• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 *******************************************************************************
3 *   Copyright (C) 2001-2003, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 *******************************************************************************
6 *   file name:  bocsu.c
7 *   encoding:   US-ASCII
8 *   tab size:   8 (not used)
9 *   indentation:4
10 *
11 *   Author: Markus W. Scherer
12 *
13 *   Modification history:
14 *   05/18/2001  weiv    Made into separate module
15 */
16 
17 #ifndef BOCSU_H
18 #define BOCSU_H
19 
20 #include "unicode/utypes.h"
21 
22 #if !UCONFIG_NO_COLLATION
23 
24 /*
25  * "BOCSU"
26  * Binary Ordered Compression Scheme for Unicode
27  *
28  * Specific application:
29  *
30  * Encode a Unicode string for the identical level of a sort key.
31  * Restrictions:
32  * - byte stream (unsigned 8-bit bytes)
33  * - lexical order of the identical-level run must be
34  *   the same as code point order for the string
35  * - avoid byte values 0, 1, 2
36  *
37  * Method: Slope Detection
38  * Remember the previous code point (initial 0).
39  * For each cp in the string, encode the difference to the previous one.
40  *
41  * With a compact encoding of differences, this yields good results for
42  * small scripts and UTF-like results otherwise.
43  *
44  * Encoding of differences:
45  * - Similar to a UTF, encoding the length of the byte sequence in the lead bytes.
46  * - Does not need to be friendly for decoding or random access
47  *   (trail byte values may overlap with lead/single byte values).
48  * - The signedness must be encoded as the most significant part.
49  *
50  * We encode differences with few bytes if their absolute values are small.
51  * For correct ordering, we must treat the entire value range -10ffff..+10ffff
52  * in ascending order, which forbids encoding the sign and the absolute value separately.
53  * Instead, we split the lead byte range in the middle and encode non-negative values
54  * going up and negative values going down.
55  *
56  * For very small absolute values, the difference is added to a middle byte value
57  * for single-byte encoded differences.
58  * For somewhat larger absolute values, the difference is divided by the number
59  * of byte values available, the modulo is used for one trail byte, and the remainder
60  * is added to a lead byte avoiding the single-byte range.
61  * For large absolute values, the difference is similarly encoded in three bytes.
62  *
63  * This encoding does not use byte values 0, 1, 2, but uses all other byte values
64  * for lead/single bytes so that the middle range of single bytes is as large
65  * as possible.
66  * Note that the lead byte ranges overlap some, but that the sequences as a whole
67  * are well ordered. I.e., even if the lead byte is the same for sequences of different
68  * lengths, the trail bytes establish correct order.
69  * It would be possible to encode slightly larger ranges for each length (>1) by
70  * subtracting the lower bound of the range. However, that would also slow down the
71  * calculation.
72  *
73  * For the actual string encoding, an optimization moves the previous code point value
74  * to the middle of its Unicode script block to minimize the differences in
75  * same-script text runs.
76  */
77 
78 /* Do not use byte values 0, 1, 2 because they are separators in sort keys. */
79 #define SLOPE_MIN           3
80 #define SLOPE_MAX           0xff
81 #define SLOPE_MIDDLE        0x81
82 
83 #define SLOPE_TAIL_COUNT    (SLOPE_MAX-SLOPE_MIN+1)
84 
85 #define SLOPE_MAX_BYTES     4
86 
87 /*
88  * Number of lead bytes:
89  * 1        middle byte for 0
90  * 2*80=160 single bytes for !=0
91  * 2*42=84  for double-byte values
92  * 2*3=6    for 3-byte values
93  * 2*1=2    for 4-byte values
94  *
95  * The sum must be <=SLOPE_TAIL_COUNT.
96  *
97  * Why these numbers?
98  * - There should be >=128 single-byte values to cover 128-blocks
99  *   with small scripts.
100  * - There should be >=20902 single/double-byte values to cover Unihan.
101  * - It helps CJK Extension B some if there are 3-byte values that cover
102  *   the distance between them and Unihan.
103  *   This also helps to jump among distant places in the BMP.
104  * - Four-byte values are necessary to cover the rest of Unicode.
105  *
106  * Symmetrical lead byte counts are for convenience.
107  * With an equal distribution of even and odd differences there is also
108  * no advantage to asymmetrical lead byte counts.
109  */
110 #define SLOPE_SINGLE        80
111 #define SLOPE_LEAD_2        42
112 #define SLOPE_LEAD_3        3
113 #define SLOPE_LEAD_4        1
114 
115 /* The difference value range for single-byters. */
116 #define SLOPE_REACH_POS_1   SLOPE_SINGLE
117 #define SLOPE_REACH_NEG_1   (-SLOPE_SINGLE)
118 
119 /* The difference value range for double-byters. */
120 #define SLOPE_REACH_POS_2   (SLOPE_LEAD_2*SLOPE_TAIL_COUNT+(SLOPE_LEAD_2-1))
121 #define SLOPE_REACH_NEG_2   (-SLOPE_REACH_POS_2-1)
122 
123 /* The difference value range for 3-byters. */
124 #define SLOPE_REACH_POS_3   (SLOPE_LEAD_3*SLOPE_TAIL_COUNT*SLOPE_TAIL_COUNT+(SLOPE_LEAD_3-1)*SLOPE_TAIL_COUNT+(SLOPE_TAIL_COUNT-1))
125 #define SLOPE_REACH_NEG_3   (-SLOPE_REACH_POS_3-1)
126 
127 /* The lead byte start values. */
128 #define SLOPE_START_POS_2   (SLOPE_MIDDLE+SLOPE_SINGLE+1)
129 #define SLOPE_START_POS_3   (SLOPE_START_POS_2+SLOPE_LEAD_2)
130 
131 #define SLOPE_START_NEG_2   (SLOPE_MIDDLE+SLOPE_REACH_NEG_1)
132 #define SLOPE_START_NEG_3   (SLOPE_START_NEG_2-SLOPE_LEAD_2)
133 
134 /*
135  * Integer division and modulo with negative numerators
136  * yields negative modulo results and quotients that are one more than
137  * what we need here.
138  */
139 #define NEGDIVMOD(n, d, m) { \
140     (m)=(n)%(d); \
141     (n)/=(d); \
142     if((m)<0) { \
143         --(n); \
144         (m)+=(d); \
145     } \
146 }
147 
148 U_CFUNC int32_t
149 u_writeIdenticalLevelRun(const UChar *s, int32_t length, uint8_t *p);
150 
151 U_CFUNC int32_t
152 u_writeIdenticalLevelRunTwoChars(UChar32 first, UChar32 second, uint8_t *p);
153 
154 U_CFUNC int32_t
155 u_lengthOfIdenticalLevelRun(const UChar *s, int32_t length);
156 
157 U_CFUNC uint8_t *
158 u_writeDiff(int32_t diff, uint8_t *p);
159 
160 #endif /* #if !UCONFIG_NO_COLLATION */
161 
162 #endif
163