1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines BugReporter, a utility class for generating
11 // PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Analysis/ProgramPoint.h"
25 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/OwningPtr.h"
30 #include <queue>
31
32 using namespace clang;
33 using namespace ento;
34
~BugReporterVisitor()35 BugReporterVisitor::~BugReporterVisitor() {}
~BugReporterContext()36 BugReporterContext::~BugReporterContext() {
37 for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I)
38 if ((*I)->isOwnedByReporterContext()) delete *I;
39 }
40
addVisitor(BugReporterVisitor * visitor)41 void BugReporterContext::addVisitor(BugReporterVisitor* visitor) {
42 if (!visitor)
43 return;
44
45 llvm::FoldingSetNodeID ID;
46 visitor->Profile(ID);
47 void *InsertPos;
48
49 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
50 delete visitor;
51 return;
52 }
53
54 CallbacksSet.InsertNode(visitor, InsertPos);
55 Callbacks = F.add(visitor, Callbacks);
56 }
57
58 //===----------------------------------------------------------------------===//
59 // Helper routines for walking the ExplodedGraph and fetching statements.
60 //===----------------------------------------------------------------------===//
61
GetStmt(const ProgramPoint & P)62 static inline const Stmt* GetStmt(const ProgramPoint &P) {
63 if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
64 return SP->getStmt();
65 else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P))
66 return BE->getSrc()->getTerminator();
67
68 return 0;
69 }
70
71 static inline const ExplodedNode*
GetPredecessorNode(const ExplodedNode * N)72 GetPredecessorNode(const ExplodedNode* N) {
73 return N->pred_empty() ? NULL : *(N->pred_begin());
74 }
75
76 static inline const ExplodedNode*
GetSuccessorNode(const ExplodedNode * N)77 GetSuccessorNode(const ExplodedNode* N) {
78 return N->succ_empty() ? NULL : *(N->succ_begin());
79 }
80
GetPreviousStmt(const ExplodedNode * N)81 static const Stmt* GetPreviousStmt(const ExplodedNode* N) {
82 for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
83 if (const Stmt *S = GetStmt(N->getLocation()))
84 return S;
85
86 return 0;
87 }
88
GetNextStmt(const ExplodedNode * N)89 static const Stmt* GetNextStmt(const ExplodedNode* N) {
90 for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
91 if (const Stmt *S = GetStmt(N->getLocation())) {
92 // Check if the statement is '?' or '&&'/'||'. These are "merges",
93 // not actual statement points.
94 switch (S->getStmtClass()) {
95 case Stmt::ChooseExprClass:
96 case Stmt::BinaryConditionalOperatorClass: continue;
97 case Stmt::ConditionalOperatorClass: continue;
98 case Stmt::BinaryOperatorClass: {
99 BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
100 if (Op == BO_LAnd || Op == BO_LOr)
101 continue;
102 break;
103 }
104 default:
105 break;
106 }
107
108 // Some expressions don't have locations.
109 if (S->getLocStart().isInvalid())
110 continue;
111
112 return S;
113 }
114
115 return 0;
116 }
117
118 static inline const Stmt*
GetCurrentOrPreviousStmt(const ExplodedNode * N)119 GetCurrentOrPreviousStmt(const ExplodedNode* N) {
120 if (const Stmt *S = GetStmt(N->getLocation()))
121 return S;
122
123 return GetPreviousStmt(N);
124 }
125
126 static inline const Stmt*
GetCurrentOrNextStmt(const ExplodedNode * N)127 GetCurrentOrNextStmt(const ExplodedNode* N) {
128 if (const Stmt *S = GetStmt(N->getLocation()))
129 return S;
130
131 return GetNextStmt(N);
132 }
133
134 //===----------------------------------------------------------------------===//
135 // PathDiagnosticBuilder and its associated routines and helper objects.
136 //===----------------------------------------------------------------------===//
137
138 typedef llvm::DenseMap<const ExplodedNode*,
139 const ExplodedNode*> NodeBackMap;
140
141 namespace {
142 class NodeMapClosure : public BugReport::NodeResolver {
143 NodeBackMap& M;
144 public:
NodeMapClosure(NodeBackMap * m)145 NodeMapClosure(NodeBackMap *m) : M(*m) {}
~NodeMapClosure()146 ~NodeMapClosure() {}
147
getOriginalNode(const ExplodedNode * N)148 const ExplodedNode* getOriginalNode(const ExplodedNode* N) {
149 NodeBackMap::iterator I = M.find(N);
150 return I == M.end() ? 0 : I->second;
151 }
152 };
153
154 class PathDiagnosticBuilder : public BugReporterContext {
155 BugReport *R;
156 PathDiagnosticClient *PDC;
157 llvm::OwningPtr<ParentMap> PM;
158 NodeMapClosure NMC;
159 public:
PathDiagnosticBuilder(GRBugReporter & br,BugReport * r,NodeBackMap * Backmap,PathDiagnosticClient * pdc)160 PathDiagnosticBuilder(GRBugReporter &br,
161 BugReport *r, NodeBackMap *Backmap,
162 PathDiagnosticClient *pdc)
163 : BugReporterContext(br),
164 R(r), PDC(pdc), NMC(Backmap) {
165 addVisitor(R);
166 }
167
168 PathDiagnosticLocation ExecutionContinues(const ExplodedNode* N);
169
170 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream& os,
171 const ExplodedNode* N);
172
getCodeDecl()173 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
174
getParentMap()175 ParentMap& getParentMap() { return R->getErrorNode()->getParentMap(); }
176
getParent(const Stmt * S)177 const Stmt *getParent(const Stmt *S) {
178 return getParentMap().getParent(S);
179 }
180
getNodeResolver()181 virtual NodeMapClosure& getNodeResolver() { return NMC; }
182
183 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
184
getGenerationScheme() const185 PathDiagnosticClient::PathGenerationScheme getGenerationScheme() const {
186 return PDC ? PDC->getGenerationScheme() : PathDiagnosticClient::Extensive;
187 }
188
supportsLogicalOpControlFlow() const189 bool supportsLogicalOpControlFlow() const {
190 return PDC ? PDC->supportsLogicalOpControlFlow() : true;
191 }
192 };
193 } // end anonymous namespace
194
195 PathDiagnosticLocation
ExecutionContinues(const ExplodedNode * N)196 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode* N) {
197 if (const Stmt *S = GetNextStmt(N))
198 return PathDiagnosticLocation(S, getSourceManager());
199
200 return FullSourceLoc(N->getLocationContext()->getDecl()->getBodyRBrace(),
201 getSourceManager());
202 }
203
204 PathDiagnosticLocation
ExecutionContinues(llvm::raw_string_ostream & os,const ExplodedNode * N)205 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream& os,
206 const ExplodedNode* N) {
207
208 // Slow, but probably doesn't matter.
209 if (os.str().empty())
210 os << ' ';
211
212 const PathDiagnosticLocation &Loc = ExecutionContinues(N);
213
214 if (Loc.asStmt())
215 os << "Execution continues on line "
216 << getSourceManager().getInstantiationLineNumber(Loc.asLocation())
217 << '.';
218 else {
219 os << "Execution jumps to the end of the ";
220 const Decl *D = N->getLocationContext()->getDecl();
221 if (isa<ObjCMethodDecl>(D))
222 os << "method";
223 else if (isa<FunctionDecl>(D))
224 os << "function";
225 else {
226 assert(isa<BlockDecl>(D));
227 os << "anonymous block";
228 }
229 os << '.';
230 }
231
232 return Loc;
233 }
234
IsNested(const Stmt * S,ParentMap & PM)235 static bool IsNested(const Stmt *S, ParentMap &PM) {
236 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
237 return true;
238
239 const Stmt *Parent = PM.getParentIgnoreParens(S);
240
241 if (Parent)
242 switch (Parent->getStmtClass()) {
243 case Stmt::ForStmtClass:
244 case Stmt::DoStmtClass:
245 case Stmt::WhileStmtClass:
246 return true;
247 default:
248 break;
249 }
250
251 return false;
252 }
253
254 PathDiagnosticLocation
getEnclosingStmtLocation(const Stmt * S)255 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
256 assert(S && "Null Stmt* passed to getEnclosingStmtLocation");
257 ParentMap &P = getParentMap();
258 SourceManager &SMgr = getSourceManager();
259
260 while (IsNested(S, P)) {
261 const Stmt *Parent = P.getParentIgnoreParens(S);
262
263 if (!Parent)
264 break;
265
266 switch (Parent->getStmtClass()) {
267 case Stmt::BinaryOperatorClass: {
268 const BinaryOperator *B = cast<BinaryOperator>(Parent);
269 if (B->isLogicalOp())
270 return PathDiagnosticLocation(S, SMgr);
271 break;
272 }
273 case Stmt::CompoundStmtClass:
274 case Stmt::StmtExprClass:
275 return PathDiagnosticLocation(S, SMgr);
276 case Stmt::ChooseExprClass:
277 // Similar to '?' if we are referring to condition, just have the edge
278 // point to the entire choose expression.
279 if (cast<ChooseExpr>(Parent)->getCond() == S)
280 return PathDiagnosticLocation(Parent, SMgr);
281 else
282 return PathDiagnosticLocation(S, SMgr);
283 case Stmt::BinaryConditionalOperatorClass:
284 case Stmt::ConditionalOperatorClass:
285 // For '?', if we are referring to condition, just have the edge point
286 // to the entire '?' expression.
287 if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
288 return PathDiagnosticLocation(Parent, SMgr);
289 else
290 return PathDiagnosticLocation(S, SMgr);
291 case Stmt::DoStmtClass:
292 return PathDiagnosticLocation(S, SMgr);
293 case Stmt::ForStmtClass:
294 if (cast<ForStmt>(Parent)->getBody() == S)
295 return PathDiagnosticLocation(S, SMgr);
296 break;
297 case Stmt::IfStmtClass:
298 if (cast<IfStmt>(Parent)->getCond() != S)
299 return PathDiagnosticLocation(S, SMgr);
300 break;
301 case Stmt::ObjCForCollectionStmtClass:
302 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
303 return PathDiagnosticLocation(S, SMgr);
304 break;
305 case Stmt::WhileStmtClass:
306 if (cast<WhileStmt>(Parent)->getCond() != S)
307 return PathDiagnosticLocation(S, SMgr);
308 break;
309 default:
310 break;
311 }
312
313 S = Parent;
314 }
315
316 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
317
318 // Special case: DeclStmts can appear in for statement declarations, in which
319 // case the ForStmt is the context.
320 if (isa<DeclStmt>(S)) {
321 if (const Stmt *Parent = P.getParent(S)) {
322 switch (Parent->getStmtClass()) {
323 case Stmt::ForStmtClass:
324 case Stmt::ObjCForCollectionStmtClass:
325 return PathDiagnosticLocation(Parent, SMgr);
326 default:
327 break;
328 }
329 }
330 }
331 else if (isa<BinaryOperator>(S)) {
332 // Special case: the binary operator represents the initialization
333 // code in a for statement (this can happen when the variable being
334 // initialized is an old variable.
335 if (const ForStmt *FS =
336 dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
337 if (FS->getInit() == S)
338 return PathDiagnosticLocation(FS, SMgr);
339 }
340 }
341
342 return PathDiagnosticLocation(S, SMgr);
343 }
344
345 //===----------------------------------------------------------------------===//
346 // ScanNotableSymbols: closure-like callback for scanning Store bindings.
347 //===----------------------------------------------------------------------===//
348
349 static const VarDecl*
GetMostRecentVarDeclBinding(const ExplodedNode * N,GRStateManager & VMgr,SVal X)350 GetMostRecentVarDeclBinding(const ExplodedNode* N,
351 GRStateManager& VMgr, SVal X) {
352
353 for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
354
355 ProgramPoint P = N->getLocation();
356
357 if (!isa<PostStmt>(P))
358 continue;
359
360 const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
361
362 if (!DR)
363 continue;
364
365 SVal Y = N->getState()->getSVal(DR);
366
367 if (X != Y)
368 continue;
369
370 const VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
371
372 if (!VD)
373 continue;
374
375 return VD;
376 }
377
378 return 0;
379 }
380
381 namespace {
382 class NotableSymbolHandler
383 : public StoreManager::BindingsHandler {
384
385 SymbolRef Sym;
386 const GRState* PrevSt;
387 const Stmt* S;
388 GRStateManager& VMgr;
389 const ExplodedNode* Pred;
390 PathDiagnostic& PD;
391 BugReporter& BR;
392
393 public:
394
NotableSymbolHandler(SymbolRef sym,const GRState * prevst,const Stmt * s,GRStateManager & vmgr,const ExplodedNode * pred,PathDiagnostic & pd,BugReporter & br)395 NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
396 GRStateManager& vmgr, const ExplodedNode* pred,
397 PathDiagnostic& pd, BugReporter& br)
398 : Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
399
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal V)400 bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R,
401 SVal V) {
402
403 SymbolRef ScanSym = V.getAsSymbol();
404
405 if (ScanSym != Sym)
406 return true;
407
408 // Check if the previous state has this binding.
409 SVal X = PrevSt->getSVal(loc::MemRegionVal(R));
410
411 if (X == V) // Same binding?
412 return true;
413
414 // Different binding. Only handle assignments for now. We don't pull
415 // this check out of the loop because we will eventually handle other
416 // cases.
417
418 VarDecl *VD = 0;
419
420 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
421 if (!B->isAssignmentOp())
422 return true;
423
424 // What variable did we assign to?
425 DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
426
427 if (!DR)
428 return true;
429
430 VD = dyn_cast<VarDecl>(DR->getDecl());
431 }
432 else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
433 // FIXME: Eventually CFGs won't have DeclStmts. Right now we
434 // assume that each DeclStmt has a single Decl. This invariant
435 // holds by construction in the CFG.
436 VD = dyn_cast<VarDecl>(*DS->decl_begin());
437 }
438
439 if (!VD)
440 return true;
441
442 // What is the most recently referenced variable with this binding?
443 const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
444
445 if (!MostRecent)
446 return true;
447
448 // Create the diagnostic.
449 FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
450
451 if (Loc::isLocType(VD->getType())) {
452 std::string msg = "'" + std::string(VD->getNameAsString()) +
453 "' now aliases '" + MostRecent->getNameAsString() + "'";
454
455 PD.push_front(new PathDiagnosticEventPiece(L, msg));
456 }
457
458 return true;
459 }
460 };
461 }
462
HandleNotableSymbol(const ExplodedNode * N,const Stmt * S,SymbolRef Sym,BugReporter & BR,PathDiagnostic & PD)463 static void HandleNotableSymbol(const ExplodedNode* N,
464 const Stmt* S,
465 SymbolRef Sym, BugReporter& BR,
466 PathDiagnostic& PD) {
467
468 const ExplodedNode* Pred = N->pred_empty() ? 0 : *N->pred_begin();
469 const GRState* PrevSt = Pred ? Pred->getState() : 0;
470
471 if (!PrevSt)
472 return;
473
474 // Look at the region bindings of the current state that map to the
475 // specified symbol. Are any of them not in the previous state?
476 GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
477 NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
478 cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
479 }
480
481 namespace {
482 class ScanNotableSymbols
483 : public StoreManager::BindingsHandler {
484
485 llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
486 const ExplodedNode* N;
487 const Stmt* S;
488 GRBugReporter& BR;
489 PathDiagnostic& PD;
490
491 public:
ScanNotableSymbols(const ExplodedNode * n,const Stmt * s,GRBugReporter & br,PathDiagnostic & pd)492 ScanNotableSymbols(const ExplodedNode* n, const Stmt* s,
493 GRBugReporter& br, PathDiagnostic& pd)
494 : N(n), S(s), BR(br), PD(pd) {}
495
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal V)496 bool HandleBinding(StoreManager& SMgr, Store store,
497 const MemRegion* R, SVal V) {
498
499 SymbolRef ScanSym = V.getAsSymbol();
500
501 if (!ScanSym)
502 return true;
503
504 if (!BR.isNotable(ScanSym))
505 return true;
506
507 if (AlreadyProcessed.count(ScanSym))
508 return true;
509
510 AlreadyProcessed.insert(ScanSym);
511
512 HandleNotableSymbol(N, S, ScanSym, BR, PD);
513 return true;
514 }
515 };
516 } // end anonymous namespace
517
518 //===----------------------------------------------------------------------===//
519 // "Minimal" path diagnostic generation algorithm.
520 //===----------------------------------------------------------------------===//
521
522 static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM);
523
GenerateMinimalPathDiagnostic(PathDiagnostic & PD,PathDiagnosticBuilder & PDB,const ExplodedNode * N)524 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
525 PathDiagnosticBuilder &PDB,
526 const ExplodedNode *N) {
527
528 SourceManager& SMgr = PDB.getSourceManager();
529 const ExplodedNode* NextNode = N->pred_empty()
530 ? NULL : *(N->pred_begin());
531 while (NextNode) {
532 N = NextNode;
533 NextNode = GetPredecessorNode(N);
534
535 ProgramPoint P = N->getLocation();
536
537 if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
538 const CFGBlock* Src = BE->getSrc();
539 const CFGBlock* Dst = BE->getDst();
540 const Stmt* T = Src->getTerminator();
541
542 if (!T)
543 continue;
544
545 FullSourceLoc Start(T->getLocStart(), SMgr);
546
547 switch (T->getStmtClass()) {
548 default:
549 break;
550
551 case Stmt::GotoStmtClass:
552 case Stmt::IndirectGotoStmtClass: {
553 const Stmt* S = GetNextStmt(N);
554
555 if (!S)
556 continue;
557
558 std::string sbuf;
559 llvm::raw_string_ostream os(sbuf);
560 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
561
562 os << "Control jumps to line "
563 << End.asLocation().getInstantiationLineNumber();
564 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
565 os.str()));
566 break;
567 }
568
569 case Stmt::SwitchStmtClass: {
570 // Figure out what case arm we took.
571 std::string sbuf;
572 llvm::raw_string_ostream os(sbuf);
573
574 if (const Stmt* S = Dst->getLabel()) {
575 PathDiagnosticLocation End(S, SMgr);
576
577 switch (S->getStmtClass()) {
578 default:
579 os << "No cases match in the switch statement. "
580 "Control jumps to line "
581 << End.asLocation().getInstantiationLineNumber();
582 break;
583 case Stmt::DefaultStmtClass:
584 os << "Control jumps to the 'default' case at line "
585 << End.asLocation().getInstantiationLineNumber();
586 break;
587
588 case Stmt::CaseStmtClass: {
589 os << "Control jumps to 'case ";
590 const CaseStmt* Case = cast<CaseStmt>(S);
591 const Expr* LHS = Case->getLHS()->IgnoreParenCasts();
592
593 // Determine if it is an enum.
594 bool GetRawInt = true;
595
596 if (const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
597 // FIXME: Maybe this should be an assertion. Are there cases
598 // were it is not an EnumConstantDecl?
599 const EnumConstantDecl* D =
600 dyn_cast<EnumConstantDecl>(DR->getDecl());
601
602 if (D) {
603 GetRawInt = false;
604 os << D;
605 }
606 }
607
608 if (GetRawInt)
609 os << LHS->EvaluateAsInt(PDB.getASTContext());
610
611 os << ":' at line "
612 << End.asLocation().getInstantiationLineNumber();
613 break;
614 }
615 }
616 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
617 os.str()));
618 }
619 else {
620 os << "'Default' branch taken. ";
621 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
622 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
623 os.str()));
624 }
625
626 break;
627 }
628
629 case Stmt::BreakStmtClass:
630 case Stmt::ContinueStmtClass: {
631 std::string sbuf;
632 llvm::raw_string_ostream os(sbuf);
633 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
634 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
635 os.str()));
636 break;
637 }
638
639 // Determine control-flow for ternary '?'.
640 case Stmt::BinaryConditionalOperatorClass:
641 case Stmt::ConditionalOperatorClass: {
642 std::string sbuf;
643 llvm::raw_string_ostream os(sbuf);
644 os << "'?' condition is ";
645
646 if (*(Src->succ_begin()+1) == Dst)
647 os << "false";
648 else
649 os << "true";
650
651 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
652
653 if (const Stmt *S = End.asStmt())
654 End = PDB.getEnclosingStmtLocation(S);
655
656 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
657 os.str()));
658 break;
659 }
660
661 // Determine control-flow for short-circuited '&&' and '||'.
662 case Stmt::BinaryOperatorClass: {
663 if (!PDB.supportsLogicalOpControlFlow())
664 break;
665
666 const BinaryOperator *B = cast<BinaryOperator>(T);
667 std::string sbuf;
668 llvm::raw_string_ostream os(sbuf);
669 os << "Left side of '";
670
671 if (B->getOpcode() == BO_LAnd) {
672 os << "&&" << "' is ";
673
674 if (*(Src->succ_begin()+1) == Dst) {
675 os << "false";
676 PathDiagnosticLocation End(B->getLHS(), SMgr);
677 PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
678 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
679 os.str()));
680 }
681 else {
682 os << "true";
683 PathDiagnosticLocation Start(B->getLHS(), SMgr);
684 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
685 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
686 os.str()));
687 }
688 }
689 else {
690 assert(B->getOpcode() == BO_LOr);
691 os << "||" << "' is ";
692
693 if (*(Src->succ_begin()+1) == Dst) {
694 os << "false";
695 PathDiagnosticLocation Start(B->getLHS(), SMgr);
696 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
697 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
698 os.str()));
699 }
700 else {
701 os << "true";
702 PathDiagnosticLocation End(B->getLHS(), SMgr);
703 PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
704 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
705 os.str()));
706 }
707 }
708
709 break;
710 }
711
712 case Stmt::DoStmtClass: {
713 if (*(Src->succ_begin()) == Dst) {
714 std::string sbuf;
715 llvm::raw_string_ostream os(sbuf);
716
717 os << "Loop condition is true. ";
718 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
719
720 if (const Stmt *S = End.asStmt())
721 End = PDB.getEnclosingStmtLocation(S);
722
723 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
724 os.str()));
725 }
726 else {
727 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
728
729 if (const Stmt *S = End.asStmt())
730 End = PDB.getEnclosingStmtLocation(S);
731
732 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
733 "Loop condition is false. Exiting loop"));
734 }
735
736 break;
737 }
738
739 case Stmt::WhileStmtClass:
740 case Stmt::ForStmtClass: {
741 if (*(Src->succ_begin()+1) == Dst) {
742 std::string sbuf;
743 llvm::raw_string_ostream os(sbuf);
744
745 os << "Loop condition is false. ";
746 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
747 if (const Stmt *S = End.asStmt())
748 End = PDB.getEnclosingStmtLocation(S);
749
750 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
751 os.str()));
752 }
753 else {
754 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
755 if (const Stmt *S = End.asStmt())
756 End = PDB.getEnclosingStmtLocation(S);
757
758 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
759 "Loop condition is true. Entering loop body"));
760 }
761
762 break;
763 }
764
765 case Stmt::IfStmtClass: {
766 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
767
768 if (const Stmt *S = End.asStmt())
769 End = PDB.getEnclosingStmtLocation(S);
770
771 if (*(Src->succ_begin()+1) == Dst)
772 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
773 "Taking false branch"));
774 else
775 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
776 "Taking true branch"));
777
778 break;
779 }
780 }
781 }
782
783 if (NextNode) {
784 for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
785 E = PDB.visitor_end(); I!=E; ++I) {
786 if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB))
787 PD.push_front(p);
788 }
789 }
790
791 if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
792 // Scan the region bindings, and see if a "notable" symbol has a new
793 // lval binding.
794 ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD);
795 PDB.getStateManager().iterBindings(N->getState(), SNS);
796 }
797 }
798
799 // After constructing the full PathDiagnostic, do a pass over it to compact
800 // PathDiagnosticPieces that occur within a macro.
801 CompactPathDiagnostic(PD, PDB.getSourceManager());
802 }
803
804 //===----------------------------------------------------------------------===//
805 // "Extensive" PathDiagnostic generation.
806 //===----------------------------------------------------------------------===//
807
IsControlFlowExpr(const Stmt * S)808 static bool IsControlFlowExpr(const Stmt *S) {
809 const Expr *E = dyn_cast<Expr>(S);
810
811 if (!E)
812 return false;
813
814 E = E->IgnoreParenCasts();
815
816 if (isa<AbstractConditionalOperator>(E))
817 return true;
818
819 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
820 if (B->isLogicalOp())
821 return true;
822
823 return false;
824 }
825
826 namespace {
827 class ContextLocation : public PathDiagnosticLocation {
828 bool IsDead;
829 public:
ContextLocation(const PathDiagnosticLocation & L,bool isdead=false)830 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
831 : PathDiagnosticLocation(L), IsDead(isdead) {}
832
markDead()833 void markDead() { IsDead = true; }
isDead() const834 bool isDead() const { return IsDead; }
835 };
836
837 class EdgeBuilder {
838 std::vector<ContextLocation> CLocs;
839 typedef std::vector<ContextLocation>::iterator iterator;
840 PathDiagnostic &PD;
841 PathDiagnosticBuilder &PDB;
842 PathDiagnosticLocation PrevLoc;
843
844 bool IsConsumedExpr(const PathDiagnosticLocation &L);
845
846 bool containsLocation(const PathDiagnosticLocation &Container,
847 const PathDiagnosticLocation &Containee);
848
849 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
850
cleanUpLocation(PathDiagnosticLocation L,bool firstCharOnly=false)851 PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
852 bool firstCharOnly = false) {
853 if (const Stmt *S = L.asStmt()) {
854 const Stmt *Original = S;
855 while (1) {
856 // Adjust the location for some expressions that are best referenced
857 // by one of their subexpressions.
858 switch (S->getStmtClass()) {
859 default:
860 break;
861 case Stmt::ParenExprClass:
862 case Stmt::GenericSelectionExprClass:
863 S = cast<Expr>(S)->IgnoreParens();
864 firstCharOnly = true;
865 continue;
866 case Stmt::BinaryConditionalOperatorClass:
867 case Stmt::ConditionalOperatorClass:
868 S = cast<AbstractConditionalOperator>(S)->getCond();
869 firstCharOnly = true;
870 continue;
871 case Stmt::ChooseExprClass:
872 S = cast<ChooseExpr>(S)->getCond();
873 firstCharOnly = true;
874 continue;
875 case Stmt::BinaryOperatorClass:
876 S = cast<BinaryOperator>(S)->getLHS();
877 firstCharOnly = true;
878 continue;
879 }
880
881 break;
882 }
883
884 if (S != Original)
885 L = PathDiagnosticLocation(S, L.getManager());
886 }
887
888 if (firstCharOnly)
889 L = PathDiagnosticLocation(L.asLocation());
890
891 return L;
892 }
893
popLocation()894 void popLocation() {
895 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
896 // For contexts, we only one the first character as the range.
897 rawAddEdge(cleanUpLocation(CLocs.back(), true));
898 }
899 CLocs.pop_back();
900 }
901
902 public:
EdgeBuilder(PathDiagnostic & pd,PathDiagnosticBuilder & pdb)903 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
904 : PD(pd), PDB(pdb) {
905
906 // If the PathDiagnostic already has pieces, add the enclosing statement
907 // of the first piece as a context as well.
908 if (!PD.empty()) {
909 PrevLoc = PD.begin()->getLocation();
910
911 if (const Stmt *S = PrevLoc.asStmt())
912 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
913 }
914 }
915
~EdgeBuilder()916 ~EdgeBuilder() {
917 while (!CLocs.empty()) popLocation();
918
919 // Finally, add an initial edge from the start location of the first
920 // statement (if it doesn't already exist).
921 // FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
922 if (const CompoundStmt *CS =
923 dyn_cast_or_null<CompoundStmt>(PDB.getCodeDecl().getBody()))
924 if (!CS->body_empty()) {
925 SourceLocation Loc = (*CS->body_begin())->getLocStart();
926 rawAddEdge(PathDiagnosticLocation(Loc, PDB.getSourceManager()));
927 }
928
929 }
930
931 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
932
933 void rawAddEdge(PathDiagnosticLocation NewLoc);
934
935 void addContext(const Stmt *S);
936 void addExtendedContext(const Stmt *S);
937 };
938 } // end anonymous namespace
939
940
941 PathDiagnosticLocation
getContextLocation(const PathDiagnosticLocation & L)942 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
943 if (const Stmt *S = L.asStmt()) {
944 if (IsControlFlowExpr(S))
945 return L;
946
947 return PDB.getEnclosingStmtLocation(S);
948 }
949
950 return L;
951 }
952
containsLocation(const PathDiagnosticLocation & Container,const PathDiagnosticLocation & Containee)953 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
954 const PathDiagnosticLocation &Containee) {
955
956 if (Container == Containee)
957 return true;
958
959 if (Container.asDecl())
960 return true;
961
962 if (const Stmt *S = Containee.asStmt())
963 if (const Stmt *ContainerS = Container.asStmt()) {
964 while (S) {
965 if (S == ContainerS)
966 return true;
967 S = PDB.getParent(S);
968 }
969 return false;
970 }
971
972 // Less accurate: compare using source ranges.
973 SourceRange ContainerR = Container.asRange();
974 SourceRange ContaineeR = Containee.asRange();
975
976 SourceManager &SM = PDB.getSourceManager();
977 SourceLocation ContainerRBeg = SM.getInstantiationLoc(ContainerR.getBegin());
978 SourceLocation ContainerREnd = SM.getInstantiationLoc(ContainerR.getEnd());
979 SourceLocation ContaineeRBeg = SM.getInstantiationLoc(ContaineeR.getBegin());
980 SourceLocation ContaineeREnd = SM.getInstantiationLoc(ContaineeR.getEnd());
981
982 unsigned ContainerBegLine = SM.getInstantiationLineNumber(ContainerRBeg);
983 unsigned ContainerEndLine = SM.getInstantiationLineNumber(ContainerREnd);
984 unsigned ContaineeBegLine = SM.getInstantiationLineNumber(ContaineeRBeg);
985 unsigned ContaineeEndLine = SM.getInstantiationLineNumber(ContaineeREnd);
986
987 assert(ContainerBegLine <= ContainerEndLine);
988 assert(ContaineeBegLine <= ContaineeEndLine);
989
990 return (ContainerBegLine <= ContaineeBegLine &&
991 ContainerEndLine >= ContaineeEndLine &&
992 (ContainerBegLine != ContaineeBegLine ||
993 SM.getInstantiationColumnNumber(ContainerRBeg) <=
994 SM.getInstantiationColumnNumber(ContaineeRBeg)) &&
995 (ContainerEndLine != ContaineeEndLine ||
996 SM.getInstantiationColumnNumber(ContainerREnd) >=
997 SM.getInstantiationColumnNumber(ContainerREnd)));
998 }
999
rawAddEdge(PathDiagnosticLocation NewLoc)1000 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1001 if (!PrevLoc.isValid()) {
1002 PrevLoc = NewLoc;
1003 return;
1004 }
1005
1006 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1007 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1008
1009 if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1010 return;
1011
1012 // FIXME: Ignore intra-macro edges for now.
1013 if (NewLocClean.asLocation().getInstantiationLoc() ==
1014 PrevLocClean.asLocation().getInstantiationLoc())
1015 return;
1016
1017 PD.push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1018 PrevLoc = NewLoc;
1019 }
1020
addEdge(PathDiagnosticLocation NewLoc,bool alwaysAdd)1021 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1022
1023 if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1024 return;
1025
1026 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1027
1028 while (!CLocs.empty()) {
1029 ContextLocation &TopContextLoc = CLocs.back();
1030
1031 // Is the top location context the same as the one for the new location?
1032 if (TopContextLoc == CLoc) {
1033 if (alwaysAdd) {
1034 if (IsConsumedExpr(TopContextLoc) &&
1035 !IsControlFlowExpr(TopContextLoc.asStmt()))
1036 TopContextLoc.markDead();
1037
1038 rawAddEdge(NewLoc);
1039 }
1040
1041 return;
1042 }
1043
1044 if (containsLocation(TopContextLoc, CLoc)) {
1045 if (alwaysAdd) {
1046 rawAddEdge(NewLoc);
1047
1048 if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1049 CLocs.push_back(ContextLocation(CLoc, true));
1050 return;
1051 }
1052 }
1053
1054 CLocs.push_back(CLoc);
1055 return;
1056 }
1057
1058 // Context does not contain the location. Flush it.
1059 popLocation();
1060 }
1061
1062 // If we reach here, there is no enclosing context. Just add the edge.
1063 rawAddEdge(NewLoc);
1064 }
1065
IsConsumedExpr(const PathDiagnosticLocation & L)1066 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1067 if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1068 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1069
1070 return false;
1071 }
1072
addExtendedContext(const Stmt * S)1073 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1074 if (!S)
1075 return;
1076
1077 const Stmt *Parent = PDB.getParent(S);
1078 while (Parent) {
1079 if (isa<CompoundStmt>(Parent))
1080 Parent = PDB.getParent(Parent);
1081 else
1082 break;
1083 }
1084
1085 if (Parent) {
1086 switch (Parent->getStmtClass()) {
1087 case Stmt::DoStmtClass:
1088 case Stmt::ObjCAtSynchronizedStmtClass:
1089 addContext(Parent);
1090 default:
1091 break;
1092 }
1093 }
1094
1095 addContext(S);
1096 }
1097
addContext(const Stmt * S)1098 void EdgeBuilder::addContext(const Stmt *S) {
1099 if (!S)
1100 return;
1101
1102 PathDiagnosticLocation L(S, PDB.getSourceManager());
1103
1104 while (!CLocs.empty()) {
1105 const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1106
1107 // Is the top location context the same as the one for the new location?
1108 if (TopContextLoc == L)
1109 return;
1110
1111 if (containsLocation(TopContextLoc, L)) {
1112 CLocs.push_back(L);
1113 return;
1114 }
1115
1116 // Context does not contain the location. Flush it.
1117 popLocation();
1118 }
1119
1120 CLocs.push_back(L);
1121 }
1122
GenerateExtensivePathDiagnostic(PathDiagnostic & PD,PathDiagnosticBuilder & PDB,const ExplodedNode * N)1123 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1124 PathDiagnosticBuilder &PDB,
1125 const ExplodedNode *N) {
1126 EdgeBuilder EB(PD, PDB);
1127
1128 const ExplodedNode* NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1129 while (NextNode) {
1130 N = NextNode;
1131 NextNode = GetPredecessorNode(N);
1132 ProgramPoint P = N->getLocation();
1133
1134 do {
1135 // Block edges.
1136 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1137 const CFGBlock &Blk = *BE->getSrc();
1138 const Stmt *Term = Blk.getTerminator();
1139
1140 // Are we jumping to the head of a loop? Add a special diagnostic.
1141 if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
1142 PathDiagnosticLocation L(Loop, PDB.getSourceManager());
1143 const CompoundStmt *CS = NULL;
1144
1145 if (!Term) {
1146 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1147 CS = dyn_cast<CompoundStmt>(FS->getBody());
1148 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1149 CS = dyn_cast<CompoundStmt>(WS->getBody());
1150 }
1151
1152 PathDiagnosticEventPiece *p =
1153 new PathDiagnosticEventPiece(L,
1154 "Looping back to the head of the loop");
1155
1156 EB.addEdge(p->getLocation(), true);
1157 PD.push_front(p);
1158
1159 if (CS) {
1160 PathDiagnosticLocation BL(CS->getRBracLoc(),
1161 PDB.getSourceManager());
1162 BL = PathDiagnosticLocation(BL.asLocation());
1163 EB.addEdge(BL);
1164 }
1165 }
1166
1167 if (Term)
1168 EB.addContext(Term);
1169
1170 break;
1171 }
1172
1173 if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1174 if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
1175 const Stmt *stmt = S->getStmt();
1176 if (IsControlFlowExpr(stmt)) {
1177 // Add the proper context for '&&', '||', and '?'.
1178 EB.addContext(stmt);
1179 }
1180 else
1181 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1182 }
1183
1184 break;
1185 }
1186 } while (0);
1187
1188 if (!NextNode)
1189 continue;
1190
1191 for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
1192 E = PDB.visitor_end(); I!=E; ++I) {
1193 if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) {
1194 const PathDiagnosticLocation &Loc = p->getLocation();
1195 EB.addEdge(Loc, true);
1196 PD.push_front(p);
1197 if (const Stmt *S = Loc.asStmt())
1198 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1199 }
1200 }
1201 }
1202 }
1203
1204 //===----------------------------------------------------------------------===//
1205 // Methods for BugType and subclasses.
1206 //===----------------------------------------------------------------------===//
~BugType()1207 BugType::~BugType() { }
1208
FlushReports(BugReporter & BR)1209 void BugType::FlushReports(BugReporter &BR) {}
1210
1211 //===----------------------------------------------------------------------===//
1212 // Methods for BugReport and subclasses.
1213 //===----------------------------------------------------------------------===//
~BugReport()1214 BugReport::~BugReport() {}
~RangedBugReport()1215 RangedBugReport::~RangedBugReport() {}
1216
getStmt() const1217 const Stmt* BugReport::getStmt() const {
1218 ProgramPoint ProgP = ErrorNode->getLocation();
1219 const Stmt *S = NULL;
1220
1221 if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
1222 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1223 if (BE->getBlock() == &Exit)
1224 S = GetPreviousStmt(ErrorNode);
1225 }
1226 if (!S)
1227 S = GetStmt(ProgP);
1228
1229 return S;
1230 }
1231
1232 PathDiagnosticPiece*
getEndPath(BugReporterContext & BRC,const ExplodedNode * EndPathNode)1233 BugReport::getEndPath(BugReporterContext& BRC,
1234 const ExplodedNode* EndPathNode) {
1235
1236 const Stmt* S = getStmt();
1237
1238 if (!S)
1239 return NULL;
1240
1241 BugReport::ranges_iterator Beg, End;
1242 llvm::tie(Beg, End) = getRanges();
1243 PathDiagnosticLocation L(S, BRC.getSourceManager());
1244
1245 // Only add the statement itself as a range if we didn't specify any
1246 // special ranges for this report.
1247 PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription(),
1248 Beg == End);
1249
1250 for (; Beg != End; ++Beg)
1251 P->addRange(*Beg);
1252
1253 return P;
1254 }
1255
1256 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
getRanges() const1257 BugReport::getRanges() const {
1258 if (const Expr* E = dyn_cast_or_null<Expr>(getStmt())) {
1259 R = E->getSourceRange();
1260 assert(R.isValid());
1261 return std::make_pair(&R, &R+1);
1262 }
1263 else
1264 return std::make_pair(ranges_iterator(), ranges_iterator());
1265 }
1266
getLocation() const1267 SourceLocation BugReport::getLocation() const {
1268 if (ErrorNode)
1269 if (const Stmt* S = GetCurrentOrPreviousStmt(ErrorNode)) {
1270 // For member expressions, return the location of the '.' or '->'.
1271 if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1272 return ME->getMemberLoc();
1273 // For binary operators, return the location of the operator.
1274 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1275 return B->getOperatorLoc();
1276
1277 return S->getLocStart();
1278 }
1279
1280 return FullSourceLoc();
1281 }
1282
VisitNode(const ExplodedNode * N,const ExplodedNode * PrevN,BugReporterContext & BRC)1283 PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode* N,
1284 const ExplodedNode* PrevN,
1285 BugReporterContext &BRC) {
1286 return NULL;
1287 }
1288
1289 //===----------------------------------------------------------------------===//
1290 // Methods for BugReporter and subclasses.
1291 //===----------------------------------------------------------------------===//
1292
~BugReportEquivClass()1293 BugReportEquivClass::~BugReportEquivClass() {
1294 for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
1295 }
1296
~GRBugReporter()1297 GRBugReporter::~GRBugReporter() { }
~BugReporterData()1298 BugReporterData::~BugReporterData() {}
1299
getGraph()1300 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1301
1302 GRStateManager&
getStateManager()1303 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1304
~BugReporter()1305 BugReporter::~BugReporter() { FlushReports(); }
1306
FlushReports()1307 void BugReporter::FlushReports() {
1308 if (BugTypes.isEmpty())
1309 return;
1310
1311 // First flush the warnings for each BugType. This may end up creating new
1312 // warnings and new BugTypes.
1313 // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1314 // Turn NSErrorChecker into a proper checker and remove this.
1315 llvm::SmallVector<const BugType*, 16> bugTypes;
1316 for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1317 bugTypes.push_back(*I);
1318 for (llvm::SmallVector<const BugType*, 16>::iterator
1319 I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1320 const_cast<BugType*>(*I)->FlushReports(*this);
1321
1322 typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
1323 for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
1324 BugReportEquivClass& EQ = *EI;
1325 FlushReport(EQ);
1326 }
1327
1328 // BugReporter owns and deletes only BugTypes created implicitly through
1329 // EmitBasicReport.
1330 // FIXME: There are leaks from checkers that assume that the BugTypes they
1331 // create will be destroyed by the BugReporter.
1332 for (llvm::StringMap<BugType*>::iterator
1333 I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1334 delete I->second;
1335
1336 // Remove all references to the BugType objects.
1337 BugTypes = F.getEmptySet();
1338 }
1339
1340 //===----------------------------------------------------------------------===//
1341 // PathDiagnostics generation.
1342 //===----------------------------------------------------------------------===//
1343
1344 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1345 std::pair<ExplodedNode*, unsigned> >
MakeReportGraph(const ExplodedGraph * G,llvm::SmallVectorImpl<const ExplodedNode * > & nodes)1346 MakeReportGraph(const ExplodedGraph* G,
1347 llvm::SmallVectorImpl<const ExplodedNode*> &nodes) {
1348
1349 // Create the trimmed graph. It will contain the shortest paths from the
1350 // error nodes to the root. In the new graph we should only have one
1351 // error node unless there are two or more error nodes with the same minimum
1352 // path length.
1353 ExplodedGraph* GTrim;
1354 InterExplodedGraphMap* NMap;
1355
1356 llvm::DenseMap<const void*, const void*> InverseMap;
1357 llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1358 &InverseMap);
1359
1360 // Create owning pointers for GTrim and NMap just to ensure that they are
1361 // released when this function exists.
1362 llvm::OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1363 llvm::OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1364
1365 // Find the (first) error node in the trimmed graph. We just need to consult
1366 // the node map (NMap) which maps from nodes in the original graph to nodes
1367 // in the new graph.
1368
1369 std::queue<const ExplodedNode*> WS;
1370 typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1371 IndexMapTy IndexMap;
1372
1373 for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1374 const ExplodedNode *originalNode = nodes[nodeIndex];
1375 if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1376 WS.push(N);
1377 IndexMap[originalNode] = nodeIndex;
1378 }
1379 }
1380
1381 assert(!WS.empty() && "No error node found in the trimmed graph.");
1382
1383 // Create a new (third!) graph with a single path. This is the graph
1384 // that will be returned to the caller.
1385 ExplodedGraph *GNew = new ExplodedGraph();
1386
1387 // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
1388 // to the root node, and then construct a new graph that contains only
1389 // a single path.
1390 llvm::DenseMap<const void*,unsigned> Visited;
1391
1392 unsigned cnt = 0;
1393 const ExplodedNode* Root = 0;
1394
1395 while (!WS.empty()) {
1396 const ExplodedNode* Node = WS.front();
1397 WS.pop();
1398
1399 if (Visited.find(Node) != Visited.end())
1400 continue;
1401
1402 Visited[Node] = cnt++;
1403
1404 if (Node->pred_empty()) {
1405 Root = Node;
1406 break;
1407 }
1408
1409 for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1410 E=Node->pred_end(); I!=E; ++I)
1411 WS.push(*I);
1412 }
1413
1414 assert(Root);
1415
1416 // Now walk from the root down the BFS path, always taking the successor
1417 // with the lowest number.
1418 ExplodedNode *Last = 0, *First = 0;
1419 NodeBackMap *BM = new NodeBackMap();
1420 unsigned NodeIndex = 0;
1421
1422 for ( const ExplodedNode *N = Root ;;) {
1423 // Lookup the number associated with the current node.
1424 llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1425 assert(I != Visited.end());
1426
1427 // Create the equivalent node in the new graph with the same state
1428 // and location.
1429 ExplodedNode* NewN = GNew->getNode(N->getLocation(), N->getState());
1430
1431 // Store the mapping to the original node.
1432 llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1433 assert(IMitr != InverseMap.end() && "No mapping to original node.");
1434 (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1435
1436 // Link up the new node with the previous node.
1437 if (Last)
1438 NewN->addPredecessor(Last, *GNew);
1439
1440 Last = NewN;
1441
1442 // Are we at the final node?
1443 IndexMapTy::iterator IMI =
1444 IndexMap.find((const ExplodedNode*)(IMitr->second));
1445 if (IMI != IndexMap.end()) {
1446 First = NewN;
1447 NodeIndex = IMI->second;
1448 break;
1449 }
1450
1451 // Find the next successor node. We choose the node that is marked
1452 // with the lowest DFS number.
1453 ExplodedNode::const_succ_iterator SI = N->succ_begin();
1454 ExplodedNode::const_succ_iterator SE = N->succ_end();
1455 N = 0;
1456
1457 for (unsigned MinVal = 0; SI != SE; ++SI) {
1458
1459 I = Visited.find(*SI);
1460
1461 if (I == Visited.end())
1462 continue;
1463
1464 if (!N || I->second < MinVal) {
1465 N = *SI;
1466 MinVal = I->second;
1467 }
1468 }
1469
1470 assert(N);
1471 }
1472
1473 assert(First);
1474
1475 return std::make_pair(std::make_pair(GNew, BM),
1476 std::make_pair(First, NodeIndex));
1477 }
1478
1479 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1480 /// and collapses PathDiagosticPieces that are expanded by macros.
CompactPathDiagnostic(PathDiagnostic & PD,const SourceManager & SM)1481 static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
1482 typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> >
1483 MacroStackTy;
1484
1485 typedef std::vector<PathDiagnosticPiece*>
1486 PiecesTy;
1487
1488 MacroStackTy MacroStack;
1489 PiecesTy Pieces;
1490
1491 for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) {
1492 // Get the location of the PathDiagnosticPiece.
1493 const FullSourceLoc Loc = I->getLocation().asLocation();
1494
1495 // Determine the instantiation location, which is the location we group
1496 // related PathDiagnosticPieces.
1497 SourceLocation InstantiationLoc = Loc.isMacroID() ?
1498 SM.getInstantiationLoc(Loc) :
1499 SourceLocation();
1500
1501 if (Loc.isFileID()) {
1502 MacroStack.clear();
1503 Pieces.push_back(&*I);
1504 continue;
1505 }
1506
1507 assert(Loc.isMacroID());
1508
1509 // Is the PathDiagnosticPiece within the same macro group?
1510 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1511 MacroStack.back().first->push_back(&*I);
1512 continue;
1513 }
1514
1515 // We aren't in the same group. Are we descending into a new macro
1516 // or are part of an old one?
1517 PathDiagnosticMacroPiece *MacroGroup = 0;
1518
1519 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1520 SM.getInstantiationLoc(Loc) :
1521 SourceLocation();
1522
1523 // Walk the entire macro stack.
1524 while (!MacroStack.empty()) {
1525 if (InstantiationLoc == MacroStack.back().second) {
1526 MacroGroup = MacroStack.back().first;
1527 break;
1528 }
1529
1530 if (ParentInstantiationLoc == MacroStack.back().second) {
1531 MacroGroup = MacroStack.back().first;
1532 break;
1533 }
1534
1535 MacroStack.pop_back();
1536 }
1537
1538 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1539 // Create a new macro group and add it to the stack.
1540 PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc);
1541
1542 if (MacroGroup)
1543 MacroGroup->push_back(NewGroup);
1544 else {
1545 assert(InstantiationLoc.isFileID());
1546 Pieces.push_back(NewGroup);
1547 }
1548
1549 MacroGroup = NewGroup;
1550 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1551 }
1552
1553 // Finally, add the PathDiagnosticPiece to the group.
1554 MacroGroup->push_back(&*I);
1555 }
1556
1557 // Now take the pieces and construct a new PathDiagnostic.
1558 PD.resetPath(false);
1559
1560 for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
1561 if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I))
1562 if (!MP->containsEvent()) {
1563 delete MP;
1564 continue;
1565 }
1566
1567 PD.push_back(*I);
1568 }
1569 }
1570
GeneratePathDiagnostic(PathDiagnostic & PD,llvm::SmallVectorImpl<BugReport * > & bugReports)1571 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1572 llvm::SmallVectorImpl<BugReport *> &bugReports) {
1573
1574 assert(!bugReports.empty());
1575 llvm::SmallVector<const ExplodedNode *, 10> errorNodes;
1576 for (llvm::SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(),
1577 E = bugReports.end(); I != E; ++I) {
1578 errorNodes.push_back((*I)->getErrorNode());
1579 }
1580
1581 // Construct a new graph that contains only a single path from the error
1582 // node to a root.
1583 const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1584 std::pair<ExplodedNode*, unsigned> >&
1585 GPair = MakeReportGraph(&getGraph(), errorNodes);
1586
1587 // Find the BugReport with the original location.
1588 assert(GPair.second.second < bugReports.size());
1589 BugReport *R = bugReports[GPair.second.second];
1590 assert(R && "No original report found for sliced graph.");
1591
1592 llvm::OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1593 llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1594 const ExplodedNode *N = GPair.second.first;
1595
1596 // Start building the path diagnostic...
1597 PathDiagnosticBuilder PDB(*this, R, BackMap.get(), getPathDiagnosticClient());
1598
1599 if (PathDiagnosticPiece* Piece = R->getEndPath(PDB, N))
1600 PD.push_back(Piece);
1601 else
1602 return;
1603
1604 // Register node visitors.
1605 R->registerInitialVisitors(PDB, N);
1606 bugreporter::registerNilReceiverVisitor(PDB);
1607
1608 switch (PDB.getGenerationScheme()) {
1609 case PathDiagnosticClient::Extensive:
1610 GenerateExtensivePathDiagnostic(PD, PDB, N);
1611 break;
1612 case PathDiagnosticClient::Minimal:
1613 GenerateMinimalPathDiagnostic(PD, PDB, N);
1614 break;
1615 }
1616 }
1617
Register(BugType * BT)1618 void BugReporter::Register(BugType *BT) {
1619 BugTypes = F.add(BugTypes, BT);
1620 }
1621
EmitReport(BugReport * R)1622 void BugReporter::EmitReport(BugReport* R) {
1623 // Compute the bug report's hash to determine its equivalence class.
1624 llvm::FoldingSetNodeID ID;
1625 R->Profile(ID);
1626
1627 // Lookup the equivance class. If there isn't one, create it.
1628 BugType& BT = R->getBugType();
1629 Register(&BT);
1630 void *InsertPos;
1631 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1632
1633 if (!EQ) {
1634 EQ = new BugReportEquivClass(R);
1635 EQClasses.InsertNode(EQ, InsertPos);
1636 }
1637 else
1638 EQ->AddReport(R);
1639 }
1640
1641
1642 //===----------------------------------------------------------------------===//
1643 // Emitting reports in equivalence classes.
1644 //===----------------------------------------------------------------------===//
1645
1646 namespace {
1647 struct FRIEC_WLItem {
1648 const ExplodedNode *N;
1649 ExplodedNode::const_succ_iterator I, E;
1650
FRIEC_WLItem__anon05bd1f450511::FRIEC_WLItem1651 FRIEC_WLItem(const ExplodedNode *n)
1652 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1653 };
1654 }
1655
1656 static BugReport *
FindReportInEquivalenceClass(BugReportEquivClass & EQ,llvm::SmallVectorImpl<BugReport * > & bugReports)1657 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1658 llvm::SmallVectorImpl<BugReport*> &bugReports) {
1659
1660 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1661 assert(I != E);
1662 BugReport *R = *I;
1663 BugType& BT = R->getBugType();
1664
1665 // If we don't need to suppress any of the nodes because they are
1666 // post-dominated by a sink, simply add all the nodes in the equivalence class
1667 // to 'Nodes'. Any of the reports will serve as a "representative" report.
1668 if (!BT.isSuppressOnSink()) {
1669 for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1670 const ExplodedNode* N = I->getErrorNode();
1671 if (N) {
1672 R = *I;
1673 bugReports.push_back(R);
1674 }
1675 }
1676 return R;
1677 }
1678
1679 // For bug reports that should be suppressed when all paths are post-dominated
1680 // by a sink node, iterate through the reports in the equivalence class
1681 // until we find one that isn't post-dominated (if one exists). We use a
1682 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
1683 // this as a recursive function, but we don't want to risk blowing out the
1684 // stack for very long paths.
1685 BugReport *exampleReport = 0;
1686
1687 for (; I != E; ++I) {
1688 R = *I;
1689 const ExplodedNode *errorNode = R->getErrorNode();
1690
1691 if (!errorNode)
1692 continue;
1693 if (errorNode->isSink()) {
1694 assert(false &&
1695 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
1696 return 0;
1697 }
1698 // No successors? By definition this nodes isn't post-dominated by a sink.
1699 if (errorNode->succ_empty()) {
1700 bugReports.push_back(R);
1701 if (!exampleReport)
1702 exampleReport = R;
1703 continue;
1704 }
1705
1706 // At this point we know that 'N' is not a sink and it has at least one
1707 // successor. Use a DFS worklist to find a non-sink end-of-path node.
1708 typedef FRIEC_WLItem WLItem;
1709 typedef llvm::SmallVector<WLItem, 10> DFSWorkList;
1710 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
1711
1712 DFSWorkList WL;
1713 WL.push_back(errorNode);
1714 Visited[errorNode] = 1;
1715
1716 while (!WL.empty()) {
1717 WLItem &WI = WL.back();
1718 assert(!WI.N->succ_empty());
1719
1720 for (; WI.I != WI.E; ++WI.I) {
1721 const ExplodedNode *Succ = *WI.I;
1722 // End-of-path node?
1723 if (Succ->succ_empty()) {
1724 // If we found an end-of-path node that is not a sink.
1725 if (!Succ->isSink()) {
1726 bugReports.push_back(R);
1727 if (!exampleReport)
1728 exampleReport = R;
1729 WL.clear();
1730 break;
1731 }
1732 // Found a sink? Continue on to the next successor.
1733 continue;
1734 }
1735 // Mark the successor as visited. If it hasn't been explored,
1736 // enqueue it to the DFS worklist.
1737 unsigned &mark = Visited[Succ];
1738 if (!mark) {
1739 mark = 1;
1740 WL.push_back(Succ);
1741 break;
1742 }
1743 }
1744
1745 // The worklist may have been cleared at this point. First
1746 // check if it is empty before checking the last item.
1747 if (!WL.empty() && &WL.back() == &WI)
1748 WL.pop_back();
1749 }
1750 }
1751
1752 // ExampleReport will be NULL if all the nodes in the equivalence class
1753 // were post-dominated by sinks.
1754 return exampleReport;
1755 }
1756
1757 //===----------------------------------------------------------------------===//
1758 // DiagnosticCache. This is a hack to cache analyzer diagnostics. It
1759 // uses global state, which eventually should go elsewhere.
1760 //===----------------------------------------------------------------------===//
1761 namespace {
1762 class DiagCacheItem : public llvm::FoldingSetNode {
1763 llvm::FoldingSetNodeID ID;
1764 public:
DiagCacheItem(BugReport * R,PathDiagnostic * PD)1765 DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
1766 ID.AddString(R->getBugType().getName());
1767 ID.AddString(R->getBugType().getCategory());
1768 ID.AddString(R->getDescription());
1769 ID.AddInteger(R->getLocation().getRawEncoding());
1770 PD->Profile(ID);
1771 }
1772
Profile(llvm::FoldingSetNodeID & id)1773 void Profile(llvm::FoldingSetNodeID &id) {
1774 id = ID;
1775 }
1776
getID()1777 llvm::FoldingSetNodeID &getID() { return ID; }
1778 };
1779 }
1780
IsCachedDiagnostic(BugReport * R,PathDiagnostic * PD)1781 static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
1782 // FIXME: Eventually this diagnostic cache should reside in something
1783 // like AnalysisManager instead of being a static variable. This is
1784 // really unsafe in the long term.
1785 typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
1786 static DiagnosticCache DC;
1787
1788 void *InsertPos;
1789 DiagCacheItem *Item = new DiagCacheItem(R, PD);
1790
1791 if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
1792 delete Item;
1793 return true;
1794 }
1795
1796 DC.InsertNode(Item, InsertPos);
1797 return false;
1798 }
1799
FlushReport(BugReportEquivClass & EQ)1800 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
1801 llvm::SmallVector<BugReport*, 10> bugReports;
1802 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
1803 if (!exampleReport)
1804 return;
1805
1806 PathDiagnosticClient* PD = getPathDiagnosticClient();
1807
1808 // FIXME: Make sure we use the 'R' for the path that was actually used.
1809 // Probably doesn't make a difference in practice.
1810 BugType& BT = exampleReport->getBugType();
1811
1812 llvm::OwningPtr<PathDiagnostic>
1813 D(new PathDiagnostic(exampleReport->getBugType().getName(),
1814 !PD || PD->useVerboseDescription()
1815 ? exampleReport->getDescription()
1816 : exampleReport->getShortDescription(),
1817 BT.getCategory()));
1818
1819 if (!bugReports.empty())
1820 GeneratePathDiagnostic(*D.get(), bugReports);
1821
1822 if (IsCachedDiagnostic(exampleReport, D.get()))
1823 return;
1824
1825 // Get the meta data.
1826 std::pair<const char**, const char**> Meta =
1827 exampleReport->getExtraDescriptiveText();
1828 for (const char** s = Meta.first; s != Meta.second; ++s)
1829 D->addMeta(*s);
1830
1831 // Emit a summary diagnostic to the regular Diagnostics engine.
1832 BugReport::ranges_iterator Beg, End;
1833 llvm::tie(Beg, End) = exampleReport->getRanges();
1834 Diagnostic &Diag = getDiagnostic();
1835 FullSourceLoc L(exampleReport->getLocation(), getSourceManager());
1836
1837 // Search the description for '%', as that will be interpretted as a
1838 // format character by FormatDiagnostics.
1839 llvm::StringRef desc = exampleReport->getShortDescription();
1840 unsigned ErrorDiag;
1841 {
1842 llvm::SmallString<512> TmpStr;
1843 llvm::raw_svector_ostream Out(TmpStr);
1844 for (llvm::StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I)
1845 if (*I == '%')
1846 Out << "%%";
1847 else
1848 Out << *I;
1849
1850 Out.flush();
1851 ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, TmpStr);
1852 }
1853
1854 {
1855 DiagnosticBuilder diagBuilder = Diag.Report(L, ErrorDiag);
1856 for (BugReport::ranges_iterator I = Beg; I != End; ++I)
1857 diagBuilder << *I;
1858 }
1859
1860 // Emit a full diagnostic for the path if we have a PathDiagnosticClient.
1861 if (!PD)
1862 return;
1863
1864 if (D->empty()) {
1865 PathDiagnosticPiece* piece =
1866 new PathDiagnosticEventPiece(L, exampleReport->getDescription());
1867
1868 for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
1869 D->push_back(piece);
1870 }
1871
1872 PD->HandlePathDiagnostic(D.take());
1873 }
1874
EmitBasicReport(llvm::StringRef name,llvm::StringRef str,SourceLocation Loc,SourceRange * RBeg,unsigned NumRanges)1875 void BugReporter::EmitBasicReport(llvm::StringRef name, llvm::StringRef str,
1876 SourceLocation Loc,
1877 SourceRange* RBeg, unsigned NumRanges) {
1878 EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
1879 }
1880
EmitBasicReport(llvm::StringRef name,llvm::StringRef category,llvm::StringRef str,SourceLocation Loc,SourceRange * RBeg,unsigned NumRanges)1881 void BugReporter::EmitBasicReport(llvm::StringRef name,
1882 llvm::StringRef category,
1883 llvm::StringRef str, SourceLocation Loc,
1884 SourceRange* RBeg, unsigned NumRanges) {
1885
1886 // 'BT' is owned by BugReporter.
1887 BugType *BT = getBugTypeForName(name, category);
1888 FullSourceLoc L = getContext().getFullLoc(Loc);
1889 RangedBugReport *R = new DiagBugReport(*BT, str, L);
1890 for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
1891 EmitReport(R);
1892 }
1893
getBugTypeForName(llvm::StringRef name,llvm::StringRef category)1894 BugType *BugReporter::getBugTypeForName(llvm::StringRef name,
1895 llvm::StringRef category) {
1896 llvm::SmallString<136> fullDesc;
1897 llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
1898 llvm::StringMapEntry<BugType *> &
1899 entry = StrBugTypes.GetOrCreateValue(fullDesc);
1900 BugType *BT = entry.getValue();
1901 if (!BT) {
1902 BT = new BugType(name, category);
1903 entry.setValue(BT);
1904 }
1905 return BT;
1906 }
1907