1 /*
2 *****************************************************************************
3 * Copyright (C) 1996-2010, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *****************************************************************************
6 */
7
8 #include "unicode/utypes.h"
9
10 #if !UCONFIG_NO_NORMALIZATION
11
12 #include "unicode/caniter.h"
13 #include "unicode/normalizer2.h"
14 #include "unicode/uchar.h"
15 #include "unicode/uniset.h"
16 #include "unicode/usetiter.h"
17 #include "unicode/ustring.h"
18 #include "cmemory.h"
19 #include "hash.h"
20 #include "normalizer2impl.h"
21
22 /**
23 * This class allows one to iterate through all the strings that are canonically equivalent to a given
24 * string. For example, here are some sample results:
25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
26 1: \u0041\u030A\u0064\u0307\u0327
27 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
28 2: \u0041\u030A\u0064\u0327\u0307
29 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
30 3: \u0041\u030A\u1E0B\u0327
31 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
32 4: \u0041\u030A\u1E11\u0307
33 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
34 5: \u00C5\u0064\u0307\u0327
35 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
36 6: \u00C5\u0064\u0327\u0307
37 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
38 7: \u00C5\u1E0B\u0327
39 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
40 8: \u00C5\u1E11\u0307
41 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
42 9: \u212B\u0064\u0307\u0327
43 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
44 10: \u212B\u0064\u0327\u0307
45 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
46 11: \u212B\u1E0B\u0327
47 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
48 12: \u212B\u1E11\u0307
49 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
50 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
51 * since it has not been optimized for that situation.
52 *@author M. Davis
53 *@draft
54 */
55
56 // public
57
58 U_NAMESPACE_BEGIN
59
60 // TODO: add boilerplate methods.
61
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
63
64 /**
65 *@param source string to get results for
66 */
67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
68 pieces(NULL),
69 pieces_length(0),
70 pieces_lengths(NULL),
71 current(NULL),
72 current_length(0),
73 nfd(*Normalizer2Factory::getNFDInstance(status)),
74 nfcImpl(*Normalizer2Factory::getNFCImpl(status))
75 {
76 if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
77 setSource(sourceStr, status);
78 }
79 }
80
~CanonicalIterator()81 CanonicalIterator::~CanonicalIterator() {
82 cleanPieces();
83 }
84
cleanPieces()85 void CanonicalIterator::cleanPieces() {
86 int32_t i = 0;
87 if(pieces != NULL) {
88 for(i = 0; i < pieces_length; i++) {
89 if(pieces[i] != NULL) {
90 delete[] pieces[i];
91 }
92 }
93 uprv_free(pieces);
94 pieces = NULL;
95 pieces_length = 0;
96 }
97 if(pieces_lengths != NULL) {
98 uprv_free(pieces_lengths);
99 pieces_lengths = NULL;
100 }
101 if(current != NULL) {
102 uprv_free(current);
103 current = NULL;
104 current_length = 0;
105 }
106 }
107
108 /**
109 *@return gets the source: NOTE: it is the NFD form of source
110 */
getSource()111 UnicodeString CanonicalIterator::getSource() {
112 return source;
113 }
114
115 /**
116 * Resets the iterator so that one can start again from the beginning.
117 */
reset()118 void CanonicalIterator::reset() {
119 done = FALSE;
120 for (int i = 0; i < current_length; ++i) {
121 current[i] = 0;
122 }
123 }
124
125 /**
126 *@return the next string that is canonically equivalent. The value null is returned when
127 * the iteration is done.
128 */
next()129 UnicodeString CanonicalIterator::next() {
130 int32_t i = 0;
131
132 if (done) {
133 buffer.setToBogus();
134 return buffer;
135 }
136
137 // delete old contents
138 buffer.remove();
139
140 // construct return value
141
142 for (i = 0; i < pieces_length; ++i) {
143 buffer.append(pieces[i][current[i]]);
144 }
145 //String result = buffer.toString(); // not needed
146
147 // find next value for next time
148
149 for (i = current_length - 1; ; --i) {
150 if (i < 0) {
151 done = TRUE;
152 break;
153 }
154 current[i]++;
155 if (current[i] < pieces_lengths[i]) break; // got sequence
156 current[i] = 0;
157 }
158 return buffer;
159 }
160
161 /**
162 *@param set the source string to iterate against. This allows the same iterator to be used
163 * while changing the source string, saving object creation.
164 */
setSource(const UnicodeString & newSource,UErrorCode & status)165 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
166 int32_t list_length = 0;
167 UChar32 cp = 0;
168 int32_t start = 0;
169 int32_t i = 0;
170 UnicodeString *list = NULL;
171
172 nfd.normalize(newSource, source, status);
173 if(U_FAILURE(status)) {
174 return;
175 }
176 done = FALSE;
177
178 cleanPieces();
179
180 // catch degenerate case
181 if (newSource.length() == 0) {
182 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
183 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
184 pieces_length = 1;
185 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
186 current_length = 1;
187 if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
188 status = U_MEMORY_ALLOCATION_ERROR;
189 goto CleanPartialInitialization;
190 }
191 current[0] = 0;
192 pieces[0] = new UnicodeString[1];
193 pieces_lengths[0] = 1;
194 if (pieces[0] == 0) {
195 status = U_MEMORY_ALLOCATION_ERROR;
196 goto CleanPartialInitialization;
197 }
198 return;
199 }
200
201
202 list = new UnicodeString[source.length()];
203 if (list == 0) {
204 status = U_MEMORY_ALLOCATION_ERROR;
205 goto CleanPartialInitialization;
206 }
207
208 // i should initialy be the number of code units at the
209 // start of the string
210 i = UTF16_CHAR_LENGTH(source.char32At(0));
211 //int32_t i = 1;
212 // find the segments
213 // This code iterates through the source string and
214 // extracts segments that end up on a codepoint that
215 // doesn't start any decompositions. (Analysis is done
216 // on the NFD form - see above).
217 for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
218 cp = source.char32At(i);
219 if (nfcImpl.isCanonSegmentStarter(cp)) {
220 source.extract(start, i-start, list[list_length++]); // add up to i
221 start = i;
222 }
223 }
224 source.extract(start, i-start, list[list_length++]); // add last one
225
226
227 // allocate the arrays, and find the strings that are CE to each segment
228 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
229 pieces_length = list_length;
230 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
231 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
232 current_length = list_length;
233 if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
234 status = U_MEMORY_ALLOCATION_ERROR;
235 goto CleanPartialInitialization;
236 }
237
238 for (i = 0; i < current_length; i++) {
239 current[i] = 0;
240 }
241 // for each segment, get all the combinations that can produce
242 // it after NFD normalization
243 for (i = 0; i < pieces_length; ++i) {
244 //if (PROGRESS) printf("SEGMENT\n");
245 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
246 }
247
248 delete[] list;
249 return;
250 // Common section to cleanup all local variables and reset object variables.
251 CleanPartialInitialization:
252 if (list != NULL) {
253 delete[] list;
254 }
255 cleanPieces();
256 }
257
258 /**
259 * Dumb recursive implementation of permutation.
260 * TODO: optimize
261 * @param source the string to find permutations for
262 * @return the results in a set.
263 */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status)264 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
265 if(U_FAILURE(status)) {
266 return;
267 }
268 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
269 int32_t i = 0;
270
271 // optimization:
272 // if zero or one character, just return a set with it
273 // we check for length < 2 to keep from counting code points all the time
274 if (source.length() <= 2 && source.countChar32() <= 1) {
275 UnicodeString *toPut = new UnicodeString(source);
276 /* test for NULL */
277 if (toPut == 0) {
278 status = U_MEMORY_ALLOCATION_ERROR;
279 return;
280 }
281 result->put(source, toPut, status);
282 return;
283 }
284
285 // otherwise iterate through the string, and recursively permute all the other characters
286 UChar32 cp;
287 Hashtable subpermute(status);
288 if(U_FAILURE(status)) {
289 return;
290 }
291 subpermute.setValueDeleter(uhash_deleteUnicodeString);
292
293 for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
294 cp = source.char32At(i);
295 const UHashElement *ne = NULL;
296 int32_t el = -1;
297 UnicodeString subPermuteString = source;
298
299 // optimization:
300 // if the character is canonical combining class zero,
301 // don't permute it
302 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
303 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
304 continue;
305 }
306
307 subpermute.removeAll();
308
309 // see what the permutations of the characters before and after this one are
310 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
311 permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
312 /* Test for buffer overflows */
313 if(U_FAILURE(status)) {
314 return;
315 }
316 // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
317 // of source at this point.
318
319 // prefix this character to all of them
320 ne = subpermute.nextElement(el);
321 while (ne != NULL) {
322 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
323 UnicodeString *chStr = new UnicodeString(cp);
324 //test for NULL
325 if (chStr == NULL) {
326 status = U_MEMORY_ALLOCATION_ERROR;
327 return;
328 }
329 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
330 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr));
331 result->put(*chStr, chStr, status);
332 ne = subpermute.nextElement(el);
333 }
334 }
335 //return result;
336 }
337
338 // privates
339
340 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)341 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
342 Hashtable result(status);
343 Hashtable permutations(status);
344 Hashtable basic(status);
345 if (U_FAILURE(status)) {
346 return 0;
347 }
348 result.setValueDeleter(uhash_deleteUnicodeString);
349 permutations.setValueDeleter(uhash_deleteUnicodeString);
350 basic.setValueDeleter(uhash_deleteUnicodeString);
351
352 UChar USeg[256];
353 int32_t segLen = segment.extract(USeg, 256, status);
354 getEquivalents2(&basic, USeg, segLen, status);
355
356 // now get all the permutations
357 // add only the ones that are canonically equivalent
358 // TODO: optimize by not permuting any class zero.
359
360 const UHashElement *ne = NULL;
361 int32_t el = -1;
362 //Iterator it = basic.iterator();
363 ne = basic.nextElement(el);
364 //while (it.hasNext())
365 while (ne != NULL) {
366 //String item = (String) it.next();
367 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
368
369 permutations.removeAll();
370 permute(item, CANITER_SKIP_ZEROES, &permutations, status);
371 const UHashElement *ne2 = NULL;
372 int32_t el2 = -1;
373 //Iterator it2 = permutations.iterator();
374 ne2 = permutations.nextElement(el2);
375 //while (it2.hasNext())
376 while (ne2 != NULL) {
377 //String possible = (String) it2.next();
378 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
379 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
380 UnicodeString attempt;
381 nfd.normalize(possible, attempt, status);
382
383 // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
384 if (attempt==segment) {
385 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
386 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
387 result.put(possible, new UnicodeString(possible), status); //add(possible);
388 } else {
389 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
390 }
391
392 ne2 = permutations.nextElement(el2);
393 }
394 ne = basic.nextElement(el);
395 }
396
397 /* Test for buffer overflows */
398 if(U_FAILURE(status)) {
399 return 0;
400 }
401 // convert into a String[] to clean up storage
402 //String[] finalResult = new String[result.size()];
403 UnicodeString *finalResult = NULL;
404 int32_t resultCount;
405 if((resultCount = result.count())) {
406 finalResult = new UnicodeString[resultCount];
407 if (finalResult == 0) {
408 status = U_MEMORY_ALLOCATION_ERROR;
409 return NULL;
410 }
411 }
412 else {
413 status = U_ILLEGAL_ARGUMENT_ERROR;
414 return NULL;
415 }
416 //result.toArray(finalResult);
417 result_len = 0;
418 el = -1;
419 ne = result.nextElement(el);
420 while(ne != NULL) {
421 finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
422 ne = result.nextElement(el);
423 }
424
425
426 return finalResult;
427 }
428
getEquivalents2(Hashtable * fillinResult,const UChar * segment,int32_t segLen,UErrorCode & status)429 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
430
431 if (U_FAILURE(status)) {
432 return NULL;
433 }
434
435 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
436
437 UnicodeString toPut(segment, segLen);
438
439 fillinResult->put(toPut, new UnicodeString(toPut), status);
440
441 UnicodeSet starts;
442
443 // cycle through all the characters
444 UChar32 cp;
445 for (int32_t i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
446 // see if any character is at the start of some decomposition
447 UTF_GET_CHAR(segment, 0, i, segLen, cp);
448 if (!nfcImpl.getCanonStartSet(cp, starts)) {
449 continue;
450 }
451 // if so, see which decompositions match
452 UnicodeSetIterator iter(starts);
453 while (iter.next()) {
454 UChar32 cp2 = iter.getCodepoint();
455 Hashtable remainder(status);
456 remainder.setValueDeleter(uhash_deleteUnicodeString);
457 if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
458 continue;
459 }
460
461 // there were some matches, so add all the possibilities to the set.
462 UnicodeString prefix(segment, i);
463 prefix += cp2;
464
465 int32_t el = -1;
466 const UHashElement *ne = remainder.nextElement(el);
467 while (ne != NULL) {
468 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
469 UnicodeString *toAdd = new UnicodeString(prefix);
470 /* test for NULL */
471 if (toAdd == 0) {
472 status = U_MEMORY_ALLOCATION_ERROR;
473 return NULL;
474 }
475 *toAdd += item;
476 fillinResult->put(*toAdd, toAdd, status);
477
478 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
479
480 ne = remainder.nextElement(el);
481 }
482 }
483 }
484
485 /* Test for buffer overflows */
486 if(U_FAILURE(status)) {
487 return NULL;
488 }
489 return fillinResult;
490 }
491
492 /**
493 * See if the decomposition of cp2 is at segment starting at segmentPos
494 * (with canonical rearrangment!)
495 * If so, take the remainder, and return the equivalents
496 */
extract(Hashtable * fillinResult,UChar32 comp,const UChar * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)497 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
498 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
499 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
500 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
501
502 if (U_FAILURE(status)) {
503 return NULL;
504 }
505
506 UnicodeString temp(comp);
507 int32_t inputLen=temp.length();
508 UnicodeString decompString;
509 nfd.normalize(temp, decompString, status);
510 const UChar *decomp=decompString.getBuffer();
511 int32_t decompLen=decompString.length();
512
513 // See if it matches the start of segment (at segmentPos)
514 UBool ok = FALSE;
515 UChar32 cp;
516 int32_t decompPos = 0;
517 UChar32 decompCp;
518 U16_NEXT(decomp, decompPos, decompLen, decompCp);
519
520 int32_t i = segmentPos;
521 while(i < segLen) {
522 U16_NEXT(segment, i, segLen, cp);
523
524 if (cp == decompCp) { // if equal, eat another cp from decomp
525
526 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))));
527
528 if (decompPos == decompLen) { // done, have all decomp characters!
529 temp.append(segment+i, segLen-i);
530 ok = TRUE;
531 break;
532 }
533 U16_NEXT(decomp, decompPos, decompLen, decompCp);
534 } else {
535 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp))));
536
537 // brute force approach
538 temp.append(cp);
539
540 /* TODO: optimize
541 // since we know that the classes are monotonically increasing, after zero
542 // e.g. 0 5 7 9 0 3
543 // we can do an optimization
544 // there are only a few cases that work: zero, less, same, greater
545 // if both classes are the same, we fail
546 // if the decomp class < the segment class, we fail
547
548 segClass = getClass(cp);
549 if (decompClass <= segClass) return null;
550 */
551 }
552 }
553 if (!ok)
554 return NULL; // we failed, characters left over
555
556 //if (PROGRESS) printf("Matches\n");
557
558 if (inputLen == temp.length()) {
559 fillinResult->put(UnicodeString(), new UnicodeString(), status);
560 return fillinResult; // succeed, but no remainder
561 }
562
563 // brute force approach
564 // check to make sure result is canonically equivalent
565 UnicodeString trial;
566 nfd.normalize(temp, trial, status);
567 if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
568 return NULL;
569 }
570
571 return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
572 }
573
574 U_NAMESPACE_END
575
576 #endif /* #if !UCONFIG_NO_NORMALIZATION */
577