• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *****************************************************************************
3  * Copyright (C) 1996-2010, International Business Machines Corporation and  *
4  * others. All Rights Reserved.                                              *
5  *****************************************************************************
6  */
7 
8 #include "unicode/utypes.h"
9 
10 #if !UCONFIG_NO_NORMALIZATION
11 
12 #include "unicode/caniter.h"
13 #include "unicode/normalizer2.h"
14 #include "unicode/uchar.h"
15 #include "unicode/uniset.h"
16 #include "unicode/usetiter.h"
17 #include "unicode/ustring.h"
18 #include "cmemory.h"
19 #include "hash.h"
20 #include "normalizer2impl.h"
21 
22 /**
23  * This class allows one to iterate through all the strings that are canonically equivalent to a given
24  * string. For example, here are some sample results:
25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
26 1: \u0041\u030A\u0064\u0307\u0327
27  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
28 2: \u0041\u030A\u0064\u0327\u0307
29  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
30 3: \u0041\u030A\u1E0B\u0327
31  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
32 4: \u0041\u030A\u1E11\u0307
33  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
34 5: \u00C5\u0064\u0307\u0327
35  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
36 6: \u00C5\u0064\u0327\u0307
37  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
38 7: \u00C5\u1E0B\u0327
39  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
40 8: \u00C5\u1E11\u0307
41  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
42 9: \u212B\u0064\u0307\u0327
43  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
44 10: \u212B\u0064\u0327\u0307
45  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
46 11: \u212B\u1E0B\u0327
47  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
48 12: \u212B\u1E11\u0307
49  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
50  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
51  * since it has not been optimized for that situation.
52  *@author M. Davis
53  *@draft
54  */
55 
56 // public
57 
58 U_NAMESPACE_BEGIN
59 
60 // TODO: add boilerplate methods.
61 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
63 
64 /**
65  *@param source string to get results for
66  */
67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
68     pieces(NULL),
69     pieces_length(0),
70     pieces_lengths(NULL),
71     current(NULL),
72     current_length(0),
73     nfd(*Normalizer2Factory::getNFDInstance(status)),
74     nfcImpl(*Normalizer2Factory::getNFCImpl(status))
75 {
76     if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
77       setSource(sourceStr, status);
78     }
79 }
80 
~CanonicalIterator()81 CanonicalIterator::~CanonicalIterator() {
82   cleanPieces();
83 }
84 
cleanPieces()85 void CanonicalIterator::cleanPieces() {
86     int32_t i = 0;
87     if(pieces != NULL) {
88         for(i = 0; i < pieces_length; i++) {
89             if(pieces[i] != NULL) {
90                 delete[] pieces[i];
91             }
92         }
93         uprv_free(pieces);
94         pieces = NULL;
95         pieces_length = 0;
96     }
97     if(pieces_lengths != NULL) {
98         uprv_free(pieces_lengths);
99         pieces_lengths = NULL;
100     }
101     if(current != NULL) {
102         uprv_free(current);
103         current = NULL;
104         current_length = 0;
105     }
106 }
107 
108 /**
109  *@return gets the source: NOTE: it is the NFD form of source
110  */
getSource()111 UnicodeString CanonicalIterator::getSource() {
112   return source;
113 }
114 
115 /**
116  * Resets the iterator so that one can start again from the beginning.
117  */
reset()118 void CanonicalIterator::reset() {
119     done = FALSE;
120     for (int i = 0; i < current_length; ++i) {
121         current[i] = 0;
122     }
123 }
124 
125 /**
126  *@return the next string that is canonically equivalent. The value null is returned when
127  * the iteration is done.
128  */
next()129 UnicodeString CanonicalIterator::next() {
130     int32_t i = 0;
131 
132     if (done) {
133       buffer.setToBogus();
134       return buffer;
135     }
136 
137     // delete old contents
138     buffer.remove();
139 
140     // construct return value
141 
142     for (i = 0; i < pieces_length; ++i) {
143         buffer.append(pieces[i][current[i]]);
144     }
145     //String result = buffer.toString(); // not needed
146 
147     // find next value for next time
148 
149     for (i = current_length - 1; ; --i) {
150         if (i < 0) {
151             done = TRUE;
152             break;
153         }
154         current[i]++;
155         if (current[i] < pieces_lengths[i]) break; // got sequence
156         current[i] = 0;
157     }
158     return buffer;
159 }
160 
161 /**
162  *@param set the source string to iterate against. This allows the same iterator to be used
163  * while changing the source string, saving object creation.
164  */
setSource(const UnicodeString & newSource,UErrorCode & status)165 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
166     int32_t list_length = 0;
167     UChar32 cp = 0;
168     int32_t start = 0;
169     int32_t i = 0;
170     UnicodeString *list = NULL;
171 
172     nfd.normalize(newSource, source, status);
173     if(U_FAILURE(status)) {
174       return;
175     }
176     done = FALSE;
177 
178     cleanPieces();
179 
180     // catch degenerate case
181     if (newSource.length() == 0) {
182         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
183         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
184         pieces_length = 1;
185         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
186         current_length = 1;
187         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
188             status = U_MEMORY_ALLOCATION_ERROR;
189             goto CleanPartialInitialization;
190         }
191         current[0] = 0;
192         pieces[0] = new UnicodeString[1];
193         pieces_lengths[0] = 1;
194         if (pieces[0] == 0) {
195             status = U_MEMORY_ALLOCATION_ERROR;
196             goto CleanPartialInitialization;
197         }
198         return;
199     }
200 
201 
202     list = new UnicodeString[source.length()];
203     if (list == 0) {
204         status = U_MEMORY_ALLOCATION_ERROR;
205         goto CleanPartialInitialization;
206     }
207 
208     // i should initialy be the number of code units at the
209     // start of the string
210     i = UTF16_CHAR_LENGTH(source.char32At(0));
211     //int32_t i = 1;
212     // find the segments
213     // This code iterates through the source string and
214     // extracts segments that end up on a codepoint that
215     // doesn't start any decompositions. (Analysis is done
216     // on the NFD form - see above).
217     for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
218         cp = source.char32At(i);
219         if (nfcImpl.isCanonSegmentStarter(cp)) {
220             source.extract(start, i-start, list[list_length++]); // add up to i
221             start = i;
222         }
223     }
224     source.extract(start, i-start, list[list_length++]); // add last one
225 
226 
227     // allocate the arrays, and find the strings that are CE to each segment
228     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
229     pieces_length = list_length;
230     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
231     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
232     current_length = list_length;
233     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
234         status = U_MEMORY_ALLOCATION_ERROR;
235         goto CleanPartialInitialization;
236     }
237 
238     for (i = 0; i < current_length; i++) {
239         current[i] = 0;
240     }
241     // for each segment, get all the combinations that can produce
242     // it after NFD normalization
243     for (i = 0; i < pieces_length; ++i) {
244         //if (PROGRESS) printf("SEGMENT\n");
245         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
246     }
247 
248     delete[] list;
249     return;
250 // Common section to cleanup all local variables and reset object variables.
251 CleanPartialInitialization:
252     if (list != NULL) {
253         delete[] list;
254     }
255     cleanPieces();
256 }
257 
258 /**
259  * Dumb recursive implementation of permutation.
260  * TODO: optimize
261  * @param source the string to find permutations for
262  * @return the results in a set.
263  */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status)264 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
265     if(U_FAILURE(status)) {
266         return;
267     }
268     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
269     int32_t i = 0;
270 
271     // optimization:
272     // if zero or one character, just return a set with it
273     // we check for length < 2 to keep from counting code points all the time
274     if (source.length() <= 2 && source.countChar32() <= 1) {
275         UnicodeString *toPut = new UnicodeString(source);
276         /* test for NULL */
277         if (toPut == 0) {
278             status = U_MEMORY_ALLOCATION_ERROR;
279             return;
280         }
281         result->put(source, toPut, status);
282         return;
283     }
284 
285     // otherwise iterate through the string, and recursively permute all the other characters
286     UChar32 cp;
287     Hashtable subpermute(status);
288     if(U_FAILURE(status)) {
289         return;
290     }
291     subpermute.setValueDeleter(uhash_deleteUnicodeString);
292 
293     for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
294         cp = source.char32At(i);
295         const UHashElement *ne = NULL;
296         int32_t el = -1;
297         UnicodeString subPermuteString = source;
298 
299         // optimization:
300         // if the character is canonical combining class zero,
301         // don't permute it
302         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
303             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
304             continue;
305         }
306 
307         subpermute.removeAll();
308 
309         // see what the permutations of the characters before and after this one are
310         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
311         permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
312         /* Test for buffer overflows */
313         if(U_FAILURE(status)) {
314             return;
315         }
316         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
317         // of source at this point.
318 
319         // prefix this character to all of them
320         ne = subpermute.nextElement(el);
321         while (ne != NULL) {
322             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
323             UnicodeString *chStr = new UnicodeString(cp);
324             //test for  NULL
325             if (chStr == NULL) {
326                 status = U_MEMORY_ALLOCATION_ERROR;
327                 return;
328             }
329             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
330             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
331             result->put(*chStr, chStr, status);
332             ne = subpermute.nextElement(el);
333         }
334     }
335     //return result;
336 }
337 
338 // privates
339 
340 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)341 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
342     Hashtable result(status);
343     Hashtable permutations(status);
344     Hashtable basic(status);
345     if (U_FAILURE(status)) {
346         return 0;
347     }
348     result.setValueDeleter(uhash_deleteUnicodeString);
349     permutations.setValueDeleter(uhash_deleteUnicodeString);
350     basic.setValueDeleter(uhash_deleteUnicodeString);
351 
352     UChar USeg[256];
353     int32_t segLen = segment.extract(USeg, 256, status);
354     getEquivalents2(&basic, USeg, segLen, status);
355 
356     // now get all the permutations
357     // add only the ones that are canonically equivalent
358     // TODO: optimize by not permuting any class zero.
359 
360     const UHashElement *ne = NULL;
361     int32_t el = -1;
362     //Iterator it = basic.iterator();
363     ne = basic.nextElement(el);
364     //while (it.hasNext())
365     while (ne != NULL) {
366         //String item = (String) it.next();
367         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
368 
369         permutations.removeAll();
370         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
371         const UHashElement *ne2 = NULL;
372         int32_t el2 = -1;
373         //Iterator it2 = permutations.iterator();
374         ne2 = permutations.nextElement(el2);
375         //while (it2.hasNext())
376         while (ne2 != NULL) {
377             //String possible = (String) it2.next();
378             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
379             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
380             UnicodeString attempt;
381             nfd.normalize(possible, attempt, status);
382 
383             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
384             if (attempt==segment) {
385                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
386                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
387                 result.put(possible, new UnicodeString(possible), status); //add(possible);
388             } else {
389                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
390             }
391 
392             ne2 = permutations.nextElement(el2);
393         }
394         ne = basic.nextElement(el);
395     }
396 
397     /* Test for buffer overflows */
398     if(U_FAILURE(status)) {
399         return 0;
400     }
401     // convert into a String[] to clean up storage
402     //String[] finalResult = new String[result.size()];
403     UnicodeString *finalResult = NULL;
404     int32_t resultCount;
405     if((resultCount = result.count())) {
406         finalResult = new UnicodeString[resultCount];
407         if (finalResult == 0) {
408             status = U_MEMORY_ALLOCATION_ERROR;
409             return NULL;
410         }
411     }
412     else {
413         status = U_ILLEGAL_ARGUMENT_ERROR;
414         return NULL;
415     }
416     //result.toArray(finalResult);
417     result_len = 0;
418     el = -1;
419     ne = result.nextElement(el);
420     while(ne != NULL) {
421         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
422         ne = result.nextElement(el);
423     }
424 
425 
426     return finalResult;
427 }
428 
getEquivalents2(Hashtable * fillinResult,const UChar * segment,int32_t segLen,UErrorCode & status)429 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
430 
431     if (U_FAILURE(status)) {
432         return NULL;
433     }
434 
435     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
436 
437     UnicodeString toPut(segment, segLen);
438 
439     fillinResult->put(toPut, new UnicodeString(toPut), status);
440 
441     UnicodeSet starts;
442 
443     // cycle through all the characters
444     UChar32 cp;
445     for (int32_t i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
446         // see if any character is at the start of some decomposition
447         UTF_GET_CHAR(segment, 0, i, segLen, cp);
448         if (!nfcImpl.getCanonStartSet(cp, starts)) {
449             continue;
450         }
451         // if so, see which decompositions match
452         UnicodeSetIterator iter(starts);
453         while (iter.next()) {
454             UChar32 cp2 = iter.getCodepoint();
455             Hashtable remainder(status);
456             remainder.setValueDeleter(uhash_deleteUnicodeString);
457             if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
458                 continue;
459             }
460 
461             // there were some matches, so add all the possibilities to the set.
462             UnicodeString prefix(segment, i);
463             prefix += cp2;
464 
465             int32_t el = -1;
466             const UHashElement *ne = remainder.nextElement(el);
467             while (ne != NULL) {
468                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
469                 UnicodeString *toAdd = new UnicodeString(prefix);
470                 /* test for NULL */
471                 if (toAdd == 0) {
472                     status = U_MEMORY_ALLOCATION_ERROR;
473                     return NULL;
474                 }
475                 *toAdd += item;
476                 fillinResult->put(*toAdd, toAdd, status);
477 
478                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
479 
480                 ne = remainder.nextElement(el);
481             }
482         }
483     }
484 
485     /* Test for buffer overflows */
486     if(U_FAILURE(status)) {
487         return NULL;
488     }
489     return fillinResult;
490 }
491 
492 /**
493  * See if the decomposition of cp2 is at segment starting at segmentPos
494  * (with canonical rearrangment!)
495  * If so, take the remainder, and return the equivalents
496  */
extract(Hashtable * fillinResult,UChar32 comp,const UChar * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)497 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
498 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
499     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
500     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
501 
502     if (U_FAILURE(status)) {
503         return NULL;
504     }
505 
506     UnicodeString temp(comp);
507     int32_t inputLen=temp.length();
508     UnicodeString decompString;
509     nfd.normalize(temp, decompString, status);
510     const UChar *decomp=decompString.getBuffer();
511     int32_t decompLen=decompString.length();
512 
513     // See if it matches the start of segment (at segmentPos)
514     UBool ok = FALSE;
515     UChar32 cp;
516     int32_t decompPos = 0;
517     UChar32 decompCp;
518     U16_NEXT(decomp, decompPos, decompLen, decompCp);
519 
520     int32_t i = segmentPos;
521     while(i < segLen) {
522         U16_NEXT(segment, i, segLen, cp);
523 
524         if (cp == decompCp) { // if equal, eat another cp from decomp
525 
526             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
527 
528             if (decompPos == decompLen) { // done, have all decomp characters!
529                 temp.append(segment+i, segLen-i);
530                 ok = TRUE;
531                 break;
532             }
533             U16_NEXT(decomp, decompPos, decompLen, decompCp);
534         } else {
535             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
536 
537             // brute force approach
538             temp.append(cp);
539 
540             /* TODO: optimize
541             // since we know that the classes are monotonically increasing, after zero
542             // e.g. 0 5 7 9 0 3
543             // we can do an optimization
544             // there are only a few cases that work: zero, less, same, greater
545             // if both classes are the same, we fail
546             // if the decomp class < the segment class, we fail
547 
548             segClass = getClass(cp);
549             if (decompClass <= segClass) return null;
550             */
551         }
552     }
553     if (!ok)
554         return NULL; // we failed, characters left over
555 
556     //if (PROGRESS) printf("Matches\n");
557 
558     if (inputLen == temp.length()) {
559         fillinResult->put(UnicodeString(), new UnicodeString(), status);
560         return fillinResult; // succeed, but no remainder
561     }
562 
563     // brute force approach
564     // check to make sure result is canonically equivalent
565     UnicodeString trial;
566     nfd.normalize(temp, trial, status);
567     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
568         return NULL;
569     }
570 
571     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
572 }
573 
574 U_NAMESPACE_END
575 
576 #endif /* #if !UCONFIG_NO_NORMALIZATION */
577