705 rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_,
706 child_len_, callback);
707 break;
708 case kWriteOperation:
709 if (entry_->net_log().IsLoggingAllEvents()) {
710 entry_->net_log().BeginEvent(
711 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
712 make_scoped_refptr(new SparseReadWriteParameters(
713 child_->net_log().source(),
714 child_len_)));
715 }
716 rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_,
717 child_len_, callback, false);
718 break;
719 case kGetRangeOperation:
720 rv = DoGetAvailableRange();
721 break;
722 default:
723 NOTREACHED();
724 }
725
726 if (rv == net::ERR_IO_PENDING) {
727 if (!pending_) {
728 pending_ = true;
729 // The child will protect himself against closing the entry while IO is in
730 // progress. However, this entry can still be closed, and that would not
731 // be a good thing for us, so we increase the refcount until we're
732 // finished doing sparse stuff.
733 entry_->AddRef(); // Balanced in DoUserCallback.
734 }
735 return false;
736 }
737 if (!rv)
738 return false;
739
740 DoChildIOCompleted(rv);
741 return true;
742 }
743
DoGetAvailableRange()744 int SparseControl::DoGetAvailableRange() {
745 if (!child_)
746 return child_len_; // Move on to the next child.
747
748 // Check that there are no holes in this range.
749 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
750 int start = child_offset_ >> 10;
751 int partial_start_bytes = PartialBlockLength(start);
752 int found = start;
753 int bits_found = child_map_.FindBits(&found, last_bit, true);
754
755 // We don't care if there is a partial block in the middle of the range.
756 int block_offset = child_offset_ & (kBlockSize - 1);
757 if (!bits_found && partial_start_bytes <= block_offset)
758 return child_len_;
759
760 // We are done. Just break the loop and reset result_ to our real result.
761 range_found_ = true;
762
763 // found now points to the first 1. Lets see if we have zeros before it.
764 int empty_start = std::max((found << 10) - child_offset_, 0);
765
766 int bytes_found = bits_found << 10;
767 bytes_found += PartialBlockLength(found + bits_found);
768
769 if (start == found)
770 bytes_found -= block_offset;
771
772 // If the user is searching past the end of this child, bits_found is the
773 // right result; otherwise, we have some empty space at the start of this
774 // query that we have to subtract from the range that we searched.
775 result_ = std::min(bytes_found, child_len_ - empty_start);
776
777 if (!bits_found) {
778 result_ = std::min(partial_start_bytes - block_offset, child_len_);
779 empty_start = 0;
780 }
781
782 // Only update offset_ when this query found zeros at the start.
783 if (empty_start)
784 offset_ += empty_start;
785
786 // This will actually break the loop.
787 buf_len_ = 0;
788 return 0;
789 }
790
DoChildIOCompleted(int result)791 void SparseControl::DoChildIOCompleted(int result) {
792 LogChildOperationEnd(entry_->net_log(), operation_, result);
793 if (result < 0) {
794 // We fail the whole operation if we encounter an error.
795 result_ = result;
796 return;
797 }
798
799 UpdateRange(result);
800
801 result_ += result;
802 offset_ += result;
803 buf_len_ -= result;
804
805 // We'll be reusing the user provided buffer for the next chunk.
806 if (buf_len_ && user_buf_)
807 user_buf_->DidConsume(result);
808 }
809
OnChildIOCompleted(int result)810 void SparseControl::OnChildIOCompleted(int result) {
811 DCHECK_NE(net::ERR_IO_PENDING, result);
812 DoChildIOCompleted(result);
813
814 if (abort_) {
815 // We'll return the current result of the operation, which may be less than
816 // the bytes to read or write, but the user cancelled the operation.
817 abort_ = false;
818 if (entry_->net_log().IsLoggingAllEvents()) {
819 entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED, NULL);
820 entry_->net_log().EndEvent(GetSparseEventType(operation_), NULL);
821 }
822 DoUserCallback();
823 return DoAbortCallbacks();
824 }
825
826 // We are running a callback from the message loop. It's time to restart what
827 // we were doing before.
828 DoChildrenIO();
829 }
830
DoUserCallback()831 void SparseControl::DoUserCallback() {
832 DCHECK(user_callback_);
833 net::CompletionCallback* c = user_callback_;
834 user_callback_ = NULL;
835 user_buf_ = NULL;
836 pending_ = false;
837 operation_ = kNoOperation;
838 entry_->Release(); // Don't touch object after this line.
839 c->Run(result_);
840 }
841
DoAbortCallbacks()842 void SparseControl::DoAbortCallbacks() {
843 for (size_t i = 0; i < abort_callbacks_.size(); i++) {
844 // Releasing all references to entry_ may result in the destruction of this
845 // object so we should not be touching it after the last Release().
846 net::CompletionCallback* c = abort_callbacks_[i];
847 if (i == abort_callbacks_.size() - 1)
848 abort_callbacks_.clear();
849
850 entry_->Release(); // Don't touch object after this line.
851 c->Run(net::OK);
852 }
853 }
854
855 } // namespace disk_cache
856