• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 **********************************************************************
3 *   Copyright (C) 2000-2010, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 **********************************************************************
6 *   file name:  ucnv_lmb.cpp
7 *   encoding:   US-ASCII
8 *   tab size:   4 (not used)
9 *   indentation:4
10 *
11 *   created on: 2000feb09
12 *   created by: Brendan Murray
13 *   extensively hacked up by: Jim Snyder-Grant
14 *
15 * Modification History:
16 *
17 *   Date        Name             Description
18 *
19 *   06/20/2000  helena           OS/400 port changes; mostly typecast.
20 *   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
21 *                                Add comments to document LMBCS format and implementation
22 *                                restructured order & breakdown of functions
23 *   06/28/2000  helena           Major rewrite for the callback API changes.
24 */
25 
26 #include "unicode/utypes.h"
27 
28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
29 
30 #include "unicode/ucnv_err.h"
31 #include "unicode/ucnv.h"
32 #include "unicode/uset.h"
33 #include "cmemory.h"
34 #include "cstring.h"
35 #include "uassert.h"
36 #include "ucnv_imp.h"
37 #include "ucnv_bld.h"
38 #include "ucnv_cnv.h"
39 
40 #ifdef EBCDIC_RTL
41     #include "ascii_a.h"
42 #endif
43 
44 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
45 
46 /*
47   LMBCS
48 
49   (Lotus Multi-Byte Character Set)
50 
51   LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52   databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53   into these products will sometimes need to deal with strings in this format.
54 
55   The code in this file provides an implementation for an ICU converter of
56   LMBCS to and from Unicode.
57 
58   Since the LMBCS character set is only sparsely documented in existing
59   printed or online material, we have added  extensive annotation to this
60   file to serve as a guide to understanding LMBCS.
61 
62   LMBCS was originally designed with these four sometimes-competing design goals:
63 
64   -Provide encodings for the characters in 12 existing national standards
65    (plus a few other characters)
66   -Minimal memory footprint
67   -Maximal speed of conversion into the existing national character sets
68   -No need to track a changing state as you interpret a string.
69 
70 
71   All of the national character sets LMBCS was trying to encode are 'ANSI'
72   based, in that the bytes from 0x20 - 0x7F are almost exactly the
73   same common Latin unaccented characters and symbols in all character sets.
74 
75   So, in order to help meet the speed & memory design goals, the common ANSI
76   bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
77 
78   The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79   follows:
80 
81   [G] D1 [D2]
82 
83   That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84   data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
85 */
86 #define ULMBCS_CHARSIZE_MAX      3
87 /*
88   The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89   We often have to figure out if byte values are below or above this, so we
90   use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91   characters just above & below the common lower-ANSI  range */
92 #define ULMBCS_C0END           0x1F
93 #define ULMBCS_C1START         0x80
94 /*
95   Since LMBCS is always dealing in byte units. we create a local type here for
96   dealing with these units of LMBCS code units:
97 
98 */
99 typedef uint8_t ulmbcs_byte_t;
100 
101 /*
102    Most of the values less than 0x20 are reserved in LMBCS to announce
103    which national  character standard is being used for the 'D' bytes.
104    In the comments we show the common name and the IBM character-set ID
105    for these character-set announcers:
106 */
107 
108 #define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
109 #define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
110 #define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
111 #define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
112 #define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
113 #define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
114 #define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
115 #define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
116 #define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
117 #define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
118 #define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
119 #define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
120 
121 /*
122    So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123    character is one of those 12 values, you can interpret the remaining bytes of
124    that character as coming from one of those character sets. Since the lower
125    ANSI bytes already are represented in single bytes, using one of the character
126    set announcers is used to announce a character that starts with a byte of
127    0x80 or greater.
128 
129    The character sets are  arranged so that the single byte sets all appear
130    before the multi-byte character sets. When we need to tell whether a
131    group byte is for a single byte char set or not we use this define: */
132 
133 #define ULMBCS_DOUBLEOPTGROUP_START  0x10
134 
135 /*
136 However, to fully understand LMBCS, you must also understand a series of
137 exceptions & optimizations made in service of the design goals.
138 
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to
143 count characters), we use a convention of doubling up on the group byte
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146 same as '0xAE' in the Japanese code page 943.
147 
148 Next, you will notice that the list of group bytes has some gaps.
149 These are used in various ways.
150 
151 We reserve a few special single byte values for common control
152 characters. These are in the same place as their ANSI eqivalents for speed.
153 */
154 
155 #define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
157 #define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
158 
159 /* Then, 1-2-3 reserved a special single-byte character to put at the
160 beginning of internal 'system' range names: */
161 
162 #define ULMBCS_123SYSTEMRANGE  0x19
163 
164 /* Then we needed a place to put all the other ansi control characters
165 that must be moved to different values because LMBCS reserves those
166 values for other purposes. To represent the control characters, we start
167 with a first byte of 0xF & add the control chaarcter value as the
168 second byte */
169 #define ULMBCS_GRP_CTRL       0x0F
170 
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET      0x20
175 
176 /*
177 Where to put the characters that aren't part of any of the 12 national
178 character sets? The first thing that was done, in the earlier years of
179 LMBCS, was to use up the spaces of the form
180 
181   [G] D1,
182 
183  where  'G' was one of the single-byte character groups, and
184  D1 was less than 0x80. These sequences are gathered together
185  into a Lotus-invented doublebyte character set to represent a
186  lot of stray values. Internally, in this implementation, we track this
187  as group '0', as a place to tuck this exceptions list.*/
188 
189 #define ULMBCS_GRP_EXCEPT     0x00
190 /*
191  Finally, as the durability and usefulness of UNICODE became clear,
192  LOTUS added a new group 0x14 to hold Unicode values not otherwise
193  represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE    0x14
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO   0xF6
202 
203 /* It is also useful in our code to have a constant for the size of
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE      3
206 
207 /*
208 To squish the LMBCS representations down even further, and to make
209 translations even faster,sometimes the optimization group byte can be dropped
210 from a LMBCS character. This is decided on a process-by-process basis. The
211 group byte that is dropped is called the 'optimization group'.
212 
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216 file.
217 
218  In any case, when using ICU, you either pass in the
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220 etc.). Using plain 'LMBCS' as the name of the converter will give you
221 LMBCS-1.
222 
223 
224 *** Implementation strategy ***
225 
226 
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
230 
231 /* As you can see, even though any byte below 0x20 could be an optimization
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
234 
235 #define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
236 
237 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238    /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239    /* 0x0001 */ "ibm-850",
240    /* 0x0002 */ "ibm-851",
241    /* 0x0003 */ "windows-1255",
242    /* 0x0004 */ "windows-1256",
243    /* 0x0005 */ "windows-1251",
244    /* 0x0006 */ "ibm-852",
245    /* 0x0007 */ NULL,      /* Unused */
246    /* 0x0008 */ "windows-1254",
247    /* 0x0009 */ NULL,      /* Control char HT */
248    /* 0x000A */ NULL,      /* Control char LF */
249    /* 0x000B */ "windows-874",
250    /* 0x000C */ NULL,      /* Unused */
251    /* 0x000D */ NULL,      /* Control char CR */
252    /* 0x000E */ NULL,      /* Unused */
253    /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254    /* 0x0010 */ "windows-932",
255    /* 0x0011 */ "windows-949",
256    /* 0x0012 */ "windows-950",
257    /* 0x0013 */ "windows-936"
258 
259    /* The rest are null, including the 0x0014 Unicode compatibility region
260    and 0x0019, the 1-2-3 system range control char */
261 };
262 
263 
264 /* That's approximately all the data that's needed for translating
265   LMBCS to Unicode.
266 
267 
268 However, to translate Unicode to LMBCS, we need some more support.
269 
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets.  (If the character exists in both DBCS &
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
279 
280 #define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one
281                                           LMBCS sbcs native encoding
282                                           (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one
284                                           LMBCS mbcs native encoding
285                                           (example: Unihan) */
286 #define ULMBCS_AMBIGUOUS_ALL   0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289                   ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290                   (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291                   (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292                   (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293                   ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294 
295 
296 /* The table & some code to use it: */
297 
298 
299 static const struct _UniLMBCSGrpMap
300 {
301    const UChar uniStartRange;
302    const UChar uniEndRange;
303    const ulmbcs_byte_t  GrpType;
304 } UniLMBCSGrpMap[]
305 =
306 {
307 
308     {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
309     {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
310     {0x00A0, 0x00A6,  ULMBCS_AMBIGUOUS_SBCS},
311     {0x00A7, 0x00A8,  ULMBCS_AMBIGUOUS_ALL},
312     {0x00A9, 0x00AF,  ULMBCS_AMBIGUOUS_SBCS},
313     {0x00B0, 0x00B1,  ULMBCS_AMBIGUOUS_ALL},
314     {0x00B2, 0x00B3,  ULMBCS_AMBIGUOUS_SBCS},
315     {0x00B4, 0x00B4,  ULMBCS_AMBIGUOUS_ALL},
316     {0x00B5, 0x00B5,  ULMBCS_AMBIGUOUS_SBCS},
317     {0x00B6, 0x00B6,  ULMBCS_AMBIGUOUS_ALL},
318     {0x00B7, 0x00D6,  ULMBCS_AMBIGUOUS_SBCS},
319     {0x00D7, 0x00D7,  ULMBCS_AMBIGUOUS_ALL},
320     {0x00D8, 0x00F6,  ULMBCS_AMBIGUOUS_SBCS},
321     {0x00F7, 0x00F7,  ULMBCS_AMBIGUOUS_ALL},
322     {0x00F8, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
323     {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
324     {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
325     {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
326     {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
327     {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
328     {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
329     {0x0384, 0x0390,  ULMBCS_AMBIGUOUS_SBCS},
330     {0x0391, 0x03A9,  ULMBCS_AMBIGUOUS_ALL},
331     {0x03AA, 0x03B0,  ULMBCS_AMBIGUOUS_SBCS},
332     {0x03B1, 0x03C9,  ULMBCS_AMBIGUOUS_ALL},
333     {0x03CA, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
334     {0x0400, 0x0400,  ULMBCS_GRP_RU},
335     {0x0401, 0x0401,  ULMBCS_AMBIGUOUS_ALL},
336     {0x0402, 0x040F,  ULMBCS_GRP_RU},
337     {0x0410, 0x0431,  ULMBCS_AMBIGUOUS_ALL},
338     {0x0432, 0x044E,  ULMBCS_GRP_RU},
339     {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_ALL},
340     {0x0450, 0x0491,  ULMBCS_GRP_RU},
341     {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
342     {0x060C, 0x06AF,  ULMBCS_GRP_AR},
343     {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
344     {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
345     {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
346     {0x2013, 0x2014,  ULMBCS_AMBIGUOUS_SBCS},
347     {0x2015, 0x2015,  ULMBCS_AMBIGUOUS_MBCS},
348     {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
349     {0x2017, 0x2017,  ULMBCS_AMBIGUOUS_SBCS},
350     {0x2018, 0x2019,  ULMBCS_AMBIGUOUS_ALL},
351     {0x201A, 0x201B,  ULMBCS_AMBIGUOUS_SBCS},
352     {0x201C, 0x201D,  ULMBCS_AMBIGUOUS_ALL},
353     {0x201E, 0x201F,  ULMBCS_AMBIGUOUS_SBCS},
354     {0x2020, 0x2021,  ULMBCS_AMBIGUOUS_ALL},
355     {0x2022, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
356     {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
357     {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_ALL},
358     {0x2027, 0x2027,  ULMBCS_GRP_TW},
359     {0x2030, 0x2030,  ULMBCS_AMBIGUOUS_ALL},
360     {0x2031, 0x2031,  ULMBCS_AMBIGUOUS_SBCS},
361     {0x2032, 0x2033,  ULMBCS_AMBIGUOUS_MBCS},
362     {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
363     {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
364     {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
365     {0x203C, 0x203C,  ULMBCS_GRP_EXCEPT},
366     {0x2074, 0x2074,  ULMBCS_GRP_KO},
367     {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
368     {0x2081, 0x2084,  ULMBCS_GRP_KO},
369     {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
370     {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
371     {0x2111, 0x2120,  ULMBCS_AMBIGUOUS_SBCS},
372     /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373     {0x2121, 0x2121,  ULMBCS_AMBIGUOUS_MBCS},
374     {0x2122, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
375     {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
376     {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
377     {0x2153, 0x2154,  ULMBCS_GRP_KO},
378     {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
379     {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
380     {0x2190, 0x2193,  ULMBCS_AMBIGUOUS_ALL},
381     {0x2194, 0x2195,  ULMBCS_GRP_EXCEPT},
382     {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
383     {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
384     {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
385     {0x21D0, 0x21D1,  ULMBCS_GRP_EXCEPT},
386     {0x21D2, 0x21D2,  ULMBCS_AMBIGUOUS_MBCS},
387     {0x21D3, 0x21D3,  ULMBCS_GRP_EXCEPT},
388     {0x21D4, 0x21D4,  ULMBCS_AMBIGUOUS_MBCS},
389     {0x21D5, 0x21D5,  ULMBCS_GRP_EXCEPT},
390     {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
391     {0x2200, 0x2200,  ULMBCS_AMBIGUOUS_MBCS},
392     {0x2201, 0x2201,  ULMBCS_GRP_EXCEPT},
393     {0x2202, 0x2202,  ULMBCS_AMBIGUOUS_MBCS},
394     {0x2203, 0x2203,  ULMBCS_AMBIGUOUS_MBCS},
395     {0x2204, 0x2206,  ULMBCS_GRP_EXCEPT},
396     {0x2207, 0x2208,  ULMBCS_AMBIGUOUS_MBCS},
397     {0x2209, 0x220A,  ULMBCS_GRP_EXCEPT},
398     {0x220B, 0x220B,  ULMBCS_AMBIGUOUS_MBCS},
399     {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
400     {0x2219, 0x2219,  ULMBCS_GRP_EXCEPT},
401     {0x221A, 0x221A,  ULMBCS_AMBIGUOUS_MBCS},
402     {0x221B, 0x221C,  ULMBCS_GRP_EXCEPT},
403     {0x221D, 0x221E,  ULMBCS_AMBIGUOUS_MBCS},
404     {0x221F, 0x221F,  ULMBCS_GRP_EXCEPT},
405     {0x2220, 0x2220,  ULMBCS_AMBIGUOUS_MBCS},
406     {0x2223, 0x222A,  ULMBCS_AMBIGUOUS_MBCS},
407     {0x222B, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
408     {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
409     {0x224C, 0x224C,  ULMBCS_GRP_TW},
410     {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
411     {0x2260, 0x2261,  ULMBCS_AMBIGUOUS_MBCS},
412     {0x2262, 0x2265,  ULMBCS_GRP_EXCEPT},
413     {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
414     {0x2282, 0x2283,  ULMBCS_AMBIGUOUS_MBCS},
415     {0x2284, 0x2285,  ULMBCS_GRP_EXCEPT},
416     {0x2286, 0x2287,  ULMBCS_AMBIGUOUS_MBCS},
417     {0x2288, 0x2297,  ULMBCS_GRP_EXCEPT},
418     {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
419     {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
420     {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
421     {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
422     {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
423     {0x2318, 0x2321,  ULMBCS_GRP_CN},
424     {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
425     {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
426     {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
427     {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_ALL},
428     {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
429     {0x2504, 0x2505,  ULMBCS_GRP_TW},
430     {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_ALL},
431     {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
432     {0x2667, 0x2669,  ULMBCS_AMBIGUOUS_SBCS},
433     {0x266A, 0x266A,  ULMBCS_AMBIGUOUS_ALL},
434     {0x266B, 0x266C,  ULMBCS_AMBIGUOUS_SBCS},
435     {0x266D, 0x266D,  ULMBCS_AMBIGUOUS_MBCS},
436     {0x266E, 0x266E,  ULMBCS_AMBIGUOUS_SBCS},
437     {0x266F, 0x266F,  ULMBCS_GRP_JA},
438     {0x2670, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
439     {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
440     {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
441     {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
442     {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
443     {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
444     {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
445 };
446 
447 static ulmbcs_byte_t
FindLMBCSUniRange(UChar uniChar)448 FindLMBCSUniRange(UChar uniChar)
449 {
450    const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451 
452    while (uniChar > pTable->uniEndRange)
453    {
454       pTable++;
455    }
456 
457    if (uniChar >= pTable->uniStartRange)
458    {
459       return pTable->GrpType;
460    }
461    return ULMBCS_GRP_UNICODE;
462 }
463 
464 /*
465 We also ask the creator of a converter to send in a preferred locale
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the
468 LMBCS groups. We use this table, and the associated code, to
469 do the lookup: */
470 
471 /**************************************************
472   This table maps locale ID's to LMBCS opt groups.
473   The default return is group 0x01. Note that for
474   performance reasons, the table is sorted in
475   increasing alphabetic order, with the notable
476   exception of zhTW. This is to force the check
477   for Traditonal Chinese before dropping back to
478   Simplified.
479 
480   Note too that the Latin-1 groups have been
481   commented out because it's the default, and
482   this shortens the table, allowing a serial
483   search to go quickly.
484  *************************************************/
485 
486 static const struct _LocaleLMBCSGrpMap
487 {
488    const char    *LocaleID;
489    const ulmbcs_byte_t OptGroup;
490 } LocaleLMBCSGrpMap[] =
491 {
492     {"ar", ULMBCS_GRP_AR},
493     {"be", ULMBCS_GRP_RU},
494     {"bg", ULMBCS_GRP_L2},
495    /* {"ca", ULMBCS_GRP_L1}, */
496     {"cs", ULMBCS_GRP_L2},
497    /* {"da", ULMBCS_GRP_L1}, */
498    /* {"de", ULMBCS_GRP_L1}, */
499     {"el", ULMBCS_GRP_GR},
500    /* {"en", ULMBCS_GRP_L1}, */
501    /* {"es", ULMBCS_GRP_L1}, */
502    /* {"et", ULMBCS_GRP_L1}, */
503    /* {"fi", ULMBCS_GRP_L1}, */
504    /* {"fr", ULMBCS_GRP_L1}, */
505     {"he", ULMBCS_GRP_HE},
506     {"hu", ULMBCS_GRP_L2},
507    /* {"is", ULMBCS_GRP_L1}, */
508    /* {"it", ULMBCS_GRP_L1}, */
509     {"iw", ULMBCS_GRP_HE},
510     {"ja", ULMBCS_GRP_JA},
511     {"ko", ULMBCS_GRP_KO},
512    /* {"lt", ULMBCS_GRP_L1}, */
513    /* {"lv", ULMBCS_GRP_L1}, */
514     {"mk", ULMBCS_GRP_RU},
515    /* {"nl", ULMBCS_GRP_L1}, */
516    /* {"no", ULMBCS_GRP_L1}, */
517     {"pl", ULMBCS_GRP_L2},
518    /* {"pt", ULMBCS_GRP_L1}, */
519     {"ro", ULMBCS_GRP_L2},
520     {"ru", ULMBCS_GRP_RU},
521     {"sh", ULMBCS_GRP_L2},
522     {"sk", ULMBCS_GRP_L2},
523     {"sl", ULMBCS_GRP_L2},
524     {"sq", ULMBCS_GRP_L2},
525     {"sr", ULMBCS_GRP_RU},
526    /* {"sv", ULMBCS_GRP_L1}, */
527     {"th", ULMBCS_GRP_TH},
528     {"tr", ULMBCS_GRP_TR},
529     {"uk", ULMBCS_GRP_RU},
530    /* {"vi", ULMBCS_GRP_L1}, */
531     {"zhTW", ULMBCS_GRP_TW},
532     {"zh", ULMBCS_GRP_CN},
533     {NULL, ULMBCS_GRP_L1}
534 };
535 
536 
537 static ulmbcs_byte_t
FindLMBCSLocale(const char * LocaleID)538 FindLMBCSLocale(const char *LocaleID)
539 {
540    const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541 
542    if ((!LocaleID) || (!*LocaleID))
543    {
544       return 0;
545    }
546 
547    while (pTable->LocaleID)
548    {
549       if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550       {
551          /* First char matches - check whole name, for entry-length */
552          if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553             return pTable->OptGroup;
554       }
555       else
556       if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557          break;
558       pTable++;
559    }
560    return ULMBCS_GRP_L1;
561 }
562 
563 
564 /*
565   Before we get to the main body of code, here's how we hook up to the rest
566   of ICU. ICU converters are required to define a structure that includes
567   some function pointers, and some common data, in the style of a C++
568   vtable. There is also room in there for converter-specific data. LMBCS
569   uses that converter-specific data to keep track of the 12 subconverters
570   we use, the optimization group, and the group (if any) that matches the
571   locale. We have one structure instantiated for each of the 12 possible
572   optimization groups. To avoid typos & to avoid boring the reader, we
573   put the declarations of these structures and functions into macros. To see
574   the definitions of these structures, see unicode\ucnv_bld.h
575 */
576 
577 typedef struct
578   {
579     UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
580     uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
581     uint8_t    localeConverterIndex;      /* reasonable locale match for index */
582   }
583 UConverterDataLMBCS;
584 
585 static void _LMBCSClose(UConverter * _this);
586 
587 #define DECLARE_LMBCS_DATA(n) \
588 static const UConverterImpl _LMBCSImpl##n={\
589     UCNV_LMBCS_##n,\
590     NULL,NULL,\
591     _LMBCSOpen##n,\
592     _LMBCSClose,\
593     NULL,\
594     _LMBCSToUnicodeWithOffsets,\
595     _LMBCSToUnicodeWithOffsets,\
596     _LMBCSFromUnicode,\
597     _LMBCSFromUnicode,\
598     NULL,\
599     NULL,\
600     NULL,\
601     NULL,\
602     _LMBCSSafeClone,\
603     ucnv_getCompleteUnicodeSet\
604 };\
605 static const UConverterStaticData _LMBCSStaticData##n={\
606   sizeof(UConverterStaticData),\
607  "LMBCS-"  #n,\
608     0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
609     { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
610 };\
611 const UConverterSharedData _LMBCSData##n={\
612     sizeof(UConverterSharedData), ~((uint32_t) 0),\
613     NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
614     0 \
615 };
616 
617  /* The only function we needed to duplicate 12 times was the 'open'
618 function, which will do basically the same thing except set a  different
619 optimization group. So, we put the common stuff into a worker function,
620 and set up another macro to stamp out the 12 open functions:*/
621 #define DEFINE_LMBCS_OPEN(n) \
622 static void \
623    _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
624 { _LMBCSOpenWorker(_this, pArgs, err, n); }
625 
626 
627 
628 /* Here's the open worker & the common close function */
629 static void
_LMBCSOpenWorker(UConverter * _this,UConverterLoadArgs * pArgs,UErrorCode * err,ulmbcs_byte_t OptGroup)630 _LMBCSOpenWorker(UConverter*  _this,
631                  UConverterLoadArgs *pArgs,
632                  UErrorCode*  err,
633                  ulmbcs_byte_t OptGroup)
634 {
635     UConverterDataLMBCS * extraInfo = _this->extraInfo =
636         (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
637     if(extraInfo != NULL)
638     {
639         UConverterNamePieces stackPieces;
640         UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
641         ulmbcs_byte_t i;
642 
643         uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
644 
645         stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
646 
647         for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
648         {
649             if(OptGroupByteToCPName[i] != NULL) {
650                 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
651             }
652         }
653 
654         if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
655             _LMBCSClose(_this);
656             return;
657         }
658         extraInfo->OptGroup = OptGroup;
659         extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
660     }
661     else
662     {
663         *err = U_MEMORY_ALLOCATION_ERROR;
664     }
665 }
666 
667 static void
_LMBCSClose(UConverter * _this)668 _LMBCSClose(UConverter *   _this)
669 {
670     if (_this->extraInfo != NULL)
671     {
672         ulmbcs_byte_t Ix;
673         UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
674 
675         for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
676         {
677            if (extraInfo->OptGrpConverter[Ix] != NULL)
678               ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
679         }
680         if (!_this->isExtraLocal) {
681             uprv_free (_this->extraInfo);
682             _this->extraInfo = NULL;
683         }
684     }
685 }
686 
687 typedef struct LMBCSClone {
688     UConverter cnv;
689     UConverterDataLMBCS lmbcs;
690 } LMBCSClone;
691 
692 static UConverter *
_LMBCSSafeClone(const UConverter * cnv,void * stackBuffer,int32_t * pBufferSize,UErrorCode * status)693 _LMBCSSafeClone(const UConverter *cnv,
694                 void *stackBuffer,
695                 int32_t *pBufferSize,
696                 UErrorCode *status) {
697     LMBCSClone *newLMBCS;
698     UConverterDataLMBCS *extraInfo;
699     int32_t i;
700 
701     if(*pBufferSize<=0) {
702         *pBufferSize=(int32_t)sizeof(LMBCSClone);
703         return NULL;
704     }
705 
706     extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
707     newLMBCS=(LMBCSClone *)stackBuffer;
708 
709     /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
710 
711     uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
712 
713     /* share the subconverters */
714     for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
715         if(extraInfo->OptGrpConverter[i] != NULL) {
716             ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
717         }
718     }
719 
720     newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
721     newLMBCS->cnv.isExtraLocal = TRUE;
722     return &newLMBCS->cnv;
723 }
724 
725 /*
726  * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
727  * which added all code points except for U+F6xx
728  * because those cannot be represented in the Unicode group.
729  * However, it turns out that windows-950 has roundtrips for all of U+F6xx
730  * which means that LMBCS can convert all Unicode code points after all.
731  * We now simply use ucnv_getCompleteUnicodeSet().
732  *
733  * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
734  */
735 
736 /*
737    Here's the basic helper function that we use when converting from
738    Unicode to LMBCS, and we suspect that a Unicode character will fit into
739    one of the 12 groups. The return value is the number of bytes written
740    starting at pStartLMBCS (if any).
741 */
742 
743 static size_t
LMBCSConversionWorker(UConverterDataLMBCS * extraInfo,ulmbcs_byte_t group,ulmbcs_byte_t * pStartLMBCS,UChar * pUniChar,ulmbcs_byte_t * lastConverterIndex,UBool * groups_tried)744 LMBCSConversionWorker (
745    UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
746    ulmbcs_byte_t group,                /* The group to try */
747    ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
748    UChar * pUniChar,                   /* The input unicode character */
749    ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
750    UBool * groups_tried                /* output: track any unsuccessful groups */
751 )
752 {
753    ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
754    UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
755 
756    int bytesConverted;
757    uint32_t value;
758    ulmbcs_byte_t firstByte;
759 
760    U_ASSERT(xcnv);
761    U_ASSERT(group<ULMBCS_GRP_UNICODE);
762 
763    bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
764 
765    /* get the first result byte */
766    if(bytesConverted > 0) {
767       firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
768    } else {
769       /* most common failure mode is an unassigned character */
770       groups_tried[group] = TRUE;
771       return 0;
772    }
773 
774    *lastConverterIndex = group;
775 
776    /* All initial byte values in lower ascii range should have been caught by now,
777       except with the exception group.
778     */
779    U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
780 
781    /* use converted data: first write 0, 1 or two group bytes */
782    if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
783    {
784       *pLMBCS++ = group;
785       if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
786       {
787          *pLMBCS++ = group;
788       }
789    }
790 
791   /* don't emit control chars */
792    if ( bytesConverted == 1 && firstByte < 0x20 )
793       return 0;
794 
795 
796    /* then move over the converted data */
797    switch(bytesConverted)
798    {
799    case 4:
800       *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
801    case 3:
802       *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
803    case 2:
804       *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
805    case 1:
806       *pLMBCS++ = (ulmbcs_byte_t)value;
807    default:
808       /* will never occur */
809       break;
810    }
811 
812    return (pLMBCS - pStartLMBCS);
813 }
814 
815 
816 /* This is a much simpler version of above, when we
817 know we are writing LMBCS using the Unicode group
818 */
819 static size_t
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS,UChar uniChar)820 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
821 {
822      /* encode into LMBCS Unicode range */
823    uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
824    uint8_t HighCh  = (uint8_t)(uniChar >> 8);
825 
826    *pLMBCS++ = ULMBCS_GRP_UNICODE;
827 
828    if (LowCh == 0)
829    {
830       *pLMBCS++ = ULMBCS_UNICOMPATZERO;
831       *pLMBCS++ = HighCh;
832    }
833    else
834    {
835       *pLMBCS++ = HighCh;
836       *pLMBCS++ = LowCh;
837    }
838    return ULMBCS_UNICODE_SIZE;
839 }
840 
841 
842 
843 /* The main Unicode to LMBCS conversion function */
844 static void
_LMBCSFromUnicode(UConverterFromUnicodeArgs * args,UErrorCode * err)845 _LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
846                   UErrorCode*     err)
847 {
848    ulmbcs_byte_t lastConverterIndex = 0;
849    UChar uniChar;
850    ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
851    ulmbcs_byte_t  * pLMBCS;
852    int32_t bytes_written;
853    UBool groups_tried[ULMBCS_GRP_LAST+1];
854    UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
855    int sourceIndex = 0;
856 
857    /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
858       If that succeeds, see if it will all fit into the target & copy it over
859       if it does.
860 
861       We try conversions in the following order:
862 
863       1. Single-byte ascii & special fixed control chars (&null)
864       2. Look up group in table & try that (could be
865             A) Unicode group
866             B) control group,
867             C) national encoding,
868                or ambiguous SBCS or MBCS group (on to step 4...)
869 
870       3. If its ambiguous, try this order:
871          A) The optimization group
872          B) The locale group
873          C) The last group that succeeded with this string.
874          D) every other group that's relevent (single or double)
875          E) If its single-byte ambiguous, try the exceptions group
876 
877       4. And as a grand fallback: Unicode
878    */
879 
880     /*Fix for SPR#DJOE66JFN3 (Lotus)*/
881     ulmbcs_byte_t OldConverterIndex = 0;
882 
883    while (args->source < args->sourceLimit && !U_FAILURE(*err))
884    {
885       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
886       OldConverterIndex = extraInfo->localeConverterIndex;
887 
888       if (args->target >= args->targetLimit)
889       {
890          *err = U_BUFFER_OVERFLOW_ERROR;
891          break;
892       }
893       uniChar = *(args->source);
894       bytes_written = 0;
895       pLMBCS = LMBCS;
896 
897       /* check cases in rough order of how common they are, for speed */
898 
899       /* single byte matches: strategy 1 */
900       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
901       if((uniChar>=0x80) && (uniChar<=0xff)
902       /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
903         &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
904       {
905             extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
906       }
907       if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
908           uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
909           uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
910           )
911       {
912          *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
913          bytes_written = 1;
914       }
915 
916 
917       if (!bytes_written)
918       {
919          /* Check by UNICODE range (Strategy 2) */
920          ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
921 
922          if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
923          {
924             pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
925 
926             bytes_written = (int32_t)(pLMBCS - LMBCS);
927          }
928          else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
929          {
930             /* Handle control characters here */
931             if (uniChar <= ULMBCS_C0END)
932             {
933                *pLMBCS++ = ULMBCS_GRP_CTRL;
934                *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
935             }
936             else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
937             {
938                *pLMBCS++ = ULMBCS_GRP_CTRL;
939                *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
940             }
941             bytes_written = (int32_t)(pLMBCS - LMBCS);
942          }
943          else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
944          {
945             /* a specific converter has been identified - use it */
946             bytes_written = (int32_t)LMBCSConversionWorker (
947                               extraInfo, group, pLMBCS, &uniChar,
948                               &lastConverterIndex, groups_tried);
949          }
950          if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
951          {
952             uprv_memset(groups_tried, 0, sizeof(groups_tried));
953 
954             /* check for non-default optimization group (Strategy 3A )*/
955             if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
956             {
957                 /*zhujin: upgrade, merge #39299 here (Lotus) */
958                 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
959 
960                 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
961                 {
962                   bytes_written = LMBCSConversionWorker (extraInfo,
963                      ULMBCS_GRP_L1, pLMBCS, &uniChar,
964                      &lastConverterIndex, groups_tried);
965 
966                   if(!bytes_written)
967                   {
968                      bytes_written = LMBCSConversionWorker (extraInfo,
969                          ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
970                          &lastConverterIndex, groups_tried);
971                   }
972                   if(!bytes_written)
973                   {
974                       bytes_written = LMBCSConversionWorker (extraInfo,
975                           extraInfo->localeConverterIndex, pLMBCS, &uniChar,
976                           &lastConverterIndex, groups_tried);
977                   }
978                 }
979                 else
980                 {
981                      bytes_written = LMBCSConversionWorker (extraInfo,
982                          extraInfo->localeConverterIndex, pLMBCS, &uniChar,
983                          &lastConverterIndex, groups_tried);
984                 }
985             }
986             /* check for locale optimization group (Strategy 3B) */
987             if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
988             {
989                 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
990                         extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
991             }
992             /* check for last optimization group used for this string (Strategy 3C) */
993             if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
994             {
995                 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
996                         lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
997             }
998             if (!bytes_written)
999             {
1000                /* just check every possible matching converter (Strategy 3D) */
1001                ulmbcs_byte_t grp_start;
1002                ulmbcs_byte_t grp_end;
1003                ulmbcs_byte_t grp_ix;
1004                grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1005                         ? ULMBCS_DOUBLEOPTGROUP_START
1006                         :  ULMBCS_GRP_L1);
1007                grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1008                         ? ULMBCS_GRP_LAST
1009                         :  ULMBCS_GRP_TH);
1010                if(group == ULMBCS_AMBIGUOUS_ALL)
1011                {
1012                    grp_start = ULMBCS_GRP_L1;
1013                    grp_end = ULMBCS_GRP_LAST;
1014                }
1015                for (grp_ix = grp_start;
1016                    grp_ix <= grp_end && !bytes_written;
1017                     grp_ix++)
1018                {
1019                   if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1020                   {
1021                      bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1022                        grp_ix, pLMBCS, &uniChar,
1023                        &lastConverterIndex, groups_tried);
1024                   }
1025                }
1026                 /* a final conversion fallback to the exceptions group if its likely
1027                      to be single byte  (Strategy 3E) */
1028                if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1029                {
1030                   bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1031                      ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1032                      &lastConverterIndex, groups_tried);
1033                }
1034             }
1035             /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1036             if (!bytes_written)
1037             {
1038 
1039                pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1040                bytes_written = (int32_t)(pLMBCS - LMBCS);
1041             }
1042          }
1043       }
1044 
1045       /* we have a translation. increment source and write as much as posible to target */
1046       args->source++;
1047       pLMBCS = LMBCS;
1048       while (args->target < args->targetLimit && bytes_written--)
1049       {
1050          *(args->target)++ = *pLMBCS++;
1051          if (args->offsets)
1052          {
1053             *(args->offsets)++ = sourceIndex;
1054          }
1055       }
1056       sourceIndex++;
1057       if (bytes_written > 0)
1058       {
1059          /* write any bytes that didn't fit in target to the error buffer,
1060             common code will move this to target if we get called back with
1061             enough target room
1062          */
1063          uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1064          *err = U_BUFFER_OVERFLOW_ERROR;
1065          args->converter->charErrorBufferLength = (int8_t)bytes_written;
1066          while (bytes_written--)
1067          {
1068             *pErrorBuffer++ = *pLMBCS++;
1069          }
1070       }
1071       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1072       extraInfo->localeConverterIndex = OldConverterIndex;
1073    }
1074 }
1075 
1076 
1077 /* Now, the Unicode from LMBCS section */
1078 
1079 
1080 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1081 static UChar
GetUniFromLMBCSUni(char const ** ppLMBCSin)1082 GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
1083 {
1084    uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
1085    uint8_t  LowCh  = *(*ppLMBCSin)++;
1086 
1087    if (HighCh == ULMBCS_UNICOMPATZERO )
1088    {
1089       HighCh = LowCh;
1090       LowCh = 0; /* zero-byte in LSB special character */
1091    }
1092    return (UChar)((HighCh << 8) | LowCh);
1093 }
1094 
1095 
1096 
1097 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1098    bytes left in source up to  sourceLimit.Errors appropriately if not.
1099    If we reach the limit, then update the source pointer to there to consume
1100    all input as required by ICU converter semantics.
1101 */
1102 
1103 #define CHECK_SOURCE_LIMIT(index) \
1104      if (args->source+index > args->sourceLimit){\
1105          *err = U_TRUNCATED_CHAR_FOUND;\
1106          args->source = args->sourceLimit;\
1107          return 0xffff;}
1108 
1109 /* Return the Unicode representation for the current LMBCS character */
1110 
1111 static UChar32
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs * args,UErrorCode * err)1112 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1113                          UErrorCode*   err)
1114 {
1115     UChar32 uniChar = 0;    /* an output UNICODE char */
1116     ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1117 
1118     /* error check */
1119     if (args->source >= args->sourceLimit)
1120     {
1121         *err = U_ILLEGAL_ARGUMENT_ERROR;
1122         return 0xffff;
1123     }
1124     /* Grab first byte & save address for error recovery */
1125     CurByte = *((ulmbcs_byte_t  *) (args->source++));
1126 
1127     /*
1128     * at entry of each if clause:
1129     * 1. 'CurByte' points at the first byte of a LMBCS character
1130     * 2. '*source'points to the next byte of the source stream after 'CurByte'
1131     *
1132     * the job of each if clause is:
1133     * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1134     * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1135     */
1136 
1137     /* First lets check the simple fixed values. */
1138 
1139     if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1140     ||  (CurByte == 0)
1141     ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1142     ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1143     {
1144         uniChar = CurByte;
1145     }
1146     else
1147     {
1148         UConverterDataLMBCS * extraInfo;
1149         ulmbcs_byte_t group;
1150         UConverterSharedData *cnv;
1151 
1152         if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1153         {
1154             ulmbcs_byte_t  C0C1byte;
1155             CHECK_SOURCE_LIMIT(1);
1156             C0C1byte = *(args->source)++;
1157             uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1158         }
1159         else
1160         if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1161         {
1162             CHECK_SOURCE_LIMIT(2);
1163 
1164             /* don't check for error indicators fffe/ffff below */
1165             return GetUniFromLMBCSUni(&(args->source));
1166         }
1167         else if (CurByte <= ULMBCS_CTRLOFFSET)
1168         {
1169             group = CurByte;                   /* group byte is in the source */
1170             extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1171             if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1172             {
1173                 /* this is not a valid group byte - no converter*/
1174                 *err = U_INVALID_CHAR_FOUND;
1175             }
1176             else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1177             {
1178 
1179                 CHECK_SOURCE_LIMIT(2);
1180 
1181                 /* check for LMBCS doubled-group-byte case */
1182                 if (*args->source == group) {
1183                     /* single byte */
1184                     ++args->source;
1185                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1186                     ++args->source;
1187                 } else {
1188                     /* double byte */
1189                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1190                     args->source += 2;
1191                 }
1192             }
1193             else {                                  /* single byte conversion */
1194                 CHECK_SOURCE_LIMIT(1);
1195                 CurByte = *(args->source)++;
1196 
1197                 if (CurByte >= ULMBCS_C1START)
1198                 {
1199                     uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1200                 }
1201                 else
1202                 {
1203                     /* The non-optimizable oddballs where there is an explicit byte
1204                     * AND the second byte is not in the upper ascii range
1205                     */
1206                     char bytes[2];
1207 
1208                     extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1209                     cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1210 
1211                     /* Lookup value must include opt group */
1212                     bytes[0] = group;
1213                     bytes[1] = CurByte;
1214                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1215                 }
1216             }
1217         }
1218         else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1219         {
1220             extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1221             group = extraInfo->OptGroup;
1222             cnv = extraInfo->OptGrpConverter[group];
1223             if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1224             {
1225                 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1226                 {
1227                     CHECK_SOURCE_LIMIT(0);
1228 
1229                     /* let the MBCS conversion consume CurByte again */
1230                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1231                 }
1232                 else
1233                 {
1234                     CHECK_SOURCE_LIMIT(1);
1235                     /* let the MBCS conversion consume CurByte again */
1236                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1237                     ++args->source;
1238                 }
1239             }
1240             else                                   /* single byte conversion */
1241             {
1242                 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1243             }
1244         }
1245     }
1246     return uniChar;
1247 }
1248 
1249 
1250 /* The exported function that converts lmbcs to one or more
1251    UChars - currently UTF-16
1252 */
1253 static void
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * args,UErrorCode * err)1254 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1255                      UErrorCode*    err)
1256 {
1257    char LMBCS [ULMBCS_CHARSIZE_MAX];
1258    UChar uniChar;    /* one output UNICODE char */
1259    const char * saveSource; /* beginning of current code point */
1260    const char * pStartLMBCS = args->source;  /* beginning of whole string */
1261    const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1262    int8_t savebytes = 0;
1263 
1264    /* Process from source to limit, or until error */
1265    while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1266    {
1267       saveSource = args->source; /* beginning of current code point */
1268 
1269       if (args->converter->toULength) /* reassemble char from previous call */
1270       {
1271         const char *saveSourceLimit;
1272         size_t size_old = args->converter->toULength;
1273 
1274          /* limit from source is either remainder of temp buffer, or user limit on source */
1275         size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1276         size_t size_new_maybe_2 = args->sourceLimit - args->source;
1277         size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1278 
1279 
1280         uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1281         uprv_memcpy(LMBCS + size_old, args->source, size_new);
1282         saveSourceLimit = args->sourceLimit;
1283         args->source = errSource = LMBCS;
1284         args->sourceLimit = LMBCS+size_old+size_new;
1285         savebytes = (int8_t)(size_old+size_new);
1286         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1287         args->source = saveSource + ((args->source - LMBCS) - size_old);
1288         args->sourceLimit = saveSourceLimit;
1289 
1290         if (*err == U_TRUNCATED_CHAR_FOUND)
1291         {
1292             /* evil special case: source buffers so small a char spans more than 2 buffers */
1293             args->converter->toULength = savebytes;
1294             uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1295             args->source = args->sourceLimit;
1296             *err = U_ZERO_ERROR;
1297             return;
1298          }
1299          else
1300          {
1301             /* clear the partial-char marker */
1302             args->converter->toULength = 0;
1303          }
1304       }
1305       else
1306       {
1307          errSource = saveSource;
1308          uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1309          savebytes = (int8_t)(args->source - saveSource);
1310       }
1311       if (U_SUCCESS(*err))
1312       {
1313          if (uniChar < 0xfffe)
1314          {
1315             *(args->target)++ = uniChar;
1316             if(args->offsets)
1317             {
1318                *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1319             }
1320          }
1321          else if (uniChar == 0xfffe)
1322          {
1323             *err = U_INVALID_CHAR_FOUND;
1324          }
1325          else /* if (uniChar == 0xffff) */
1326          {
1327             *err = U_ILLEGAL_CHAR_FOUND;
1328          }
1329       }
1330    }
1331    /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1332    if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1333    {
1334       *err = U_BUFFER_OVERFLOW_ERROR;
1335    }
1336    else if (U_FAILURE(*err))
1337    {
1338       /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1339       args->converter->toULength = savebytes;
1340       if (savebytes > 0) {
1341          uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1342       }
1343       if (*err == U_TRUNCATED_CHAR_FOUND) {
1344          *err = U_ZERO_ERROR;
1345       }
1346    }
1347 }
1348 
1349 /* And now, the macroized declarations of data & functions: */
1350 DEFINE_LMBCS_OPEN(1)
1351 DEFINE_LMBCS_OPEN(2)
1352 DEFINE_LMBCS_OPEN(3)
1353 DEFINE_LMBCS_OPEN(4)
1354 DEFINE_LMBCS_OPEN(5)
1355 DEFINE_LMBCS_OPEN(6)
1356 DEFINE_LMBCS_OPEN(8)
1357 DEFINE_LMBCS_OPEN(11)
1358 DEFINE_LMBCS_OPEN(16)
1359 DEFINE_LMBCS_OPEN(17)
1360 DEFINE_LMBCS_OPEN(18)
1361 DEFINE_LMBCS_OPEN(19)
1362 
1363 
1364 DECLARE_LMBCS_DATA(1)
1365 DECLARE_LMBCS_DATA(2)
1366 DECLARE_LMBCS_DATA(3)
1367 DECLARE_LMBCS_DATA(4)
1368 DECLARE_LMBCS_DATA(5)
1369 DECLARE_LMBCS_DATA(6)
1370 DECLARE_LMBCS_DATA(8)
1371 DECLARE_LMBCS_DATA(11)
1372 DECLARE_LMBCS_DATA(16)
1373 DECLARE_LMBCS_DATA(17)
1374 DECLARE_LMBCS_DATA(18)
1375 DECLARE_LMBCS_DATA(19)
1376 
1377 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1378