1 /*
2 **********************************************************************
3 * Copyright (C) 2000-2010, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * file name: ucnv_lmb.cpp
7 * encoding: US-ASCII
8 * tab size: 4 (not used)
9 * indentation:4
10 *
11 * created on: 2000feb09
12 * created by: Brendan Murray
13 * extensively hacked up by: Jim Snyder-Grant
14 *
15 * Modification History:
16 *
17 * Date Name Description
18 *
19 * 06/20/2000 helena OS/400 port changes; mostly typecast.
20 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
21 * Add comments to document LMBCS format and implementation
22 * restructured order & breakdown of functions
23 * 06/28/2000 helena Major rewrite for the callback API changes.
24 */
25
26 #include "unicode/utypes.h"
27
28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
29
30 #include "unicode/ucnv_err.h"
31 #include "unicode/ucnv.h"
32 #include "unicode/uset.h"
33 #include "cmemory.h"
34 #include "cstring.h"
35 #include "uassert.h"
36 #include "ucnv_imp.h"
37 #include "ucnv_bld.h"
38 #include "ucnv_cnv.h"
39
40 #ifdef EBCDIC_RTL
41 #include "ascii_a.h"
42 #endif
43
44 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
45
46 /*
47 LMBCS
48
49 (Lotus Multi-Byte Character Set)
50
51 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53 into these products will sometimes need to deal with strings in this format.
54
55 The code in this file provides an implementation for an ICU converter of
56 LMBCS to and from Unicode.
57
58 Since the LMBCS character set is only sparsely documented in existing
59 printed or online material, we have added extensive annotation to this
60 file to serve as a guide to understanding LMBCS.
61
62 LMBCS was originally designed with these four sometimes-competing design goals:
63
64 -Provide encodings for the characters in 12 existing national standards
65 (plus a few other characters)
66 -Minimal memory footprint
67 -Maximal speed of conversion into the existing national character sets
68 -No need to track a changing state as you interpret a string.
69
70
71 All of the national character sets LMBCS was trying to encode are 'ANSI'
72 based, in that the bytes from 0x20 - 0x7F are almost exactly the
73 same common Latin unaccented characters and symbols in all character sets.
74
75 So, in order to help meet the speed & memory design goals, the common ANSI
76 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
77
78 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79 follows:
80
81 [G] D1 [D2]
82
83 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
85 */
86 #define ULMBCS_CHARSIZE_MAX 3
87 /*
88 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89 We often have to figure out if byte values are below or above this, so we
90 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91 characters just above & below the common lower-ANSI range */
92 #define ULMBCS_C0END 0x1F
93 #define ULMBCS_C1START 0x80
94 /*
95 Since LMBCS is always dealing in byte units. we create a local type here for
96 dealing with these units of LMBCS code units:
97
98 */
99 typedef uint8_t ulmbcs_byte_t;
100
101 /*
102 Most of the values less than 0x20 are reserved in LMBCS to announce
103 which national character standard is being used for the 'D' bytes.
104 In the comments we show the common name and the IBM character-set ID
105 for these character-set announcers:
106 */
107
108 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
109 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
110 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
111 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
112 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
113 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
114 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
115 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
116 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
117 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
118 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
119 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
120
121 /*
122 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123 character is one of those 12 values, you can interpret the remaining bytes of
124 that character as coming from one of those character sets. Since the lower
125 ANSI bytes already are represented in single bytes, using one of the character
126 set announcers is used to announce a character that starts with a byte of
127 0x80 or greater.
128
129 The character sets are arranged so that the single byte sets all appear
130 before the multi-byte character sets. When we need to tell whether a
131 group byte is for a single byte char set or not we use this define: */
132
133 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
134
135 /*
136 However, to fully understand LMBCS, you must also understand a series of
137 exceptions & optimizations made in service of the design goals.
138
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to
143 count characters), we use a convention of doubling up on the group byte
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146 same as '0xAE' in the Japanese code page 943.
147
148 Next, you will notice that the list of group bytes has some gaps.
149 These are used in various ways.
150
151 We reserve a few special single byte values for common control
152 characters. These are in the same place as their ANSI eqivalents for speed.
153 */
154
155 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
157 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
158
159 /* Then, 1-2-3 reserved a special single-byte character to put at the
160 beginning of internal 'system' range names: */
161
162 #define ULMBCS_123SYSTEMRANGE 0x19
163
164 /* Then we needed a place to put all the other ansi control characters
165 that must be moved to different values because LMBCS reserves those
166 values for other purposes. To represent the control characters, we start
167 with a first byte of 0xF & add the control chaarcter value as the
168 second byte */
169 #define ULMBCS_GRP_CTRL 0x0F
170
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET 0x20
175
176 /*
177 Where to put the characters that aren't part of any of the 12 national
178 character sets? The first thing that was done, in the earlier years of
179 LMBCS, was to use up the spaces of the form
180
181 [G] D1,
182
183 where 'G' was one of the single-byte character groups, and
184 D1 was less than 0x80. These sequences are gathered together
185 into a Lotus-invented doublebyte character set to represent a
186 lot of stray values. Internally, in this implementation, we track this
187 as group '0', as a place to tuck this exceptions list.*/
188
189 #define ULMBCS_GRP_EXCEPT 0x00
190 /*
191 Finally, as the durability and usefulness of UNICODE became clear,
192 LOTUS added a new group 0x14 to hold Unicode values not otherwise
193 represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE 0x14
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO 0xF6
202
203 /* It is also useful in our code to have a constant for the size of
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE 3
206
207 /*
208 To squish the LMBCS representations down even further, and to make
209 translations even faster,sometimes the optimization group byte can be dropped
210 from a LMBCS character. This is decided on a process-by-process basis. The
211 group byte that is dropped is called the 'optimization group'.
212
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216 file.
217
218 In any case, when using ICU, you either pass in the
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220 etc.). Using plain 'LMBCS' as the name of the converter will give you
221 LMBCS-1.
222
223
224 *** Implementation strategy ***
225
226
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
230
231 /* As you can see, even though any byte below 0x20 could be an optimization
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
234
235 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
236
237 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239 /* 0x0001 */ "ibm-850",
240 /* 0x0002 */ "ibm-851",
241 /* 0x0003 */ "windows-1255",
242 /* 0x0004 */ "windows-1256",
243 /* 0x0005 */ "windows-1251",
244 /* 0x0006 */ "ibm-852",
245 /* 0x0007 */ NULL, /* Unused */
246 /* 0x0008 */ "windows-1254",
247 /* 0x0009 */ NULL, /* Control char HT */
248 /* 0x000A */ NULL, /* Control char LF */
249 /* 0x000B */ "windows-874",
250 /* 0x000C */ NULL, /* Unused */
251 /* 0x000D */ NULL, /* Control char CR */
252 /* 0x000E */ NULL, /* Unused */
253 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254 /* 0x0010 */ "windows-932",
255 /* 0x0011 */ "windows-949",
256 /* 0x0012 */ "windows-950",
257 /* 0x0013 */ "windows-936"
258
259 /* The rest are null, including the 0x0014 Unicode compatibility region
260 and 0x0019, the 1-2-3 system range control char */
261 };
262
263
264 /* That's approximately all the data that's needed for translating
265 LMBCS to Unicode.
266
267
268 However, to translate Unicode to LMBCS, we need some more support.
269
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets. (If the character exists in both DBCS &
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
279
280 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
281 LMBCS sbcs native encoding
282 (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
284 LMBCS mbcs native encoding
285 (example: Unihan) */
286 #define ULMBCS_AMBIGUOUS_ALL 0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294
295
296 /* The table & some code to use it: */
297
298
299 static const struct _UniLMBCSGrpMap
300 {
301 const UChar uniStartRange;
302 const UChar uniEndRange;
303 const ulmbcs_byte_t GrpType;
304 } UniLMBCSGrpMap[]
305 =
306 {
307
308 {0x0001, 0x001F, ULMBCS_GRP_CTRL},
309 {0x0080, 0x009F, ULMBCS_GRP_CTRL},
310 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS},
311 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL},
312 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS},
313 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL},
314 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS},
315 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL},
316 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS},
317 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL},
318 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS},
319 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL},
320 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS},
321 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL},
322 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS},
323 {0x01CE, 0x01CE, ULMBCS_GRP_TW },
324 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS},
325 {0x02BA, 0x02BA, ULMBCS_GRP_CN},
326 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS},
327 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS},
328 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS},
329 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS},
330 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL},
331 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS},
332 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL},
333 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS},
334 {0x0400, 0x0400, ULMBCS_GRP_RU},
335 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL},
336 {0x0402, 0x040F, ULMBCS_GRP_RU},
337 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL},
338 {0x0432, 0x044E, ULMBCS_GRP_RU},
339 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL},
340 {0x0450, 0x0491, ULMBCS_GRP_RU},
341 {0x05B0, 0x05F2, ULMBCS_GRP_HE},
342 {0x060C, 0x06AF, ULMBCS_GRP_AR},
343 {0x0E01, 0x0E5B, ULMBCS_GRP_TH},
344 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS},
345 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS},
346 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS},
347 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS},
348 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS},
349 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS},
350 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL},
351 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS},
352 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL},
353 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS},
354 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL},
355 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS},
356 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS},
357 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL},
358 {0x2027, 0x2027, ULMBCS_GRP_TW},
359 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL},
360 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS},
361 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS},
362 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS},
363 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS},
364 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS},
365 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT},
366 {0x2074, 0x2074, ULMBCS_GRP_KO},
367 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT},
368 {0x2081, 0x2084, ULMBCS_GRP_KO},
369 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS},
370 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS},
371 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS},
372 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS},
374 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS},
375 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS},
376 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS},
377 {0x2153, 0x2154, ULMBCS_GRP_KO},
378 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT},
379 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS},
380 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL},
381 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT},
382 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS},
383 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT},
384 {0x21B8, 0x21B9, ULMBCS_GRP_CN},
385 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT},
386 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS},
387 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT},
388 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS},
389 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT},
390 {0x21E7, 0x21E7, ULMBCS_GRP_CN},
391 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS},
392 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT},
393 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS},
394 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS},
395 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT},
396 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS},
397 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT},
398 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS},
399 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS},
400 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT},
401 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS},
402 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT},
403 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS},
404 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT},
405 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS},
406 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS},
407 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS},
408 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT},
409 {0x224C, 0x224C, ULMBCS_GRP_TW},
410 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS},
411 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS},
412 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT},
413 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS},
414 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS},
415 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT},
416 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS},
417 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT},
418 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS},
419 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT},
420 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT},
421 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS},
422 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT},
423 {0x2318, 0x2321, ULMBCS_GRP_CN},
424 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS},
425 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS},
426 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS},
427 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL},
428 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS},
429 {0x2504, 0x2505, ULMBCS_GRP_TW},
430 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL},
431 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
432 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS},
433 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL},
434 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS},
435 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS},
436 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS},
437 {0x266F, 0x266F, ULMBCS_GRP_JA},
438 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS},
439 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS},
440 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT},
441 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS},
442 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS},
443 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS},
444 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE}
445 };
446
447 static ulmbcs_byte_t
FindLMBCSUniRange(UChar uniChar)448 FindLMBCSUniRange(UChar uniChar)
449 {
450 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451
452 while (uniChar > pTable->uniEndRange)
453 {
454 pTable++;
455 }
456
457 if (uniChar >= pTable->uniStartRange)
458 {
459 return pTable->GrpType;
460 }
461 return ULMBCS_GRP_UNICODE;
462 }
463
464 /*
465 We also ask the creator of a converter to send in a preferred locale
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the
468 LMBCS groups. We use this table, and the associated code, to
469 do the lookup: */
470
471 /**************************************************
472 This table maps locale ID's to LMBCS opt groups.
473 The default return is group 0x01. Note that for
474 performance reasons, the table is sorted in
475 increasing alphabetic order, with the notable
476 exception of zhTW. This is to force the check
477 for Traditonal Chinese before dropping back to
478 Simplified.
479
480 Note too that the Latin-1 groups have been
481 commented out because it's the default, and
482 this shortens the table, allowing a serial
483 search to go quickly.
484 *************************************************/
485
486 static const struct _LocaleLMBCSGrpMap
487 {
488 const char *LocaleID;
489 const ulmbcs_byte_t OptGroup;
490 } LocaleLMBCSGrpMap[] =
491 {
492 {"ar", ULMBCS_GRP_AR},
493 {"be", ULMBCS_GRP_RU},
494 {"bg", ULMBCS_GRP_L2},
495 /* {"ca", ULMBCS_GRP_L1}, */
496 {"cs", ULMBCS_GRP_L2},
497 /* {"da", ULMBCS_GRP_L1}, */
498 /* {"de", ULMBCS_GRP_L1}, */
499 {"el", ULMBCS_GRP_GR},
500 /* {"en", ULMBCS_GRP_L1}, */
501 /* {"es", ULMBCS_GRP_L1}, */
502 /* {"et", ULMBCS_GRP_L1}, */
503 /* {"fi", ULMBCS_GRP_L1}, */
504 /* {"fr", ULMBCS_GRP_L1}, */
505 {"he", ULMBCS_GRP_HE},
506 {"hu", ULMBCS_GRP_L2},
507 /* {"is", ULMBCS_GRP_L1}, */
508 /* {"it", ULMBCS_GRP_L1}, */
509 {"iw", ULMBCS_GRP_HE},
510 {"ja", ULMBCS_GRP_JA},
511 {"ko", ULMBCS_GRP_KO},
512 /* {"lt", ULMBCS_GRP_L1}, */
513 /* {"lv", ULMBCS_GRP_L1}, */
514 {"mk", ULMBCS_GRP_RU},
515 /* {"nl", ULMBCS_GRP_L1}, */
516 /* {"no", ULMBCS_GRP_L1}, */
517 {"pl", ULMBCS_GRP_L2},
518 /* {"pt", ULMBCS_GRP_L1}, */
519 {"ro", ULMBCS_GRP_L2},
520 {"ru", ULMBCS_GRP_RU},
521 {"sh", ULMBCS_GRP_L2},
522 {"sk", ULMBCS_GRP_L2},
523 {"sl", ULMBCS_GRP_L2},
524 {"sq", ULMBCS_GRP_L2},
525 {"sr", ULMBCS_GRP_RU},
526 /* {"sv", ULMBCS_GRP_L1}, */
527 {"th", ULMBCS_GRP_TH},
528 {"tr", ULMBCS_GRP_TR},
529 {"uk", ULMBCS_GRP_RU},
530 /* {"vi", ULMBCS_GRP_L1}, */
531 {"zhTW", ULMBCS_GRP_TW},
532 {"zh", ULMBCS_GRP_CN},
533 {NULL, ULMBCS_GRP_L1}
534 };
535
536
537 static ulmbcs_byte_t
FindLMBCSLocale(const char * LocaleID)538 FindLMBCSLocale(const char *LocaleID)
539 {
540 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541
542 if ((!LocaleID) || (!*LocaleID))
543 {
544 return 0;
545 }
546
547 while (pTable->LocaleID)
548 {
549 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550 {
551 /* First char matches - check whole name, for entry-length */
552 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553 return pTable->OptGroup;
554 }
555 else
556 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557 break;
558 pTable++;
559 }
560 return ULMBCS_GRP_L1;
561 }
562
563
564 /*
565 Before we get to the main body of code, here's how we hook up to the rest
566 of ICU. ICU converters are required to define a structure that includes
567 some function pointers, and some common data, in the style of a C++
568 vtable. There is also room in there for converter-specific data. LMBCS
569 uses that converter-specific data to keep track of the 12 subconverters
570 we use, the optimization group, and the group (if any) that matches the
571 locale. We have one structure instantiated for each of the 12 possible
572 optimization groups. To avoid typos & to avoid boring the reader, we
573 put the declarations of these structures and functions into macros. To see
574 the definitions of these structures, see unicode\ucnv_bld.h
575 */
576
577 typedef struct
578 {
579 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */
580 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */
581 uint8_t localeConverterIndex; /* reasonable locale match for index */
582 }
583 UConverterDataLMBCS;
584
585 static void _LMBCSClose(UConverter * _this);
586
587 #define DECLARE_LMBCS_DATA(n) \
588 static const UConverterImpl _LMBCSImpl##n={\
589 UCNV_LMBCS_##n,\
590 NULL,NULL,\
591 _LMBCSOpen##n,\
592 _LMBCSClose,\
593 NULL,\
594 _LMBCSToUnicodeWithOffsets,\
595 _LMBCSToUnicodeWithOffsets,\
596 _LMBCSFromUnicode,\
597 _LMBCSFromUnicode,\
598 NULL,\
599 NULL,\
600 NULL,\
601 NULL,\
602 _LMBCSSafeClone,\
603 ucnv_getCompleteUnicodeSet\
604 };\
605 static const UConverterStaticData _LMBCSStaticData##n={\
606 sizeof(UConverterStaticData),\
607 "LMBCS-" #n,\
608 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
609 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
610 };\
611 const UConverterSharedData _LMBCSData##n={\
612 sizeof(UConverterSharedData), ~((uint32_t) 0),\
613 NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
614 0 \
615 };
616
617 /* The only function we needed to duplicate 12 times was the 'open'
618 function, which will do basically the same thing except set a different
619 optimization group. So, we put the common stuff into a worker function,
620 and set up another macro to stamp out the 12 open functions:*/
621 #define DEFINE_LMBCS_OPEN(n) \
622 static void \
623 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
624 { _LMBCSOpenWorker(_this, pArgs, err, n); }
625
626
627
628 /* Here's the open worker & the common close function */
629 static void
_LMBCSOpenWorker(UConverter * _this,UConverterLoadArgs * pArgs,UErrorCode * err,ulmbcs_byte_t OptGroup)630 _LMBCSOpenWorker(UConverter* _this,
631 UConverterLoadArgs *pArgs,
632 UErrorCode* err,
633 ulmbcs_byte_t OptGroup)
634 {
635 UConverterDataLMBCS * extraInfo = _this->extraInfo =
636 (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
637 if(extraInfo != NULL)
638 {
639 UConverterNamePieces stackPieces;
640 UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
641 ulmbcs_byte_t i;
642
643 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
644
645 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
646
647 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
648 {
649 if(OptGroupByteToCPName[i] != NULL) {
650 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
651 }
652 }
653
654 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
655 _LMBCSClose(_this);
656 return;
657 }
658 extraInfo->OptGroup = OptGroup;
659 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
660 }
661 else
662 {
663 *err = U_MEMORY_ALLOCATION_ERROR;
664 }
665 }
666
667 static void
_LMBCSClose(UConverter * _this)668 _LMBCSClose(UConverter * _this)
669 {
670 if (_this->extraInfo != NULL)
671 {
672 ulmbcs_byte_t Ix;
673 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
674
675 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
676 {
677 if (extraInfo->OptGrpConverter[Ix] != NULL)
678 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
679 }
680 if (!_this->isExtraLocal) {
681 uprv_free (_this->extraInfo);
682 _this->extraInfo = NULL;
683 }
684 }
685 }
686
687 typedef struct LMBCSClone {
688 UConverter cnv;
689 UConverterDataLMBCS lmbcs;
690 } LMBCSClone;
691
692 static UConverter *
_LMBCSSafeClone(const UConverter * cnv,void * stackBuffer,int32_t * pBufferSize,UErrorCode * status)693 _LMBCSSafeClone(const UConverter *cnv,
694 void *stackBuffer,
695 int32_t *pBufferSize,
696 UErrorCode *status) {
697 LMBCSClone *newLMBCS;
698 UConverterDataLMBCS *extraInfo;
699 int32_t i;
700
701 if(*pBufferSize<=0) {
702 *pBufferSize=(int32_t)sizeof(LMBCSClone);
703 return NULL;
704 }
705
706 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
707 newLMBCS=(LMBCSClone *)stackBuffer;
708
709 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
710
711 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
712
713 /* share the subconverters */
714 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
715 if(extraInfo->OptGrpConverter[i] != NULL) {
716 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
717 }
718 }
719
720 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
721 newLMBCS->cnv.isExtraLocal = TRUE;
722 return &newLMBCS->cnv;
723 }
724
725 /*
726 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
727 * which added all code points except for U+F6xx
728 * because those cannot be represented in the Unicode group.
729 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
730 * which means that LMBCS can convert all Unicode code points after all.
731 * We now simply use ucnv_getCompleteUnicodeSet().
732 *
733 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
734 */
735
736 /*
737 Here's the basic helper function that we use when converting from
738 Unicode to LMBCS, and we suspect that a Unicode character will fit into
739 one of the 12 groups. The return value is the number of bytes written
740 starting at pStartLMBCS (if any).
741 */
742
743 static size_t
LMBCSConversionWorker(UConverterDataLMBCS * extraInfo,ulmbcs_byte_t group,ulmbcs_byte_t * pStartLMBCS,UChar * pUniChar,ulmbcs_byte_t * lastConverterIndex,UBool * groups_tried)744 LMBCSConversionWorker (
745 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */
746 ulmbcs_byte_t group, /* The group to try */
747 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */
748 UChar * pUniChar, /* The input unicode character */
749 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
750 UBool * groups_tried /* output: track any unsuccessful groups */
751 )
752 {
753 ulmbcs_byte_t * pLMBCS = pStartLMBCS;
754 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
755
756 int bytesConverted;
757 uint32_t value;
758 ulmbcs_byte_t firstByte;
759
760 U_ASSERT(xcnv);
761 U_ASSERT(group<ULMBCS_GRP_UNICODE);
762
763 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
764
765 /* get the first result byte */
766 if(bytesConverted > 0) {
767 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
768 } else {
769 /* most common failure mode is an unassigned character */
770 groups_tried[group] = TRUE;
771 return 0;
772 }
773
774 *lastConverterIndex = group;
775
776 /* All initial byte values in lower ascii range should have been caught by now,
777 except with the exception group.
778 */
779 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
780
781 /* use converted data: first write 0, 1 or two group bytes */
782 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
783 {
784 *pLMBCS++ = group;
785 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
786 {
787 *pLMBCS++ = group;
788 }
789 }
790
791 /* don't emit control chars */
792 if ( bytesConverted == 1 && firstByte < 0x20 )
793 return 0;
794
795
796 /* then move over the converted data */
797 switch(bytesConverted)
798 {
799 case 4:
800 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
801 case 3:
802 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
803 case 2:
804 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
805 case 1:
806 *pLMBCS++ = (ulmbcs_byte_t)value;
807 default:
808 /* will never occur */
809 break;
810 }
811
812 return (pLMBCS - pStartLMBCS);
813 }
814
815
816 /* This is a much simpler version of above, when we
817 know we are writing LMBCS using the Unicode group
818 */
819 static size_t
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS,UChar uniChar)820 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
821 {
822 /* encode into LMBCS Unicode range */
823 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF);
824 uint8_t HighCh = (uint8_t)(uniChar >> 8);
825
826 *pLMBCS++ = ULMBCS_GRP_UNICODE;
827
828 if (LowCh == 0)
829 {
830 *pLMBCS++ = ULMBCS_UNICOMPATZERO;
831 *pLMBCS++ = HighCh;
832 }
833 else
834 {
835 *pLMBCS++ = HighCh;
836 *pLMBCS++ = LowCh;
837 }
838 return ULMBCS_UNICODE_SIZE;
839 }
840
841
842
843 /* The main Unicode to LMBCS conversion function */
844 static void
_LMBCSFromUnicode(UConverterFromUnicodeArgs * args,UErrorCode * err)845 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args,
846 UErrorCode* err)
847 {
848 ulmbcs_byte_t lastConverterIndex = 0;
849 UChar uniChar;
850 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX];
851 ulmbcs_byte_t * pLMBCS;
852 int32_t bytes_written;
853 UBool groups_tried[ULMBCS_GRP_LAST+1];
854 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
855 int sourceIndex = 0;
856
857 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
858 If that succeeds, see if it will all fit into the target & copy it over
859 if it does.
860
861 We try conversions in the following order:
862
863 1. Single-byte ascii & special fixed control chars (&null)
864 2. Look up group in table & try that (could be
865 A) Unicode group
866 B) control group,
867 C) national encoding,
868 or ambiguous SBCS or MBCS group (on to step 4...)
869
870 3. If its ambiguous, try this order:
871 A) The optimization group
872 B) The locale group
873 C) The last group that succeeded with this string.
874 D) every other group that's relevent (single or double)
875 E) If its single-byte ambiguous, try the exceptions group
876
877 4. And as a grand fallback: Unicode
878 */
879
880 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
881 ulmbcs_byte_t OldConverterIndex = 0;
882
883 while (args->source < args->sourceLimit && !U_FAILURE(*err))
884 {
885 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
886 OldConverterIndex = extraInfo->localeConverterIndex;
887
888 if (args->target >= args->targetLimit)
889 {
890 *err = U_BUFFER_OVERFLOW_ERROR;
891 break;
892 }
893 uniChar = *(args->source);
894 bytes_written = 0;
895 pLMBCS = LMBCS;
896
897 /* check cases in rough order of how common they are, for speed */
898
899 /* single byte matches: strategy 1 */
900 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
901 if((uniChar>=0x80) && (uniChar<=0xff)
902 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
903 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
904 {
905 extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
906 }
907 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
908 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
909 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
910 )
911 {
912 *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
913 bytes_written = 1;
914 }
915
916
917 if (!bytes_written)
918 {
919 /* Check by UNICODE range (Strategy 2) */
920 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
921
922 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */
923 {
924 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
925
926 bytes_written = (int32_t)(pLMBCS - LMBCS);
927 }
928 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */
929 {
930 /* Handle control characters here */
931 if (uniChar <= ULMBCS_C0END)
932 {
933 *pLMBCS++ = ULMBCS_GRP_CTRL;
934 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
935 }
936 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
937 {
938 *pLMBCS++ = ULMBCS_GRP_CTRL;
939 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
940 }
941 bytes_written = (int32_t)(pLMBCS - LMBCS);
942 }
943 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */
944 {
945 /* a specific converter has been identified - use it */
946 bytes_written = (int32_t)LMBCSConversionWorker (
947 extraInfo, group, pLMBCS, &uniChar,
948 &lastConverterIndex, groups_tried);
949 }
950 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */
951 {
952 uprv_memset(groups_tried, 0, sizeof(groups_tried));
953
954 /* check for non-default optimization group (Strategy 3A )*/
955 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
956 {
957 /*zhujin: upgrade, merge #39299 here (Lotus) */
958 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
959
960 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
961 {
962 bytes_written = LMBCSConversionWorker (extraInfo,
963 ULMBCS_GRP_L1, pLMBCS, &uniChar,
964 &lastConverterIndex, groups_tried);
965
966 if(!bytes_written)
967 {
968 bytes_written = LMBCSConversionWorker (extraInfo,
969 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
970 &lastConverterIndex, groups_tried);
971 }
972 if(!bytes_written)
973 {
974 bytes_written = LMBCSConversionWorker (extraInfo,
975 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
976 &lastConverterIndex, groups_tried);
977 }
978 }
979 else
980 {
981 bytes_written = LMBCSConversionWorker (extraInfo,
982 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
983 &lastConverterIndex, groups_tried);
984 }
985 }
986 /* check for locale optimization group (Strategy 3B) */
987 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
988 {
989 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
990 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
991 }
992 /* check for last optimization group used for this string (Strategy 3C) */
993 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
994 {
995 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
996 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
997 }
998 if (!bytes_written)
999 {
1000 /* just check every possible matching converter (Strategy 3D) */
1001 ulmbcs_byte_t grp_start;
1002 ulmbcs_byte_t grp_end;
1003 ulmbcs_byte_t grp_ix;
1004 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1005 ? ULMBCS_DOUBLEOPTGROUP_START
1006 : ULMBCS_GRP_L1);
1007 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1008 ? ULMBCS_GRP_LAST
1009 : ULMBCS_GRP_TH);
1010 if(group == ULMBCS_AMBIGUOUS_ALL)
1011 {
1012 grp_start = ULMBCS_GRP_L1;
1013 grp_end = ULMBCS_GRP_LAST;
1014 }
1015 for (grp_ix = grp_start;
1016 grp_ix <= grp_end && !bytes_written;
1017 grp_ix++)
1018 {
1019 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1020 {
1021 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1022 grp_ix, pLMBCS, &uniChar,
1023 &lastConverterIndex, groups_tried);
1024 }
1025 }
1026 /* a final conversion fallback to the exceptions group if its likely
1027 to be single byte (Strategy 3E) */
1028 if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1029 {
1030 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1031 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1032 &lastConverterIndex, groups_tried);
1033 }
1034 }
1035 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1036 if (!bytes_written)
1037 {
1038
1039 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1040 bytes_written = (int32_t)(pLMBCS - LMBCS);
1041 }
1042 }
1043 }
1044
1045 /* we have a translation. increment source and write as much as posible to target */
1046 args->source++;
1047 pLMBCS = LMBCS;
1048 while (args->target < args->targetLimit && bytes_written--)
1049 {
1050 *(args->target)++ = *pLMBCS++;
1051 if (args->offsets)
1052 {
1053 *(args->offsets)++ = sourceIndex;
1054 }
1055 }
1056 sourceIndex++;
1057 if (bytes_written > 0)
1058 {
1059 /* write any bytes that didn't fit in target to the error buffer,
1060 common code will move this to target if we get called back with
1061 enough target room
1062 */
1063 uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1064 *err = U_BUFFER_OVERFLOW_ERROR;
1065 args->converter->charErrorBufferLength = (int8_t)bytes_written;
1066 while (bytes_written--)
1067 {
1068 *pErrorBuffer++ = *pLMBCS++;
1069 }
1070 }
1071 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1072 extraInfo->localeConverterIndex = OldConverterIndex;
1073 }
1074 }
1075
1076
1077 /* Now, the Unicode from LMBCS section */
1078
1079
1080 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1081 static UChar
GetUniFromLMBCSUni(char const ** ppLMBCSin)1082 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */
1083 {
1084 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/
1085 uint8_t LowCh = *(*ppLMBCSin)++;
1086
1087 if (HighCh == ULMBCS_UNICOMPATZERO )
1088 {
1089 HighCh = LowCh;
1090 LowCh = 0; /* zero-byte in LSB special character */
1091 }
1092 return (UChar)((HighCh << 8) | LowCh);
1093 }
1094
1095
1096
1097 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1098 bytes left in source up to sourceLimit.Errors appropriately if not.
1099 If we reach the limit, then update the source pointer to there to consume
1100 all input as required by ICU converter semantics.
1101 */
1102
1103 #define CHECK_SOURCE_LIMIT(index) \
1104 if (args->source+index > args->sourceLimit){\
1105 *err = U_TRUNCATED_CHAR_FOUND;\
1106 args->source = args->sourceLimit;\
1107 return 0xffff;}
1108
1109 /* Return the Unicode representation for the current LMBCS character */
1110
1111 static UChar32
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs * args,UErrorCode * err)1112 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args,
1113 UErrorCode* err)
1114 {
1115 UChar32 uniChar = 0; /* an output UNICODE char */
1116 ulmbcs_byte_t CurByte; /* A byte from the input stream */
1117
1118 /* error check */
1119 if (args->source >= args->sourceLimit)
1120 {
1121 *err = U_ILLEGAL_ARGUMENT_ERROR;
1122 return 0xffff;
1123 }
1124 /* Grab first byte & save address for error recovery */
1125 CurByte = *((ulmbcs_byte_t *) (args->source++));
1126
1127 /*
1128 * at entry of each if clause:
1129 * 1. 'CurByte' points at the first byte of a LMBCS character
1130 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1131 *
1132 * the job of each if clause is:
1133 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1134 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1135 */
1136
1137 /* First lets check the simple fixed values. */
1138
1139 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1140 || (CurByte == 0)
1141 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1142 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1143 {
1144 uniChar = CurByte;
1145 }
1146 else
1147 {
1148 UConverterDataLMBCS * extraInfo;
1149 ulmbcs_byte_t group;
1150 UConverterSharedData *cnv;
1151
1152 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */
1153 {
1154 ulmbcs_byte_t C0C1byte;
1155 CHECK_SOURCE_LIMIT(1);
1156 C0C1byte = *(args->source)++;
1157 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1158 }
1159 else
1160 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1161 {
1162 CHECK_SOURCE_LIMIT(2);
1163
1164 /* don't check for error indicators fffe/ffff below */
1165 return GetUniFromLMBCSUni(&(args->source));
1166 }
1167 else if (CurByte <= ULMBCS_CTRLOFFSET)
1168 {
1169 group = CurByte; /* group byte is in the source */
1170 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1171 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1172 {
1173 /* this is not a valid group byte - no converter*/
1174 *err = U_INVALID_CHAR_FOUND;
1175 }
1176 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1177 {
1178
1179 CHECK_SOURCE_LIMIT(2);
1180
1181 /* check for LMBCS doubled-group-byte case */
1182 if (*args->source == group) {
1183 /* single byte */
1184 ++args->source;
1185 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1186 ++args->source;
1187 } else {
1188 /* double byte */
1189 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1190 args->source += 2;
1191 }
1192 }
1193 else { /* single byte conversion */
1194 CHECK_SOURCE_LIMIT(1);
1195 CurByte = *(args->source)++;
1196
1197 if (CurByte >= ULMBCS_C1START)
1198 {
1199 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1200 }
1201 else
1202 {
1203 /* The non-optimizable oddballs where there is an explicit byte
1204 * AND the second byte is not in the upper ascii range
1205 */
1206 char bytes[2];
1207
1208 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1209 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1210
1211 /* Lookup value must include opt group */
1212 bytes[0] = group;
1213 bytes[1] = CurByte;
1214 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1215 }
1216 }
1217 }
1218 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1219 {
1220 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1221 group = extraInfo->OptGroup;
1222 cnv = extraInfo->OptGrpConverter[group];
1223 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1224 {
1225 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1226 {
1227 CHECK_SOURCE_LIMIT(0);
1228
1229 /* let the MBCS conversion consume CurByte again */
1230 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1231 }
1232 else
1233 {
1234 CHECK_SOURCE_LIMIT(1);
1235 /* let the MBCS conversion consume CurByte again */
1236 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1237 ++args->source;
1238 }
1239 }
1240 else /* single byte conversion */
1241 {
1242 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1243 }
1244 }
1245 }
1246 return uniChar;
1247 }
1248
1249
1250 /* The exported function that converts lmbcs to one or more
1251 UChars - currently UTF-16
1252 */
1253 static void
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * args,UErrorCode * err)1254 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args,
1255 UErrorCode* err)
1256 {
1257 char LMBCS [ULMBCS_CHARSIZE_MAX];
1258 UChar uniChar; /* one output UNICODE char */
1259 const char * saveSource; /* beginning of current code point */
1260 const char * pStartLMBCS = args->source; /* beginning of whole string */
1261 const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1262 int8_t savebytes = 0;
1263
1264 /* Process from source to limit, or until error */
1265 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1266 {
1267 saveSource = args->source; /* beginning of current code point */
1268
1269 if (args->converter->toULength) /* reassemble char from previous call */
1270 {
1271 const char *saveSourceLimit;
1272 size_t size_old = args->converter->toULength;
1273
1274 /* limit from source is either remainder of temp buffer, or user limit on source */
1275 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1276 size_t size_new_maybe_2 = args->sourceLimit - args->source;
1277 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1278
1279
1280 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1281 uprv_memcpy(LMBCS + size_old, args->source, size_new);
1282 saveSourceLimit = args->sourceLimit;
1283 args->source = errSource = LMBCS;
1284 args->sourceLimit = LMBCS+size_old+size_new;
1285 savebytes = (int8_t)(size_old+size_new);
1286 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1287 args->source = saveSource + ((args->source - LMBCS) - size_old);
1288 args->sourceLimit = saveSourceLimit;
1289
1290 if (*err == U_TRUNCATED_CHAR_FOUND)
1291 {
1292 /* evil special case: source buffers so small a char spans more than 2 buffers */
1293 args->converter->toULength = savebytes;
1294 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1295 args->source = args->sourceLimit;
1296 *err = U_ZERO_ERROR;
1297 return;
1298 }
1299 else
1300 {
1301 /* clear the partial-char marker */
1302 args->converter->toULength = 0;
1303 }
1304 }
1305 else
1306 {
1307 errSource = saveSource;
1308 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1309 savebytes = (int8_t)(args->source - saveSource);
1310 }
1311 if (U_SUCCESS(*err))
1312 {
1313 if (uniChar < 0xfffe)
1314 {
1315 *(args->target)++ = uniChar;
1316 if(args->offsets)
1317 {
1318 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1319 }
1320 }
1321 else if (uniChar == 0xfffe)
1322 {
1323 *err = U_INVALID_CHAR_FOUND;
1324 }
1325 else /* if (uniChar == 0xffff) */
1326 {
1327 *err = U_ILLEGAL_CHAR_FOUND;
1328 }
1329 }
1330 }
1331 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1332 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1333 {
1334 *err = U_BUFFER_OVERFLOW_ERROR;
1335 }
1336 else if (U_FAILURE(*err))
1337 {
1338 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1339 args->converter->toULength = savebytes;
1340 if (savebytes > 0) {
1341 uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1342 }
1343 if (*err == U_TRUNCATED_CHAR_FOUND) {
1344 *err = U_ZERO_ERROR;
1345 }
1346 }
1347 }
1348
1349 /* And now, the macroized declarations of data & functions: */
1350 DEFINE_LMBCS_OPEN(1)
1351 DEFINE_LMBCS_OPEN(2)
1352 DEFINE_LMBCS_OPEN(3)
1353 DEFINE_LMBCS_OPEN(4)
1354 DEFINE_LMBCS_OPEN(5)
1355 DEFINE_LMBCS_OPEN(6)
1356 DEFINE_LMBCS_OPEN(8)
1357 DEFINE_LMBCS_OPEN(11)
1358 DEFINE_LMBCS_OPEN(16)
1359 DEFINE_LMBCS_OPEN(17)
1360 DEFINE_LMBCS_OPEN(18)
1361 DEFINE_LMBCS_OPEN(19)
1362
1363
1364 DECLARE_LMBCS_DATA(1)
1365 DECLARE_LMBCS_DATA(2)
1366 DECLARE_LMBCS_DATA(3)
1367 DECLARE_LMBCS_DATA(4)
1368 DECLARE_LMBCS_DATA(5)
1369 DECLARE_LMBCS_DATA(6)
1370 DECLARE_LMBCS_DATA(8)
1371 DECLARE_LMBCS_DATA(11)
1372 DECLARE_LMBCS_DATA(16)
1373 DECLARE_LMBCS_DATA(17)
1374 DECLARE_LMBCS_DATA(18)
1375 DECLARE_LMBCS_DATA(19)
1376
1377 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1378