• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <tommath.h>
2 #ifdef BN_MP_INVMOD_SLOW_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4  *
5  * LibTomMath is a library that provides multiple-precision
6  * integer arithmetic as well as number theoretic functionality.
7  *
8  * The library was designed directly after the MPI library by
9  * Michael Fromberger but has been written from scratch with
10  * additional optimizations in place.
11  *
12  * The library is free for all purposes without any express
13  * guarantee it works.
14  *
15  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
16  */
17 
18 /* hac 14.61, pp608 */
mp_invmod_slow(mp_int * a,mp_int * b,mp_int * c)19 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
20 {
21   mp_int  x, y, u, v, A, B, C, D;
22   int     res;
23 
24   /* b cannot be negative */
25   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
26     return MP_VAL;
27   }
28 
29   /* init temps */
30   if ((res = mp_init_multi(&x, &y, &u, &v,
31                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
32      return res;
33   }
34 
35   /* x = a, y = b */
36   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
37       goto LBL_ERR;
38   }
39   if ((res = mp_copy (b, &y)) != MP_OKAY) {
40     goto LBL_ERR;
41   }
42 
43   /* 2. [modified] if x,y are both even then return an error! */
44   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
45     res = MP_VAL;
46     goto LBL_ERR;
47   }
48 
49   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
50   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
51     goto LBL_ERR;
52   }
53   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
54     goto LBL_ERR;
55   }
56   mp_set (&A, 1);
57   mp_set (&D, 1);
58 
59 top:
60   /* 4.  while u is even do */
61   while (mp_iseven (&u) == 1) {
62     /* 4.1 u = u/2 */
63     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
64       goto LBL_ERR;
65     }
66     /* 4.2 if A or B is odd then */
67     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
68       /* A = (A+y)/2, B = (B-x)/2 */
69       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
70          goto LBL_ERR;
71       }
72       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
73          goto LBL_ERR;
74       }
75     }
76     /* A = A/2, B = B/2 */
77     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
78       goto LBL_ERR;
79     }
80     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
81       goto LBL_ERR;
82     }
83   }
84 
85   /* 5.  while v is even do */
86   while (mp_iseven (&v) == 1) {
87     /* 5.1 v = v/2 */
88     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
89       goto LBL_ERR;
90     }
91     /* 5.2 if C or D is odd then */
92     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
93       /* C = (C+y)/2, D = (D-x)/2 */
94       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
95          goto LBL_ERR;
96       }
97       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
98          goto LBL_ERR;
99       }
100     }
101     /* C = C/2, D = D/2 */
102     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
103       goto LBL_ERR;
104     }
105     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
106       goto LBL_ERR;
107     }
108   }
109 
110   /* 6.  if u >= v then */
111   if (mp_cmp (&u, &v) != MP_LT) {
112     /* u = u - v, A = A - C, B = B - D */
113     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
114       goto LBL_ERR;
115     }
116 
117     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
118       goto LBL_ERR;
119     }
120 
121     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
122       goto LBL_ERR;
123     }
124   } else {
125     /* v - v - u, C = C - A, D = D - B */
126     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
127       goto LBL_ERR;
128     }
129 
130     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
131       goto LBL_ERR;
132     }
133 
134     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
135       goto LBL_ERR;
136     }
137   }
138 
139   /* if not zero goto step 4 */
140   if (mp_iszero (&u) == 0)
141     goto top;
142 
143   /* now a = C, b = D, gcd == g*v */
144 
145   /* if v != 1 then there is no inverse */
146   if (mp_cmp_d (&v, 1) != MP_EQ) {
147     res = MP_VAL;
148     goto LBL_ERR;
149   }
150 
151   /* if its too low */
152   while (mp_cmp_d(&C, 0) == MP_LT) {
153       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
154          goto LBL_ERR;
155       }
156   }
157 
158   /* too big */
159   while (mp_cmp_mag(&C, b) != MP_LT) {
160       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
161          goto LBL_ERR;
162       }
163   }
164 
165   /* C is now the inverse */
166   mp_exch (&C, c);
167   res = MP_OKAY;
168 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
169   return res;
170 }
171 #endif
172 
173 /* $Source: /cvs/libtom/libtommath/bn_mp_invmod_slow.c,v $ */
174 /* $Revision: 1.3 $ */
175 /* $Date: 2006/03/31 14:18:44 $ */
176