• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 
23 struct usb_device;
24 struct usb_driver;
25 
26 /*-------------------------------------------------------------------------*/
27 
28 /*
29  * Host-side wrappers for standard USB descriptors ... these are parsed
30  * from the data provided by devices.  Parsing turns them from a flat
31  * sequence of descriptors into a hierarchy:
32  *
33  *  - devices have one (usually) or more configs;
34  *  - configs have one (often) or more interfaces;
35  *  - interfaces have one (usually) or more settings;
36  *  - each interface setting has zero or (usually) more endpoints.
37  *
38  * And there might be other descriptors mixed in with those.
39  *
40  * Devices may also have class-specific or vendor-specific descriptors.
41  */
42 
43 struct ep_device;
44 
45 /**
46  * struct usb_host_endpoint - host-side endpoint descriptor and queue
47  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
48  * @urb_list: urbs queued to this endpoint; maintained by usbcore
49  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
50  *	with one or more transfer descriptors (TDs) per urb
51  * @ep_dev: ep_device for sysfs info
52  * @extra: descriptors following this endpoint in the configuration
53  * @extralen: how many bytes of "extra" are valid
54  *
55  * USB requests are always queued to a given endpoint, identified by a
56  * descriptor within an active interface in a given USB configuration.
57  */
58 struct usb_host_endpoint {
59 	struct usb_endpoint_descriptor	desc;
60 	struct list_head		urb_list;
61 	void				*hcpriv;
62 	struct ep_device 		*ep_dev;	/* For sysfs info */
63 
64 	unsigned char *extra;   /* Extra descriptors */
65 	int extralen;
66 };
67 
68 /* host-side wrapper for one interface setting's parsed descriptors */
69 struct usb_host_interface {
70 	struct usb_interface_descriptor	desc;
71 
72 	/* array of desc.bNumEndpoint endpoints associated with this
73 	 * interface setting.  these will be in no particular order.
74 	 */
75 	struct usb_host_endpoint *endpoint;
76 
77 	char *string;		/* iInterface string, if present */
78 	unsigned char *extra;   /* Extra descriptors */
79 	int extralen;
80 };
81 
82 enum usb_interface_condition {
83 	USB_INTERFACE_UNBOUND = 0,
84 	USB_INTERFACE_BINDING,
85 	USB_INTERFACE_BOUND,
86 	USB_INTERFACE_UNBINDING,
87 };
88 
89 /**
90  * struct usb_interface - what usb device drivers talk to
91  * @altsetting: array of interface structures, one for each alternate
92  * 	setting that may be selected.  Each one includes a set of
93  * 	endpoint configurations.  They will be in no particular order.
94  * @num_altsetting: number of altsettings defined.
95  * @cur_altsetting: the current altsetting.
96  * @driver: the USB driver that is bound to this interface.
97  * @minor: the minor number assigned to this interface, if this
98  *	interface is bound to a driver that uses the USB major number.
99  *	If this interface does not use the USB major, this field should
100  *	be unused.  The driver should set this value in the probe()
101  *	function of the driver, after it has been assigned a minor
102  *	number from the USB core by calling usb_register_dev().
103  * @condition: binding state of the interface: not bound, binding
104  *	(in probe()), bound to a driver, or unbinding (in disconnect())
105  * @dev: driver model's view of this device
106  * @class_dev: driver model's class view of this device.
107  *
108  * USB device drivers attach to interfaces on a physical device.  Each
109  * interface encapsulates a single high level function, such as feeding
110  * an audio stream to a speaker or reporting a change in a volume control.
111  * Many USB devices only have one interface.  The protocol used to talk to
112  * an interface's endpoints can be defined in a usb "class" specification,
113  * or by a product's vendor.  The (default) control endpoint is part of
114  * every interface, but is never listed among the interface's descriptors.
115  *
116  * The driver that is bound to the interface can use standard driver model
117  * calls such as dev_get_drvdata() on the dev member of this structure.
118  *
119  * Each interface may have alternate settings.  The initial configuration
120  * of a device sets altsetting 0, but the device driver can change
121  * that setting using usb_set_interface().  Alternate settings are often
122  * used to control the the use of periodic endpoints, such as by having
123  * different endpoints use different amounts of reserved USB bandwidth.
124  * All standards-conformant USB devices that use isochronous endpoints
125  * will use them in non-default settings.
126  *
127  * The USB specification says that alternate setting numbers must run from
128  * 0 to one less than the total number of alternate settings.  But some
129  * devices manage to mess this up, and the structures aren't necessarily
130  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
131  * look up an alternate setting in the altsetting array based on its number.
132  */
133 struct usb_interface {
134 	/* array of alternate settings for this interface,
135 	 * stored in no particular order */
136 	struct usb_host_interface *altsetting;
137 
138 	struct usb_host_interface *cur_altsetting;	/* the currently
139 					 * active alternate setting */
140 	unsigned num_altsetting;	/* number of alternate settings */
141 
142 	int minor;			/* minor number this interface is
143 					 * bound to */
144 	enum usb_interface_condition condition;		/* state of binding */
145 	struct device dev;		/* interface specific device info */
146 	struct class_device *class_dev;
147 };
148 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
149 #define	interface_to_usbdev(intf) \
150 	container_of(intf->dev.parent, struct usb_device, dev)
151 
usb_get_intfdata(struct usb_interface * intf)152 static inline void *usb_get_intfdata (struct usb_interface *intf)
153 {
154 	return dev_get_drvdata (&intf->dev);
155 }
156 
usb_set_intfdata(struct usb_interface * intf,void * data)157 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
158 {
159 	dev_set_drvdata(&intf->dev, data);
160 }
161 
162 struct usb_interface *usb_get_intf(struct usb_interface *intf);
163 void usb_put_intf(struct usb_interface *intf);
164 
165 /* this maximum is arbitrary */
166 #define USB_MAXINTERFACES	32
167 
168 /**
169  * struct usb_interface_cache - long-term representation of a device interface
170  * @num_altsetting: number of altsettings defined.
171  * @ref: reference counter.
172  * @altsetting: variable-length array of interface structures, one for
173  *	each alternate setting that may be selected.  Each one includes a
174  *	set of endpoint configurations.  They will be in no particular order.
175  *
176  * These structures persist for the lifetime of a usb_device, unlike
177  * struct usb_interface (which persists only as long as its configuration
178  * is installed).  The altsetting arrays can be accessed through these
179  * structures at any time, permitting comparison of configurations and
180  * providing support for the /proc/bus/usb/devices pseudo-file.
181  */
182 struct usb_interface_cache {
183 	unsigned num_altsetting;	/* number of alternate settings */
184 	struct kref ref;		/* reference counter */
185 
186 	/* variable-length array of alternate settings for this interface,
187 	 * stored in no particular order */
188 	struct usb_host_interface altsetting[0];
189 };
190 #define	ref_to_usb_interface_cache(r) \
191 		container_of(r, struct usb_interface_cache, ref)
192 #define	altsetting_to_usb_interface_cache(a) \
193 		container_of(a, struct usb_interface_cache, altsetting[0])
194 
195 /**
196  * struct usb_host_config - representation of a device's configuration
197  * @desc: the device's configuration descriptor.
198  * @string: pointer to the cached version of the iConfiguration string, if
199  *	present for this configuration.
200  * @interface: array of pointers to usb_interface structures, one for each
201  *	interface in the configuration.  The number of interfaces is stored
202  *	in desc.bNumInterfaces.  These pointers are valid only while the
203  *	the configuration is active.
204  * @intf_cache: array of pointers to usb_interface_cache structures, one
205  *	for each interface in the configuration.  These structures exist
206  *	for the entire life of the device.
207  * @extra: pointer to buffer containing all extra descriptors associated
208  *	with this configuration (those preceding the first interface
209  *	descriptor).
210  * @extralen: length of the extra descriptors buffer.
211  *
212  * USB devices may have multiple configurations, but only one can be active
213  * at any time.  Each encapsulates a different operational environment;
214  * for example, a dual-speed device would have separate configurations for
215  * full-speed and high-speed operation.  The number of configurations
216  * available is stored in the device descriptor as bNumConfigurations.
217  *
218  * A configuration can contain multiple interfaces.  Each corresponds to
219  * a different function of the USB device, and all are available whenever
220  * the configuration is active.  The USB standard says that interfaces
221  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
222  * of devices get this wrong.  In addition, the interface array is not
223  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
224  * look up an interface entry based on its number.
225  *
226  * Device drivers should not attempt to activate configurations.  The choice
227  * of which configuration to install is a policy decision based on such
228  * considerations as available power, functionality provided, and the user's
229  * desires (expressed through userspace tools).  However, drivers can call
230  * usb_reset_configuration() to reinitialize the current configuration and
231  * all its interfaces.
232  */
233 struct usb_host_config {
234 	struct usb_config_descriptor	desc;
235 
236 	char *string;		/* iConfiguration string, if present */
237 	/* the interfaces associated with this configuration,
238 	 * stored in no particular order */
239 	struct usb_interface *interface[USB_MAXINTERFACES];
240 
241 	/* Interface information available even when this is not the
242 	 * active configuration */
243 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
244 
245 	unsigned char *extra;   /* Extra descriptors */
246 	int extralen;
247 };
248 
249 int __usb_get_extra_descriptor(char *buffer, unsigned size,
250 	unsigned char type, void **ptr);
251 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
252 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
253 		type,(void**)ptr)
254 
255 /* ----------------------------------------------------------------------- */
256 
257 struct usb_operations;
258 
259 /* USB device number allocation bitmap */
260 struct usb_devmap {
261 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
262 };
263 
264 /*
265  * Allocated per bus (tree of devices) we have:
266  */
267 struct usb_bus {
268 	struct device *controller;	/* host/master side hardware */
269 	int busnum;			/* Bus number (in order of reg) */
270 	char *bus_name;			/* stable id (PCI slot_name etc) */
271 	u8 otg_port;			/* 0, or number of OTG/HNP port */
272 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
273 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
274 
275 	int devnum_next;		/* Next open device number in
276 					 * round-robin allocation */
277 
278 	struct usb_devmap devmap;	/* device address allocation map */
279 	struct usb_operations *op;	/* Operations (specific to the HC) */
280 	struct usb_device *root_hub;	/* Root hub */
281 	struct list_head bus_list;	/* list of busses */
282 	void *hcpriv;                   /* Host Controller private data */
283 
284 	int bandwidth_allocated;	/* on this bus: how much of the time
285 					 * reserved for periodic (intr/iso)
286 					 * requests is used, on average?
287 					 * Units: microseconds/frame.
288 					 * Limits: Full/low speed reserve 90%,
289 					 * while high speed reserves 80%.
290 					 */
291 	int bandwidth_int_reqs;		/* number of Interrupt requests */
292 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
293 
294 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
295 
296 	struct class_device *class_dev;	/* class device for this bus */
297 	struct kref kref;		/* reference counting for this bus */
298 	void (*release)(struct usb_bus *bus);
299 
300 #if defined(CONFIG_USB_MON)
301 	struct mon_bus *mon_bus;	/* non-null when associated */
302 	int monitored;			/* non-zero when monitored */
303 #endif
304 };
305 
306 /* ----------------------------------------------------------------------- */
307 
308 /* This is arbitrary.
309  * From USB 2.0 spec Table 11-13, offset 7, a hub can
310  * have up to 255 ports. The most yet reported is 10.
311  */
312 #define USB_MAXCHILDREN		(16)
313 
314 struct usb_tt;
315 
316 /*
317  * struct usb_device - kernel's representation of a USB device
318  *
319  * FIXME: Write the kerneldoc!
320  *
321  * Usbcore drivers should not set usbdev->state directly.  Instead use
322  * usb_set_device_state().
323  */
324 struct usb_device {
325 	int		devnum;		/* Address on USB bus */
326 	char		devpath [16];	/* Use in messages: /port/port/... */
327 	enum usb_device_state	state;	/* configured, not attached, etc */
328 	enum usb_device_speed	speed;	/* high/full/low (or error) */
329 
330 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
331 	int		ttport;		/* device port on that tt hub */
332 
333 	unsigned int toggle[2];		/* one bit for each endpoint
334 					 * ([0] = IN, [1] = OUT) */
335 
336 	struct usb_device *parent;	/* our hub, unless we're the root */
337 	struct usb_bus *bus;		/* Bus we're part of */
338 	struct usb_host_endpoint ep0;
339 
340 	struct device dev;		/* Generic device interface */
341 
342 	struct usb_device_descriptor descriptor;/* Descriptor */
343 	struct usb_host_config *config;	/* All of the configs */
344 
345 	struct usb_host_config *actconfig;/* the active configuration */
346 	struct usb_host_endpoint *ep_in[16];
347 	struct usb_host_endpoint *ep_out[16];
348 
349 	char **rawdescriptors;		/* Raw descriptors for each config */
350 
351 	unsigned short bus_mA;		/* Current available from the bus */
352 	u8 portnum;			/* Parent port number (origin 1) */
353 
354 	int have_langid;		/* whether string_langid is valid */
355 	int string_langid;		/* language ID for strings */
356 
357 	/* static strings from the device */
358 	char *product;			/* iProduct string, if present */
359 	char *manufacturer;		/* iManufacturer string, if present */
360 	char *serial;			/* iSerialNumber string, if present */
361 
362 	struct list_head filelist;
363 	struct class_device *class_dev;
364 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
365 
366 	/*
367 	 * Child devices - these can be either new devices
368 	 * (if this is a hub device), or different instances
369 	 * of this same device.
370 	 *
371 	 * Each instance needs its own set of data structures.
372 	 */
373 
374 	int maxchild;			/* Number of ports if hub */
375 	struct usb_device *children[USB_MAXCHILDREN];
376 };
377 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
378 
379 extern struct usb_device *usb_get_dev(struct usb_device *dev);
380 extern void usb_put_dev(struct usb_device *dev);
381 
382 /* USB device locking */
383 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
384 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
385 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
386 extern int usb_lock_device_for_reset(struct usb_device *udev,
387 		struct usb_interface *iface);
388 
389 /* USB port reset for device reinitialization */
390 extern int usb_reset_device(struct usb_device *dev);
391 extern int usb_reset_composite_device(struct usb_device *dev,
392 		struct usb_interface *iface);
393 
394 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
395 
396 /*-------------------------------------------------------------------------*/
397 
398 /* for drivers using iso endpoints */
399 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
400 
401 /* used these for multi-interface device registration */
402 extern int usb_driver_claim_interface(struct usb_driver *driver,
403 			struct usb_interface *iface, void* priv);
404 
405 /**
406  * usb_interface_claimed - returns true iff an interface is claimed
407  * @iface: the interface being checked
408  *
409  * Returns true (nonzero) iff the interface is claimed, else false (zero).
410  * Callers must own the driver model's usb bus readlock.  So driver
411  * probe() entries don't need extra locking, but other call contexts
412  * may need to explicitly claim that lock.
413  *
414  */
usb_interface_claimed(struct usb_interface * iface)415 static inline int usb_interface_claimed(struct usb_interface *iface) {
416 	return (iface->dev.driver != NULL);
417 }
418 
419 extern void usb_driver_release_interface(struct usb_driver *driver,
420 			struct usb_interface *iface);
421 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
422 					 const struct usb_device_id *id);
423 
424 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
425 		int minor);
426 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
427 		unsigned ifnum);
428 extern struct usb_host_interface *usb_altnum_to_altsetting(
429 		struct usb_interface *intf, unsigned int altnum);
430 
431 
432 /**
433  * usb_make_path - returns stable device path in the usb tree
434  * @dev: the device whose path is being constructed
435  * @buf: where to put the string
436  * @size: how big is "buf"?
437  *
438  * Returns length of the string (> 0) or negative if size was too small.
439  *
440  * This identifier is intended to be "stable", reflecting physical paths in
441  * hardware such as physical bus addresses for host controllers or ports on
442  * USB hubs.  That makes it stay the same until systems are physically
443  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
444  * controllers.  Adding and removing devices, including virtual root hubs
445  * in host controller driver modules, does not change these path identifers;
446  * neither does rebooting or re-enumerating.  These are more useful identifiers
447  * than changeable ("unstable") ones like bus numbers or device addresses.
448  *
449  * With a partial exception for devices connected to USB 2.0 root hubs, these
450  * identifiers are also predictable.  So long as the device tree isn't changed,
451  * plugging any USB device into a given hub port always gives it the same path.
452  * Because of the use of "companion" controllers, devices connected to ports on
453  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
454  * high speed, and a different one if they are full or low speed.
455  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)456 static inline int usb_make_path (struct usb_device *dev, char *buf,
457 		size_t size)
458 {
459 	int actual;
460 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
461 			dev->devpath);
462 	return (actual >= (int)size) ? -1 : actual;
463 }
464 
465 /*-------------------------------------------------------------------------*/
466 
467 #define USB_DEVICE_ID_MATCH_DEVICE \
468 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
469 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
470 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
471 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
472 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
473 #define USB_DEVICE_ID_MATCH_DEV_INFO \
474 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
475 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
476 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
477 #define USB_DEVICE_ID_MATCH_INT_INFO \
478 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
479 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
480 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
481 
482 /**
483  * USB_DEVICE - macro used to describe a specific usb device
484  * @vend: the 16 bit USB Vendor ID
485  * @prod: the 16 bit USB Product ID
486  *
487  * This macro is used to create a struct usb_device_id that matches a
488  * specific device.
489  */
490 #define USB_DEVICE(vend,prod) \
491 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
492 			.idProduct = (prod)
493 /**
494  * USB_DEVICE_VER - macro used to describe a specific usb device with a
495  *		version range
496  * @vend: the 16 bit USB Vendor ID
497  * @prod: the 16 bit USB Product ID
498  * @lo: the bcdDevice_lo value
499  * @hi: the bcdDevice_hi value
500  *
501  * This macro is used to create a struct usb_device_id that matches a
502  * specific device, with a version range.
503  */
504 #define USB_DEVICE_VER(vend,prod,lo,hi) \
505 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
506 	.idVendor = (vend), .idProduct = (prod), \
507 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
508 
509 /**
510  * USB_DEVICE_INFO - macro used to describe a class of usb devices
511  * @cl: bDeviceClass value
512  * @sc: bDeviceSubClass value
513  * @pr: bDeviceProtocol value
514  *
515  * This macro is used to create a struct usb_device_id that matches a
516  * specific class of devices.
517  */
518 #define USB_DEVICE_INFO(cl,sc,pr) \
519 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
520 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
521 
522 /**
523  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
524  * @cl: bInterfaceClass value
525  * @sc: bInterfaceSubClass value
526  * @pr: bInterfaceProtocol value
527  *
528  * This macro is used to create a struct usb_device_id that matches a
529  * specific class of interfaces.
530  */
531 #define USB_INTERFACE_INFO(cl,sc,pr) \
532 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
533 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
534 
535 /* ----------------------------------------------------------------------- */
536 
537 struct usb_dynids {
538 	spinlock_t lock;
539 	struct list_head list;
540 };
541 
542 /**
543  * struct usb_driver - identifies USB driver to usbcore
544  * @name: The driver name should be unique among USB drivers,
545  *	and should normally be the same as the module name.
546  * @probe: Called to see if the driver is willing to manage a particular
547  *	interface on a device.  If it is, probe returns zero and uses
548  *	dev_set_drvdata() to associate driver-specific data with the
549  *	interface.  It may also use usb_set_interface() to specify the
550  *	appropriate altsetting.  If unwilling to manage the interface,
551  *	return a negative errno value.
552  * @disconnect: Called when the interface is no longer accessible, usually
553  *	because its device has been (or is being) disconnected or the
554  *	driver module is being unloaded.
555  * @ioctl: Used for drivers that want to talk to userspace through
556  *	the "usbfs" filesystem.  This lets devices provide ways to
557  *	expose information to user space regardless of where they
558  *	do (or don't) show up otherwise in the filesystem.
559  * @suspend: Called when the device is going to be suspended by the system.
560  * @resume: Called when the device is being resumed by the system.
561  * @pre_reset: Called by usb_reset_composite_device() when the device
562  *	is about to be reset.
563  * @post_reset: Called by usb_reset_composite_device() after the device
564  *	has been reset.
565  * @id_table: USB drivers use ID table to support hotplugging.
566  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
567  *	or your driver's probe function will never get called.
568  * @dynids: used internally to hold the list of dynamically added device
569  *	ids for this driver.
570  * @driver: the driver model core driver structure.
571  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
572  *	added to this driver by preventing the sysfs file from being created.
573  *
574  * USB drivers must provide a name, probe() and disconnect() methods,
575  * and an id_table.  Other driver fields are optional.
576  *
577  * The id_table is used in hotplugging.  It holds a set of descriptors,
578  * and specialized data may be associated with each entry.  That table
579  * is used by both user and kernel mode hotplugging support.
580  *
581  * The probe() and disconnect() methods are called in a context where
582  * they can sleep, but they should avoid abusing the privilege.  Most
583  * work to connect to a device should be done when the device is opened,
584  * and undone at the last close.  The disconnect code needs to address
585  * concurrency issues with respect to open() and close() methods, as
586  * well as forcing all pending I/O requests to complete (by unlinking
587  * them as necessary, and blocking until the unlinks complete).
588  */
589 struct usb_driver {
590 	const char *name;
591 
592 	int (*probe) (struct usb_interface *intf,
593 		      const struct usb_device_id *id);
594 
595 	void (*disconnect) (struct usb_interface *intf);
596 
597 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
598 			void *buf);
599 
600 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
601 	int (*resume) (struct usb_interface *intf);
602 
603 	void (*pre_reset) (struct usb_interface *intf);
604 	void (*post_reset) (struct usb_interface *intf);
605 
606 	const struct usb_device_id *id_table;
607 
608 	struct usb_dynids dynids;
609 	struct device_driver driver;
610 	unsigned int no_dynamic_id:1;
611 };
612 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
613 
614 extern struct bus_type usb_bus_type;
615 
616 /**
617  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
618  * @name: the usb class device name for this driver.  Will show up in sysfs.
619  * @fops: pointer to the struct file_operations of this driver.
620  * @minor_base: the start of the minor range for this driver.
621  *
622  * This structure is used for the usb_register_dev() and
623  * usb_unregister_dev() functions, to consolidate a number of the
624  * parameters used for them.
625  */
626 struct usb_class_driver {
627 	char *name;
628 	const struct file_operations *fops;
629 	int minor_base;
630 };
631 
632 /*
633  * use these in module_init()/module_exit()
634  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
635  */
636 int usb_register_driver(struct usb_driver *, struct module *);
usb_register(struct usb_driver * driver)637 static inline int usb_register(struct usb_driver *driver)
638 {
639 	return usb_register_driver(driver, THIS_MODULE);
640 }
641 extern void usb_deregister(struct usb_driver *);
642 
643 extern int usb_register_dev(struct usb_interface *intf,
644 			    struct usb_class_driver *class_driver);
645 extern void usb_deregister_dev(struct usb_interface *intf,
646 			       struct usb_class_driver *class_driver);
647 
648 extern int usb_disabled(void);
649 
650 /* ----------------------------------------------------------------------- */
651 
652 /*
653  * URB support, for asynchronous request completions
654  */
655 
656 /*
657  * urb->transfer_flags:
658  */
659 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
660 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
661 					 * ignored */
662 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
663 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
664 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
665 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
666 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
667 					 * needed */
668 
669 struct usb_iso_packet_descriptor {
670 	unsigned int offset;
671 	unsigned int length;		/* expected length */
672 	unsigned int actual_length;
673 	unsigned int status;
674 };
675 
676 struct urb;
677 struct pt_regs;
678 
679 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
680 
681 /**
682  * struct urb - USB Request Block
683  * @urb_list: For use by current owner of the URB.
684  * @pipe: Holds endpoint number, direction, type, and more.
685  *	Create these values with the eight macros available;
686  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
687  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
688  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
689  *	numbers range from zero to fifteen.  Note that "in" endpoint two
690  *	is a different endpoint (and pipe) from "out" endpoint two.
691  *	The current configuration controls the existence, type, and
692  *	maximum packet size of any given endpoint.
693  * @dev: Identifies the USB device to perform the request.
694  * @status: This is read in non-iso completion functions to get the
695  *	status of the particular request.  ISO requests only use it
696  *	to tell whether the URB was unlinked; detailed status for
697  *	each frame is in the fields of the iso_frame-desc.
698  * @transfer_flags: A variety of flags may be used to affect how URB
699  *	submission, unlinking, or operation are handled.  Different
700  *	kinds of URB can use different flags.
701  * @transfer_buffer:  This identifies the buffer to (or from) which
702  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
703  *	is set).  This buffer must be suitable for DMA; allocate it with
704  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
705  *	of this buffer will be modified.  This buffer is used for the data
706  *	stage of control transfers.
707  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
708  *	the device driver is saying that it provided this DMA address,
709  *	which the host controller driver should use in preference to the
710  *	transfer_buffer.
711  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
712  *	be broken up into chunks according to the current maximum packet
713  *	size for the endpoint, which is a function of the configuration
714  *	and is encoded in the pipe.  When the length is zero, neither
715  *	transfer_buffer nor transfer_dma is used.
716  * @actual_length: This is read in non-iso completion functions, and
717  *	it tells how many bytes (out of transfer_buffer_length) were
718  *	transferred.  It will normally be the same as requested, unless
719  *	either an error was reported or a short read was performed.
720  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
721  *	short reads be reported as errors.
722  * @setup_packet: Only used for control transfers, this points to eight bytes
723  *	of setup data.  Control transfers always start by sending this data
724  *	to the device.  Then transfer_buffer is read or written, if needed.
725  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
726  *	device driver has provided this DMA address for the setup packet.
727  *	The host controller driver should use this in preference to
728  *	setup_packet.
729  * @start_frame: Returns the initial frame for isochronous transfers.
730  * @number_of_packets: Lists the number of ISO transfer buffers.
731  * @interval: Specifies the polling interval for interrupt or isochronous
732  *	transfers.  The units are frames (milliseconds) for for full and low
733  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
734  * @error_count: Returns the number of ISO transfers that reported errors.
735  * @context: For use in completion functions.  This normally points to
736  *	request-specific driver context.
737  * @complete: Completion handler. This URB is passed as the parameter to the
738  *	completion function.  The completion function may then do what
739  *	it likes with the URB, including resubmitting or freeing it.
740  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
741  *	collect the transfer status for each buffer.
742  *
743  * This structure identifies USB transfer requests.  URBs must be allocated by
744  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
745  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
746  * are submitted using usb_submit_urb(), and pending requests may be canceled
747  * using usb_unlink_urb() or usb_kill_urb().
748  *
749  * Data Transfer Buffers:
750  *
751  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
752  * taken from the general page pool.  That is provided by transfer_buffer
753  * (control requests also use setup_packet), and host controller drivers
754  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
755  * mapping operations can be expensive on some platforms (perhaps using a dma
756  * bounce buffer or talking to an IOMMU),
757  * although they're cheap on commodity x86 and ppc hardware.
758  *
759  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
760  * which tell the host controller driver that no such mapping is needed since
761  * the device driver is DMA-aware.  For example, a device driver might
762  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
763  * When these transfer flags are provided, host controller drivers will
764  * attempt to use the dma addresses found in the transfer_dma and/or
765  * setup_dma fields rather than determining a dma address themselves.  (Note
766  * that transfer_buffer and setup_packet must still be set because not all
767  * host controllers use DMA, nor do virtual root hubs).
768  *
769  * Initialization:
770  *
771  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
772  * zero), and complete fields.  All URBs must also initialize
773  * transfer_buffer and transfer_buffer_length.  They may provide the
774  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
775  * to be treated as errors; that flag is invalid for write requests.
776  *
777  * Bulk URBs may
778  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
779  * should always terminate with a short packet, even if it means adding an
780  * extra zero length packet.
781  *
782  * Control URBs must provide a setup_packet.  The setup_packet and
783  * transfer_buffer may each be mapped for DMA or not, independently of
784  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
785  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
786  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
787  *
788  * Interrupt URBs must provide an interval, saying how often (in milliseconds
789  * or, for highspeed devices, 125 microsecond units)
790  * to poll for transfers.  After the URB has been submitted, the interval
791  * field reflects how the transfer was actually scheduled.
792  * The polling interval may be more frequent than requested.
793  * For example, some controllers have a maximum interval of 32 milliseconds,
794  * while others support intervals of up to 1024 milliseconds.
795  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
796  * endpoints, as well as high speed interrupt endpoints, the encoding of
797  * the transfer interval in the endpoint descriptor is logarithmic.
798  * Device drivers must convert that value to linear units themselves.)
799  *
800  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
801  * the host controller to schedule the transfer as soon as bandwidth
802  * utilization allows, and then set start_frame to reflect the actual frame
803  * selected during submission.  Otherwise drivers must specify the start_frame
804  * and handle the case where the transfer can't begin then.  However, drivers
805  * won't know how bandwidth is currently allocated, and while they can
806  * find the current frame using usb_get_current_frame_number () they can't
807  * know the range for that frame number.  (Ranges for frame counter values
808  * are HC-specific, and can go from 256 to 65536 frames from "now".)
809  *
810  * Isochronous URBs have a different data transfer model, in part because
811  * the quality of service is only "best effort".  Callers provide specially
812  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
813  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
814  * URBs are normally queued, submitted by drivers to arrange that
815  * transfers are at least double buffered, and then explicitly resubmitted
816  * in completion handlers, so
817  * that data (such as audio or video) streams at as constant a rate as the
818  * host controller scheduler can support.
819  *
820  * Completion Callbacks:
821  *
822  * The completion callback is made in_interrupt(), and one of the first
823  * things that a completion handler should do is check the status field.
824  * The status field is provided for all URBs.  It is used to report
825  * unlinked URBs, and status for all non-ISO transfers.  It should not
826  * be examined before the URB is returned to the completion handler.
827  *
828  * The context field is normally used to link URBs back to the relevant
829  * driver or request state.
830  *
831  * When the completion callback is invoked for non-isochronous URBs, the
832  * actual_length field tells how many bytes were transferred.  This field
833  * is updated even when the URB terminated with an error or was unlinked.
834  *
835  * ISO transfer status is reported in the status and actual_length fields
836  * of the iso_frame_desc array, and the number of errors is reported in
837  * error_count.  Completion callbacks for ISO transfers will normally
838  * (re)submit URBs to ensure a constant transfer rate.
839  *
840  * Note that even fields marked "public" should not be touched by the driver
841  * when the urb is owned by the hcd, that is, since the call to
842  * usb_submit_urb() till the entry into the completion routine.
843  */
844 struct urb
845 {
846 	/* private: usb core and host controller only fields in the urb */
847 	struct kref kref;		/* reference count of the URB */
848 	spinlock_t lock;		/* lock for the URB */
849 	void *hcpriv;			/* private data for host controller */
850 	int bandwidth;			/* bandwidth for INT/ISO request */
851 	atomic_t use_count;		/* concurrent submissions counter */
852 	u8 reject;			/* submissions will fail */
853 
854 	/* public: documented fields in the urb that can be used by drivers */
855 	struct list_head urb_list;	/* list head for use by the urb's
856 					 * current owner */
857 	struct usb_device *dev; 	/* (in) pointer to associated device */
858 	unsigned int pipe;		/* (in) pipe information */
859 	int status;			/* (return) non-ISO status */
860 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
861 	void *transfer_buffer;		/* (in) associated data buffer */
862 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
863 	int transfer_buffer_length;	/* (in) data buffer length */
864 	int actual_length;		/* (return) actual transfer length */
865 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
866 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
867 	int start_frame;		/* (modify) start frame (ISO) */
868 	int number_of_packets;		/* (in) number of ISO packets */
869 	int interval;			/* (modify) transfer interval
870 					 * (INT/ISO) */
871 	int error_count;		/* (return) number of ISO errors */
872 	void *context;			/* (in) context for completion */
873 	usb_complete_t complete;	/* (in) completion routine */
874 	struct usb_iso_packet_descriptor iso_frame_desc[0];
875 					/* (in) ISO ONLY */
876 };
877 
878 /* ----------------------------------------------------------------------- */
879 
880 /**
881  * usb_fill_control_urb - initializes a control urb
882  * @urb: pointer to the urb to initialize.
883  * @dev: pointer to the struct usb_device for this urb.
884  * @pipe: the endpoint pipe
885  * @setup_packet: pointer to the setup_packet buffer
886  * @transfer_buffer: pointer to the transfer buffer
887  * @buffer_length: length of the transfer buffer
888  * @complete: pointer to the usb_complete_t function
889  * @context: what to set the urb context to.
890  *
891  * Initializes a control urb with the proper information needed to submit
892  * it to a device.
893  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete,void * context)894 static inline void usb_fill_control_urb (struct urb *urb,
895 					 struct usb_device *dev,
896 					 unsigned int pipe,
897 					 unsigned char *setup_packet,
898 					 void *transfer_buffer,
899 					 int buffer_length,
900 					 usb_complete_t complete,
901 					 void *context)
902 {
903 	spin_lock_init(&urb->lock);
904 	urb->dev = dev;
905 	urb->pipe = pipe;
906 	urb->setup_packet = setup_packet;
907 	urb->transfer_buffer = transfer_buffer;
908 	urb->transfer_buffer_length = buffer_length;
909 	urb->complete = complete;
910 	urb->context = context;
911 }
912 
913 /**
914  * usb_fill_bulk_urb - macro to help initialize a bulk urb
915  * @urb: pointer to the urb to initialize.
916  * @dev: pointer to the struct usb_device for this urb.
917  * @pipe: the endpoint pipe
918  * @transfer_buffer: pointer to the transfer buffer
919  * @buffer_length: length of the transfer buffer
920  * @complete: pointer to the usb_complete_t function
921  * @context: what to set the urb context to.
922  *
923  * Initializes a bulk urb with the proper information needed to submit it
924  * to a device.
925  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete,void * context)926 static inline void usb_fill_bulk_urb (struct urb *urb,
927 				      struct usb_device *dev,
928 				      unsigned int pipe,
929 				      void *transfer_buffer,
930 				      int buffer_length,
931 				      usb_complete_t complete,
932 				      void *context)
933 {
934 	spin_lock_init(&urb->lock);
935 	urb->dev = dev;
936 	urb->pipe = pipe;
937 	urb->transfer_buffer = transfer_buffer;
938 	urb->transfer_buffer_length = buffer_length;
939 	urb->complete = complete;
940 	urb->context = context;
941 }
942 
943 /**
944  * usb_fill_int_urb - macro to help initialize a interrupt urb
945  * @urb: pointer to the urb to initialize.
946  * @dev: pointer to the struct usb_device for this urb.
947  * @pipe: the endpoint pipe
948  * @transfer_buffer: pointer to the transfer buffer
949  * @buffer_length: length of the transfer buffer
950  * @complete: pointer to the usb_complete_t function
951  * @context: what to set the urb context to.
952  * @interval: what to set the urb interval to, encoded like
953  *	the endpoint descriptor's bInterval value.
954  *
955  * Initializes a interrupt urb with the proper information needed to submit
956  * it to a device.
957  * Note that high speed interrupt endpoints use a logarithmic encoding of
958  * the endpoint interval, and express polling intervals in microframes
959  * (eight per millisecond) rather than in frames (one per millisecond).
960  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete,void * context,int interval)961 static inline void usb_fill_int_urb (struct urb *urb,
962 				     struct usb_device *dev,
963 				     unsigned int pipe,
964 				     void *transfer_buffer,
965 				     int buffer_length,
966 				     usb_complete_t complete,
967 				     void *context,
968 				     int interval)
969 {
970 	spin_lock_init(&urb->lock);
971 	urb->dev = dev;
972 	urb->pipe = pipe;
973 	urb->transfer_buffer = transfer_buffer;
974 	urb->transfer_buffer_length = buffer_length;
975 	urb->complete = complete;
976 	urb->context = context;
977 	if (dev->speed == USB_SPEED_HIGH)
978 		urb->interval = 1 << (interval - 1);
979 	else
980 		urb->interval = interval;
981 	urb->start_frame = -1;
982 }
983 
984 extern void usb_init_urb(struct urb *urb);
985 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
986 extern void usb_free_urb(struct urb *urb);
987 #define usb_put_urb usb_free_urb
988 extern struct urb *usb_get_urb(struct urb *urb);
989 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
990 extern int usb_unlink_urb(struct urb *urb);
991 extern void usb_kill_urb(struct urb *urb);
992 
993 #define HAVE_USB_BUFFERS
994 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
995 	gfp_t mem_flags, dma_addr_t *dma);
996 void usb_buffer_free (struct usb_device *dev, size_t size,
997 	void *addr, dma_addr_t dma);
998 
999 #if 0
1000 struct urb *usb_buffer_map (struct urb *urb);
1001 void usb_buffer_dmasync (struct urb *urb);
1002 void usb_buffer_unmap (struct urb *urb);
1003 #endif
1004 
1005 struct scatterlist;
1006 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1007 		struct scatterlist *sg, int nents);
1008 #if 0
1009 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1010 		struct scatterlist *sg, int n_hw_ents);
1011 #endif
1012 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1013 		struct scatterlist *sg, int n_hw_ents);
1014 
1015 /*-------------------------------------------------------------------*
1016  *                         SYNCHRONOUS CALL SUPPORT                  *
1017  *-------------------------------------------------------------------*/
1018 
1019 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1020 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1021 	void *data, __u16 size, int timeout);
1022 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1023 	void *data, int len, int *actual_length, int timeout);
1024 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1025 	void *data, int len, int *actual_length,
1026 	int timeout);
1027 
1028 /* wrappers around usb_control_msg() for the most common standard requests */
1029 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1030 	unsigned char descindex, void *buf, int size);
1031 extern int usb_get_status(struct usb_device *dev,
1032 	int type, int target, void *data);
1033 extern int usb_string(struct usb_device *dev, int index,
1034 	char *buf, size_t size);
1035 
1036 /* wrappers that also update important state inside usbcore */
1037 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1038 extern int usb_reset_configuration(struct usb_device *dev);
1039 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1040 
1041 /*
1042  * timeouts, in milliseconds, used for sending/receiving control messages
1043  * they typically complete within a few frames (msec) after they're issued
1044  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1045  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1046  */
1047 #define USB_CTRL_GET_TIMEOUT	5000
1048 #define USB_CTRL_SET_TIMEOUT	5000
1049 
1050 
1051 /**
1052  * struct usb_sg_request - support for scatter/gather I/O
1053  * @status: zero indicates success, else negative errno
1054  * @bytes: counts bytes transferred.
1055  *
1056  * These requests are initialized using usb_sg_init(), and then are used
1057  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1058  * members of the request object aren't for driver access.
1059  *
1060  * The status and bytecount values are valid only after usb_sg_wait()
1061  * returns.  If the status is zero, then the bytecount matches the total
1062  * from the request.
1063  *
1064  * After an error completion, drivers may need to clear a halt condition
1065  * on the endpoint.
1066  */
1067 struct usb_sg_request {
1068 	int			status;
1069 	size_t			bytes;
1070 
1071 	/*
1072 	 * members below are private: to usbcore,
1073 	 * and are not provided for driver access!
1074 	 */
1075 	spinlock_t		lock;
1076 
1077 	struct usb_device	*dev;
1078 	int			pipe;
1079 	struct scatterlist	*sg;
1080 	int			nents;
1081 
1082 	int			entries;
1083 	struct urb		**urbs;
1084 
1085 	int			count;
1086 	struct completion	complete;
1087 };
1088 
1089 int usb_sg_init (
1090 	struct usb_sg_request	*io,
1091 	struct usb_device	*dev,
1092 	unsigned		pipe,
1093 	unsigned		period,
1094 	struct scatterlist	*sg,
1095 	int			nents,
1096 	size_t			length,
1097 	gfp_t			mem_flags
1098 );
1099 void usb_sg_cancel (struct usb_sg_request *io);
1100 void usb_sg_wait (struct usb_sg_request *io);
1101 
1102 
1103 /* ----------------------------------------------------------------------- */
1104 
1105 /*
1106  * For various legacy reasons, Linux has a small cookie that's paired with
1107  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1108  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1109  * an unsigned int encoded as:
1110  *
1111  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1112  *					 1 = Device-to-Host [In] ...
1113  *					like endpoint bEndpointAddress)
1114  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1115  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1116  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1117  *					 10 = control, 11 = bulk)
1118  *
1119  * Given the device address and endpoint descriptor, pipes are redundant.
1120  */
1121 
1122 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1123 /* (yet ... they're the values used by usbfs) */
1124 #define PIPE_ISOCHRONOUS		0
1125 #define PIPE_INTERRUPT			1
1126 #define PIPE_CONTROL			2
1127 #define PIPE_BULK			3
1128 
1129 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1130 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1131 
1132 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1133 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1134 
1135 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1136 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1137 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1138 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1139 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1140 
1141 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1142 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1143 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1144 #define usb_settoggle(dev, ep, out, bit) \
1145 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1146 		 ((bit) << (ep)))
1147 
1148 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1149 static inline unsigned int __create_pipe(struct usb_device *dev,
1150 		unsigned int endpoint)
1151 {
1152 	return (dev->devnum << 8) | (endpoint << 15);
1153 }
1154 
1155 /* Create various pipes... */
1156 #define usb_sndctrlpipe(dev,endpoint)	\
1157 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1158 #define usb_rcvctrlpipe(dev,endpoint)	\
1159 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1160 #define usb_sndisocpipe(dev,endpoint)	\
1161 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1162 #define usb_rcvisocpipe(dev,endpoint)	\
1163 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1164 #define usb_sndbulkpipe(dev,endpoint)	\
1165 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1166 #define usb_rcvbulkpipe(dev,endpoint)	\
1167 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1168 #define usb_sndintpipe(dev,endpoint)	\
1169 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1170 #define usb_rcvintpipe(dev,endpoint)	\
1171 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1172 
1173 /*-------------------------------------------------------------------------*/
1174 
1175 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1176 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1177 {
1178 	struct usb_host_endpoint	*ep;
1179 	unsigned			epnum = usb_pipeendpoint(pipe);
1180 
1181 	if (is_out) {
1182 		WARN_ON(usb_pipein(pipe));
1183 		ep = udev->ep_out[epnum];
1184 	} else {
1185 		WARN_ON(usb_pipeout(pipe));
1186 		ep = udev->ep_in[epnum];
1187 	}
1188 	if (!ep)
1189 		return 0;
1190 
1191 	/* NOTE:  only 0x07ff bits are for packet size... */
1192 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1193 }
1194 
1195 /* ----------------------------------------------------------------------- */
1196 
1197 /* Events from the usb core */
1198 #define USB_DEVICE_ADD		0x0001
1199 #define USB_DEVICE_REMOVE	0x0002
1200 #define USB_BUS_ADD		0x0003
1201 #define USB_BUS_REMOVE		0x0004
1202 extern void usb_register_notify(struct notifier_block *nb);
1203 extern void usb_unregister_notify(struct notifier_block *nb);
1204 
1205 #ifdef DEBUG
1206 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1207 	__FILE__ , ## arg)
1208 #else
1209 #define dbg(format, arg...) do {} while (0)
1210 #endif
1211 
1212 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1213 	__FILE__ , ## arg)
1214 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1215 	__FILE__ , ## arg)
1216 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1217 	__FILE__ , ## arg)
1218 
1219 
1220 #endif  /* __KERNEL__ */
1221 
1222 #endif
1223