• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2          "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
6  <title>Language Compatibility</title>
7  <link type="text/css" rel="stylesheet" href="menu.css" />
8  <link type="text/css" rel="stylesheet" href="content.css" />
9  <style type="text/css">
10</style>
11</head>
12<body>
13
14<!--#include virtual="menu.html.incl"-->
15
16<div id="content">
17
18<!-- ======================================================================= -->
19<h1>Language Compatibility</h1>
20<!-- ======================================================================= -->
21
22<p>Clang strives to both conform to current language standards (C99,
23  C++98) and also to implement many widely-used extensions available
24  in other compilers, so that most correct code will "just work" when
25  compiler with Clang. However, Clang is more strict than other
26  popular compilers, and may reject incorrect code that other
27  compilers allow. This page documents common compatibility and
28  portability issues with Clang to help you understand and fix the
29  problem in your code when Clang emits an error message.</p>
30
31<ul>
32  <li><a href="#c">C compatibility</a>
33    <ul>
34      <li><a href="#inline">C99 inline functions</a></li>
35      <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
36      <li><a href="#lvalue-cast">Lvalue casts</a></li>
37      <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
38      <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
39      <li><a href="#inline-asm">Inline assembly</a></li>
40    </ul>
41  </li>
42  <li><a href="#objective-c">Objective-C compatibility</a>
43    <ul>
44      <li><a href="#super-cast">Cast of super</a></li>
45      <li><a href="#sizeof-interface">Size of interfaces</a></li>
46      <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
47      <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
48    </ul>
49  </li>
50  <li><a href="#c++">C++ compatibility</a>
51    <ul>
52      <li><a href="#vla">Variable-length arrays</a></li>
53      <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
54      <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
55      <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
56      <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
57      <li><a href="#default_init_const">Default initialization of const
58      variable of a class type requires user-defined default
59      constructor</a></li>
60      <li><a href="#param_name_lookup">Parameter name lookup</a></li>
61    </ul>
62  </li>
63  <li><a href="#objective-c++">Objective-C++ compatibility</a>
64    <ul>
65      <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
66    </ul>
67    <ul>
68      <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
69    </ul>
70  </li>
71</ul>
72
73<!-- ======================================================================= -->
74<h2 id="c">C compatibility</h3>
75<!-- ======================================================================= -->
76
77<!-- ======================================================================= -->
78<h3 id="inline">C99 inline functions</h3>
79<!-- ======================================================================= -->
80<p>By default, Clang builds C code according to the C99 standard,
81which provides different semantics for the <code>inline</code> keyword
82than GCC's default behavior. For example, consider the following
83code:</p>
84<pre>
85inline int add(int i, int j) { return i + j; }
86
87int main() {
88  int i = add(4, 5);
89  return i;
90}
91</pre>
92
93<p>In C99, <code>inline</code> means that a function's definition is
94provided only for inlining, and that there is another definition
95(without <code>inline</code>) somewhere else in the program.  That
96means that this program is incomplete, because if <code>add</code>
97isn't inlined (for example, when compiling without optimization), then
98<code>main</code> will have an unresolved reference to that other
99definition.  Therefore we'll get a (correct) link-time error like this:</p>
100
101<pre>
102Undefined symbols:
103  "_add", referenced from:
104      _main in cc-y1jXIr.o
105</pre>
106
107<p>By contrast, GCC's default behavior follows the GNU89 dialect,
108which is the C89 standard plus a lot of extensions.  C89 doesn't have
109an <code>inline</code> keyword, but GCC recognizes it as an extension
110and just treats it as a hint to the optimizer.</p>
111
112<p>There are several ways to fix this problem:</p>
113
114<ul>
115  <li>Change <code>add</code> to a <code>static inline</code>
116  function.  This is usually the right solution if only one
117  translation unit needs to use the function.  <code>static
118  inline</code> functions are always resolved within the translation
119  unit, so you won't have to add a non-<code>inline</code> definition
120  of the function elsewhere in your program.</li>
121
122  <li>Remove the <code>inline</code> keyword from this definition of
123  <code>add</code>.  The <code>inline</code> keyword is not required
124  for a function to be inlined, nor does it guarantee that it will be.
125  Some compilers ignore it completely.  Clang treats it as a mild
126  suggestion from the programmer.</li>
127
128  <li>Provide an external (non-<code>inline</code>) definition
129  of <code>add</code> somewhere else in your program.  The two
130  definitions must be equivalent!</li>
131
132  <li>Compile with the GNU89 dialect by adding
133  <code>-std=gnu89</code> to the set of Clang options. This option is
134  only recommended if the program source cannot be changed or if the
135  program also relies on additional C89-specific behavior that cannot
136  be changed.</li>
137</ul>
138
139<p>All of this only applies to C code; the meaning of <code>inline</code>
140in C++ is very different from its meaning in either GNU89 or C99.</p>
141
142<!-- ======================================================================= -->
143<h3 id="vector_builtins">"missing" vector __builtin functions</h3>
144<!-- ======================================================================= -->
145
146<p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
147header files, which define a standardized API for accessing vector operations
148on X86 CPUs.  These functions have names like <tt>_mm_xor_ps</tt> and
149<tt>_mm256_addsub_pd</tt>.  Compilers have leeway to implement these functions
150however they want.  Since Clang supports an excellent set of <a
151href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
152the Clang headers implement these interfaces in terms of the native vector
153operations.
154</p>
155
156<p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
157builtin function calls, like <tt>__builtin_ia32_paddw128</tt>.  These builtin
158functions are an internal implementation detail of GCC, and are not portable to
159the Intel compiler, the Microsoft compiler, or Clang.  If you get build errors
160mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>
161
162<p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
163architectures respectively.  For these, make sure to use the &lt;arm_neon.h&gt;
164and &lt;altivec.h&gt; headers.</p>
165
166<p>For x86 architectures this <a href="builtins.py">script</a> should help with
167the manual migration process.  It will rewrite your source files in place to
168use the APIs instead of builtin function calls. Just call it like this:</p>
169
170<pre>
171  builtins.py *.c *.h
172</pre>
173
174<p>and it will rewrite all of the .c and .h files in the current directory to
175use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>
176
177<!-- ======================================================================= -->
178<h3 id="lvalue-cast">Lvalue casts</h3>
179<!-- ======================================================================= -->
180
181<p>Old versions of GCC permit casting the left-hand side of an assignment to a
182different type. Clang produces an error on similar code, e.g.,</p>
183
184<pre>
185lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts are not
186      supported
187  (int*)addr = val;
188  ^~~~~~~~~~ ~
189</pre>
190
191<p>To fix this problem, move the cast to the right-hand side. In this
192example, one could use:</p>
193
194<pre>
195  addr = (float *)val;
196</pre>
197
198<!-- ======================================================================= -->
199<h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
200<!-- ======================================================================= -->
201
202<p>Clang disallows jumps into the scope of a <tt>__block</tt>
203variable.  Variables marked with <tt>__block</tt> require special
204runtime initialization. A jump into the scope of a <tt>__block</tt>
205variable bypasses this initialization, leaving the variable's metadata
206in an invalid state.  Consider the following code fragment:</p>
207
208<pre>
209int fetch_object_state(struct MyObject *c) {
210  if (!c->active) goto error;
211
212  __block int result;
213  run_specially_somehow(^{ result = c->state; });
214  return result;
215
216 error:
217  fprintf(stderr, "error while fetching object state");
218  return -1;
219}
220</pre>
221
222<p>GCC accepts this code, but it produces code that will usually crash
223when <code>result</code> goes out of scope if the jump is taken.  (It's
224possible for this bug to go undetected because it often won't crash if
225the stack is fresh, i.e. still zeroed.)  Therefore, Clang rejects this
226code with a hard error:</p>
227
228<pre>
229t.c:3:5: error: goto into protected scope
230    goto error;
231    ^
232t.c:5:15: note: jump bypasses setup of __block variable
233  __block int result;
234              ^
235</pre>
236
237<p>The fix is to rewrite the code to not require jumping into a
238<tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>
239
240<pre>
241  {
242    __block int result;
243    run_specially_somehow(^{ result = c->state; });
244    return result;
245  }
246</pre>
247
248<!-- ======================================================================= -->
249<h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
250variables</h3>
251<!-- ======================================================================= -->
252
253<p>In the following example code, the <tt>x</tt> variable is used before it is
254defined:</p>
255<pre>
256int f0() {
257  __block int x;
258  return ^(){ return x; }();
259}
260</pre>
261
262<p>By an accident of implementation, GCC and llvm-gcc unintentionally always
263zero initialized <tt>__block</tt> variables. However, any program which depends
264on this behavior is relying on unspecified compiler behavior. Programs must
265explicitly initialize all local block variables before they are used, as with
266other local variables.</p>
267
268<p>Clang does not zero initialize local block variables, and programs which rely
269on such behavior will most likely break when built with Clang.</p>
270
271
272<!-- ======================================================================= -->
273<h3 id="inline-asm">Inline assembly</h3>
274<!-- ======================================================================= -->
275
276<p>In general, Clang is highly compatible with the GCC inline assembly
277extensions, allowing the same set of constraints, modifiers and operands as GCC
278inline assembly.</p>
279
280<p>On targets that use the integrated assembler (such as most X86 targets),
281inline assembly is run through the integrated assembler instead of your system
282assembler (which is most commonly "gas", the GNU assembler).  The LLVM
283integrated assembler is extremely compatible with GAS, but there are a couple of
284minor places where it is more picky, particularly due to outright GAS bugs.</p>
285
286<p>One specific example is that the assembler rejects ambiguous X86 instructions
287that don't have suffixes.  For example:</p>
288
289<pre>
290  asm("add %al, (%rax)");
291  asm("addw $4, (%rax)");
292  asm("add $4, (%rax)");
293</pre>
294
295<p>Both clang and GAS accept the first instruction: because the first
296instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
297it is an 8-bit add.  The second instruction is accepted by both because the "w"
298suffix indicates that it is a 16-bit add.  The last instruction is accepted by
299GAS even though there is nothing that specifies the size of the instruction (and
300the assembler randomly picks a 32-bit add).  Because it is ambiguous, Clang
301rejects the instruction with this error message:
302</p>
303
304<pre>
305&lt;inline asm&gt;:3:1: error: ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')
306add $4, (%rax)
307^
3081 error generated.
309</pre>
310
311<p>To fix this compatibility issue, add an explicit suffix to the instruction:
312this makes your code more clear and is compatible with both GCC and Clang.</p>
313
314<!-- ======================================================================= -->
315<h2 id="objective-c">Objective-C compatibility</h3>
316<!-- ======================================================================= -->
317
318<!-- ======================================================================= -->
319<h3 id="super-cast">Cast of super</h3>
320<!-- ======================================================================= -->
321
322<p>GCC treats the <code>super</code> identifier as an expression that
323can, among other things, be cast to a different type. Clang treats
324<code>super</code> as a context-sensitive keyword, and will reject a
325type-cast of <code>super</code>:</p>
326
327<pre>
328super.m:11:12: error: cannot cast 'super' (it isn't an expression)
329  [(Super*)super add:4];
330   ~~~~~~~~^
331</pre>
332
333<p>To fix this problem, remove the type cast, e.g.</p>
334<pre>
335  [super add:4];
336</pre>
337
338<!-- ======================================================================= -->
339<h3 id="sizeof-interface">Size of interfaces</h3>
340<!-- ======================================================================= -->
341
342<p>When using the "non-fragile" Objective-C ABI in use, the size of an
343Objective-C class may change over time as instance variables are added
344(or removed). For this reason, Clang rejects the application of the
345<code>sizeof</code> operator to an Objective-C class when using this
346ABI:</p>
347
348<pre>
349sizeof.m:4:14: error: invalid application of 'sizeof' to interface 'NSArray' in
350      non-fragile ABI
351  int size = sizeof(NSArray);
352             ^     ~~~~~~~~~
353</pre>
354
355<p>Code that relies on the size of an Objective-C class is likely to
356be broken anyway, since that size is not actually constant. To address
357this problem, use the Objective-C runtime API function
358<code>class_getInstanceSize()</code>:</p>
359
360<pre>
361  class_getInstanceSize([NSArray class])
362</pre>
363
364<!-- ======================================================================= -->
365<h3 id="objc_objs-cast">Internal Objective-C types</h3>
366<!-- ======================================================================= -->
367
368<p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
369<tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
370<tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
371internal Objective-C structures as implementation detail and won't do implicit conversions:
372
373<pre>
374t.mm:11:2: error: no matching function for call to 'f'
375        f((struct objc_object *)p);
376        ^
377t.mm:5:6: note: candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
378void f(id x);
379     ^
380</pre>
381
382<p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
383instead of the internal types.</p>
384
385<!-- ======================================================================= -->
386<h3 id="c_variables-class">C variables in @interface or @protocol</h3>
387<!-- ======================================================================= -->
388
389<p>GCC allows the declaration of C variables in
390an <code>@interface</code> or <code>@protocol</code>
391declaration. Clang does not allow variable declarations to appear
392within these declarations unless they are marked <code>extern</code>.</p>
393
394<p>Variables may still be declared in an @implementation.</p>
395
396<pre>
397@interface XX
398int a;         // not allowed in clang
399int b = 1;     // not allowed in clang
400extern int c;  // allowed
401@end
402
403</pre>
404
405<!-- ======================================================================= -->
406<h2 id="c++">C++ compatibility</h3>
407<!-- ======================================================================= -->
408
409<!-- ======================================================================= -->
410<h3 id="vla">Variable-length arrays</h3>
411<!-- ======================================================================= -->
412
413<p>GCC and C99 allow an array's size to be determined at run
414time. This extension is not permitted in standard C++. However, Clang
415supports such variable length arrays in very limited circumstances for
416compatibility with GNU C and C99 programs:</p>
417
418<ul>
419  <li>The element type of a variable length array must be a POD
420  ("plain old data") type, which means that it cannot have any
421  user-declared constructors or destructors, any base classes, or any
422  members of non-POD type. All C types are POD types.</li>
423
424  <li>Variable length arrays cannot be used as the type of a non-type
425template parameter.</li> </ul>
426
427<p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
428
429<ol>
430<li>replace the variable length array with a fixed-size array if you can
431    determine a reasonable upper bound at compile time; sometimes this is as
432    simple as changing <tt>int size = ...;</tt> to <tt>const int size
433    = ...;</tt> (if the initializer is a compile-time constant);</li>
434<li>use <tt>std::vector</tt> or some other suitable container type;
435    or</li>
436<li>allocate the array on the heap instead using <tt>new Type[]</tt> -
437    just remember to <tt>delete[]</tt> it.</li>
438</ol>
439
440<!-- ======================================================================= -->
441<h3 id="dep_lookup">Unqualified lookup in templates</h3>
442<!-- ======================================================================= -->
443
444<p>Some versions of GCC accept the following invalid code:
445
446<pre>
447template &lt;typename T&gt; T Squared(T x) {
448  return Multiply(x, x);
449}
450
451int Multiply(int x, int y) {
452  return x * y;
453}
454
455int main() {
456  Squared(5);
457}
458</pre>
459
460<p>Clang complains:
461
462<pre>  <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
463    return Multiply(x, x);
464  <span class="caret">         ^</span>
465  <b>my_file.cpp:10:3: <span class="note">note:</span> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here</b>
466    Squared(5);
467  <span class="caret">  ^</span>
468  <b>my_file.cpp:5:5: <span class="note">note:</span> 'Multiply' should be declared prior to the call site</b>
469  int Multiply(int x, int y) {
470  <span class="caret">    ^</span>
471</pre>
472
473<p>The C++ standard says that unqualified names like <q>Multiply</q>
474are looked up in two ways.
475
476<p>First, the compiler does <i>unqualified lookup</i> in the scope
477where the name was written.  For a template, this means the lookup is
478done at the point where the template is defined, not where it's
479instantiated.  Since <tt>Multiply</tt> hasn't been declared yet at
480this point, unqualified lookup won't find it.
481
482<p>Second, if the name is called like a function, then the compiler
483also does <i>argument-dependent lookup</i> (ADL).  (Sometimes
484unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
485more information.)  In ADL, the compiler looks at the types of all the
486arguments to the call.  When it finds a class type, it looks up the
487name in that class's namespace; the result is all the declarations it
488finds in those namespaces, plus the declarations from unqualified
489lookup.  However, the compiler doesn't do ADL until it knows all the
490argument types.
491
492<p>In our example, <tt>Multiply</tt> is called with dependent
493arguments, so ADL isn't done until the template is instantiated.  At
494that point, the arguments both have type <tt>int</tt>, which doesn't
495contain any class types, and so ADL doesn't look in any namespaces.
496Since neither form of lookup found the declaration
497of <tt>Multiply</tt>, the code doesn't compile.
498
499<p>Here's another example, this time using overloaded operators,
500which obey very similar rules.
501
502<pre>#include &lt;iostream&gt;
503
504template&lt;typename T&gt;
505void Dump(const T&amp; value) {
506  std::cout &lt;&lt; value &lt;&lt; "\n";
507}
508
509namespace ns {
510  struct Data {};
511}
512
513std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
514  return out &lt;&lt; "Some data";
515}
516
517void Use() {
518  Dump(ns::Data());
519}</pre>
520
521<p>Again, Clang complains:</p>
522
523<pre>  <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
524    std::cout &lt;&lt; value &lt;&lt; "\n";
525  <span class="caret">            ^</span>
526  <b>my_file2.cpp:17:3: <span class="error">note:</span> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here</b>
527    Dump(ns::Data());
528  <span class="caret">  ^</span>
529  <b>my_file2.cpp:12:15: <span class="error">note:</span> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'</b>
530  std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
531  <span class="caret">              ^</span>
532</pre>
533
534<p>Just like before, unqualified lookup didn't find any declarations
535with the name <tt>operator&lt;&lt;</tt>.  Unlike before, the argument
536types both contain class types: one of them is an instance of the
537class template type <tt>std::basic_ostream</tt>, and the other is the
538type <tt>ns::Data</tt> that we declared above.  Therefore, ADL will
539look in the namespaces <tt>std</tt> and <tt>ns</tt> for
540an <tt>operator&lt;&lt;</tt>.  Since one of the argument types was
541still dependent during the template definition, ADL isn't done until
542the template is instantiated during <tt>Use</tt>, which means that
543the <tt>operator&lt;&lt;</tt> we want it to find has already been
544declared.  Unfortunately, it was declared in the global namespace, not
545in either of the namespaces that ADL will look in!
546
547<p>There are two ways to fix this problem:</p>
548<ol><li>Make sure the function you want to call is declared before the
549template that might call it.  This is the only option if none of its
550argument types contain classes.  You can do this either by moving the
551template definition, or by moving the function definition, or by
552adding a forward declaration of the function before the template.</li>
553<li>Move the function into the same namespace as one of its arguments
554so that ADL applies.</li></ol>
555
556<p>For more information about argument-dependent lookup, see
557[basic.lookup.argdep].  For more information about the ordering of
558lookup in templates, see [temp.dep.candidate].
559
560<!-- ======================================================================= -->
561<h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
562<!-- ======================================================================= -->
563
564Some versions of GCC accept the following invalid code:
565
566<pre>
567template &lt;typename T&gt; struct Base {
568  void DoThis(T x) {}
569  static void DoThat(T x) {}
570};
571
572template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
573  void Work(T x) {
574    DoThis(x);  // Invalid!
575    DoThat(x);  // Invalid!
576  }
577};
578</pre>
579
580Clang correctly rejects it with the following errors
581(when <tt>Derived</tt> is eventually instantiated):
582
583<pre>
584my_file.cpp:8:5: error: use of undeclared identifier 'DoThis'
585    DoThis(x);
586    ^
587    this-&gt;
588my_file.cpp:2:8: note: must qualify identifier to find this declaration in dependent base class
589  void DoThis(T x) {}
590       ^
591my_file.cpp:9:5: error: use of undeclared identifier 'DoThat'
592    DoThat(x);
593    ^
594    this-&gt;
595my_file.cpp:3:15: note: must qualify identifier to find this declaration in dependent base class
596  static void DoThat(T x) {}
597</pre>
598
599Like we said <a href="#dep_lookup">above</a>, unqualified names like
600<tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
601<tt>Derived</tt> is defined, not when it's instantiated.  When we look
602up a name used in a class, we usually look into the base classes.
603However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
604because its type depends on the template argument <tt>T</tt>, so the
605standard says we should just ignore it.  See [temp.dep]p3 for details.
606
607<p>The fix, as Clang tells you, is to tell the compiler that we want a
608class member by prefixing the calls with <tt>this-&gt;</tt>:
609
610<pre>
611  void Work(T x) {
612    <b>this-&gt;</b>DoThis(x);
613    <b>this-&gt;</b>DoThat(x);
614  }
615</pre>
616
617Alternatively, you can tell the compiler exactly where to look:
618
619<pre>
620  void Work(T x) {
621    <b>Base&lt;T&gt;</b>::DoThis(x);
622    <b>Base&lt;T&gt;</b>::DoThat(x);
623  }
624</pre>
625
626This works whether the methods are static or not, but be careful:
627if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
628dispatch!
629
630<!-- ======================================================================= -->
631<h3 id="undep_incomplete">Incomplete types in templates</h3>
632<!-- ======================================================================= -->
633
634The following code is invalid, but compilers are allowed to accept it:
635
636<pre>
637  class IOOptions;
638  template &lt;class T&gt; bool read(T &amp;value) {
639    IOOptions opts;
640    return read(opts, value);
641  }
642
643  class IOOptions { bool ForceReads; };
644  bool read(const IOOptions &amp;opts, int &amp;x);
645  template bool read&lt;&gt;(int &amp;);
646</pre>
647
648The standard says that types which don't depend on template parameters
649must be complete when a template is defined if they affect the
650program's behavior.  However, the standard also says that compilers
651are free to not enforce this rule.  Most compilers enforce it to some
652extent; for example, it would be an error in GCC to
653write <tt>opts.ForceReads</tt> in the code above.  In Clang, we feel
654that enforcing the rule consistently lets us provide a better
655experience, but unfortunately it also means we reject some code that
656other compilers accept.
657
658<p>We've explained the rule here in very imprecise terms; see
659[temp.res]p8 for details.
660
661<!-- ======================================================================= -->
662<h3 id="bad_templates">Templates with no valid instantiations</h3>
663<!-- ======================================================================= -->
664
665The following code contains a typo: the programmer
666meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
667
668<pre>
669  template &lt;class T&gt; class Processor {
670    ...
671    void init();
672    ...
673  };
674  ...
675  template &lt;class T&gt; void process() {
676    Processor&lt;T&gt; processor;
677    processor.innit();       // <-- should be 'init()'
678    ...
679  }
680</pre>
681
682Unfortunately, we can't flag this mistake as soon as we see it: inside
683a template, we're not allowed to make assumptions about "dependent
684types" like <tt>Processor&lt;T&gt;</tt>.  Suppose that later on in
685this file the programmer adds an explicit specialization
686of <tt>Processor</tt>, like so:
687
688<pre>
689  template &lt;&gt; class Processor&lt;char*&gt; {
690    void innit();
691  };
692</pre>
693
694Now the program will work &mdash; as long as the programmer only ever
695instantiates <tt>process()</tt> with <tt>T = char*</tt>!  This is why
696it's hard, and sometimes impossible, to diagnose mistakes in a
697template definition before it's instantiated.
698
699<p>The standard says that a template with no valid instantiations is
700ill-formed.  Clang tries to do as much checking as possible at
701definition-time instead of instantiation-time: not only does this
702produce clearer diagnostics, but it also substantially improves
703compile times when using pre-compiled headers.  The downside to this
704philosophy is that Clang sometimes fails to process files because they
705contain broken templates that are no longer used.  The solution is
706simple: since the code is unused, just remove it.
707
708<!-- ======================================================================= -->
709<h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
710<!-- ======================================================================= -->
711
712If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
713constructor, C++ doesn't allow you to default construct a <tt>const</tt>
714instance of it like this ([dcl.init], p9):
715
716<pre>
717class Foo {
718 public:
719  // The compiler-supplied default constructor works fine, so we
720  // don't bother with defining one.
721  ...
722};
723
724void Bar() {
725  const Foo foo;  // Error!
726  ...
727}
728</pre>
729
730To fix this, you can define a default constructor for the class:
731
732<pre>
733class Foo {
734 public:
735  Foo() {}
736  ...
737};
738
739void Bar() {
740  const Foo foo;  // Now the compiler is happy.
741  ...
742}
743</pre>
744
745<!-- ======================================================================= -->
746<h3 id="param_name_lookup">Parameter name lookup</h3>
747<!-- ======================================================================= -->
748
749<p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
750<blockquote>
751<pre>
752void f(int a, int a);
753</pre>
754</blockquote>
755<p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>
756
757<!-- ======================================================================= -->
758<h2 id="objective-c++">Objective-C++ compatibility</h3>
759<!-- ======================================================================= -->
760
761<!-- ======================================================================= -->
762<h3 id="implicit-downcasts">Implicit downcasts</h3>
763<!-- ======================================================================= -->
764
765<p>Due to a bug in its implementation, GCC allows implicit downcasts
766of Objective-C pointers (from a base class to a derived class) when
767calling functions. Such code is inherently unsafe, since the object
768might not actually be an instance of the derived class, and is
769rejected by Clang. For example, given this code:</p>
770
771<pre>
772@interface Base @end
773@interface Derived : Base @end
774
775void f(Derived *p);
776void g(Base *p) {
777  f(p);
778}
779</pre>
780
781<p>Clang produces the following error:</p>
782
783<pre>
784downcast.mm:6:3: error: no matching function for call to 'f'
785  f(p);
786  ^
787downcast.mm:4:6: note: candidate function not viable: cannot convert from
788      superclass 'Base *' to subclass 'Derived *' for 1st argument
789void f(Derived *p);
790     ^
791</pre>
792
793<p>If the downcast is actually correct (e.g., because the code has
794already checked that the object has the appropriate type), add an
795explicit cast:</p>
796
797<pre>
798  f((Derived *)base);
799</pre>
800
801<!-- ======================================================================= -->
802<h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
803<!-- ======================================================================= -->
804
805<p>In C and Objective-C, <code>class</code> is a normal identifier and
806can be used to name fields, ivars, methods, and so on.  In
807C++, <code>class</code> is a keyword.  For compatibility with existing
808code, Clang permits <code>class</code> to be used as part of a method
809selector in Objective-C++, but this does not extend to any other part
810of the language.  In particular, it is impossible to use property dot
811syntax in Objective-C++ with the property name <code>class</code>, so
812the following code will fail to parse:</p>
813
814<pre>
815@interface I {
816int cls;
817}
818+ (int)class;
819@end
820
821@implementation  I
822- (int) Meth { return I.class; }
823@end
824<pre>
825
826<p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>
827
828</div>
829</body>
830</html>
831