• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>Exception Handling in LLVM</title>
6  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7  <meta name="description"
8        content="Exception Handling in LLVM.">
9  <link rel="stylesheet" href="llvm.css" type="text/css">
10</head>
11
12<body>
13
14<h1>Exception Handling in LLVM</h1>
15
16<table class="layout" style="width:100%">
17  <tr class="layout">
18    <td class="left">
19<ul>
20  <li><a href="#introduction">Introduction</a>
21  <ol>
22    <li><a href="#itanium">Itanium ABI Zero-cost Exception Handling</a></li>
23    <li><a href="#sjlj">Setjmp/Longjmp Exception Handling</a></li>
24    <li><a href="#overview">Overview</a></li>
25  </ol></li>
26  <li><a href="#codegen">LLVM Code Generation</a>
27  <ol>
28    <li><a href="#throw">Throw</a></li>
29    <li><a href="#try_catch">Try/Catch</a></li>
30    <li><a href="#cleanups">Cleanups</a></li>
31    <li><a href="#throw_filters">Throw Filters</a></li>
32    <li><a href="#restrictions">Restrictions</a></li>
33  </ol></li>
34  <li><a href="#format_common_intrinsics">Exception Handling Intrinsics</a>
35  <ol>
36  	<li><a href="#llvm_eh_exception"><tt>llvm.eh.exception</tt></a></li>
37  	<li><a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a></li>
38  	<li><a href="#llvm_eh_resume"><tt>llvm.eh.resume</tt></a></li>
39  	<li><a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a></li>
40  	<li><a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a></li>
41  	<li><a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a></li>
42  	<li><a href="#llvm_eh_sjlj_lsda"><tt>llvm.eh.sjlj.lsda</tt></a></li>
43  	<li><a href="#llvm_eh_sjlj_callsite"><tt>llvm.eh.sjlj.callsite</tt></a></li>
44  	<li><a href="#llvm_eh_sjlj_dispatchsetup"><tt>llvm.eh.sjlj.dispatchsetup</tt></a></li>
45  </ol></li>
46  <li><a href="#asm">Asm Table Formats</a>
47  <ol>
48    <li><a href="#unwind_tables">Exception Handling Frame</a></li>
49    <li><a href="#exception_tables">Exception Tables</a></li>
50  </ol></li>
51  <li><a href="#todo">ToDo</a></li>
52</ul>
53</td>
54</tr></table>
55
56<div class="doc_author">
57  <p>Written by <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
58</div>
59
60
61<!-- *********************************************************************** -->
62<h2><a name="introduction">Introduction</a></h2>
63<!-- *********************************************************************** -->
64
65<div>
66
67<p>This document is the central repository for all information pertaining to
68   exception handling in LLVM.  It describes the format that LLVM exception
69   handling information takes, which is useful for those interested in creating
70   front-ends or dealing directly with the information.  Further, this document
71   provides specific examples of what exception handling information is used for
72   in C/C++.</p>
73
74<!-- ======================================================================= -->
75<h3>
76  <a name="itanium">Itanium ABI Zero-cost Exception Handling</a>
77</h3>
78
79<div>
80
81<p>Exception handling for most programming languages is designed to recover from
82   conditions that rarely occur during general use of an application.  To that
83   end, exception handling should not interfere with the main flow of an
84   application's algorithm by performing checkpointing tasks, such as saving the
85   current pc or register state.</p>
86
87<p>The Itanium ABI Exception Handling Specification defines a methodology for
88   providing outlying data in the form of exception tables without inlining
89   speculative exception handling code in the flow of an application's main
90   algorithm.  Thus, the specification is said to add "zero-cost" to the normal
91   execution of an application.</p>
92
93<p>A more complete description of the Itanium ABI exception handling runtime
94   support of can be found at
95   <a href="http://www.codesourcery.com/cxx-abi/abi-eh.html">Itanium C++ ABI:
96   Exception Handling</a>. A description of the exception frame format can be
97   found at
98   <a href="http://refspecs.freestandards.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html">Exception
99   Frames</a>, with details of the DWARF 3 specification at
100   <a href="http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF 3 Standard</a>.
101   A description for the C++ exception table formats can be found at
102   <a href="http://www.codesourcery.com/cxx-abi/exceptions.pdf">Exception Handling
103   Tables</a>.</p>
104
105</div>
106
107<!-- ======================================================================= -->
108<h3>
109  <a name="sjlj">Setjmp/Longjmp Exception Handling</a>
110</h3>
111
112<div>
113
114<p>Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
115   <a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a> and
116   <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> to
117   handle control flow for exception handling.</p>
118
119<p>For each function which does exception processing, be it try/catch blocks
120   or cleanups, that function registers itself on a global frame list. When
121   exceptions are being unwound, the runtime uses this list to identify which
122   functions need processing.<p>
123
124<p>Landing pad selection is encoded in the call site entry of the function
125   context. The runtime returns to the function via
126   <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>, where
127   a switch table transfers control to the appropriate landing pad based on
128   the index stored in the function context.</p>
129
130<p>In contrast to DWARF exception handling, which encodes exception regions
131   and frame information in out-of-line tables, SJLJ exception handling
132   builds and removes the unwind frame context at runtime. This results in
133   faster exception handling at the expense of slower execution when no
134   exceptions are thrown. As exceptions are, by their nature, intended for
135   uncommon code paths, DWARF exception handling is generally preferred to
136   SJLJ.</p>
137</div>
138
139<!-- ======================================================================= -->
140<h3>
141  <a name="overview">Overview</a>
142</h3>
143
144<div>
145
146<p>When an exception is thrown in LLVM code, the runtime does its best to find a
147   handler suited to processing the circumstance.</p>
148
149<p>The runtime first attempts to find an <i>exception frame</i> corresponding to
150   the function where the exception was thrown.  If the programming language
151   (e.g. C++) supports exception handling, the exception frame contains a
152   reference to an exception table describing how to process the exception.  If
153   the language (e.g. C) does not support exception handling, or if the
154   exception needs to be forwarded to a prior activation, the exception frame
155   contains information about how to unwind the current activation and restore
156   the state of the prior activation.  This process is repeated until the
157   exception is handled.  If the exception is not handled and no activations
158   remain, then the application is terminated with an appropriate error
159   message.</p>
160
161<p>Because different programming languages have different behaviors when
162   handling exceptions, the exception handling ABI provides a mechanism for
163   supplying <i>personalities.</i> An exception handling personality is defined
164   by way of a <i>personality function</i> (e.g. <tt>__gxx_personality_v0</tt>
165   in C++), which receives the context of the exception, an <i>exception
166   structure</i> containing the exception object type and value, and a reference
167   to the exception table for the current function.  The personality function
168   for the current compile unit is specified in a <i>common exception
169   frame</i>.</p>
170
171<p>The organization of an exception table is language dependent.  For C++, an
172   exception table is organized as a series of code ranges defining what to do
173   if an exception occurs in that range.  Typically, the information associated
174   with a range defines which types of exception objects (using C++ <i>type
175   info</i>) that are handled in that range, and an associated action that
176   should take place.  Actions typically pass control to a <i>landing
177   pad</i>.</p>
178
179<p>A landing pad corresponds to the code found in the <i>catch</i> portion of
180   a <i>try</i>/<i>catch</i> sequence.  When execution resumes at a landing
181   pad, it receives the exception structure and a selector corresponding to
182   the <i>type</i> of exception thrown.  The selector is then used to determine
183   which <i>catch</i> should actually process the exception.</p>
184
185</div>
186
187</div>
188
189<!-- ======================================================================= -->
190<h2>
191  <a name="codegen">LLVM Code Generation</a>
192</h2>
193
194<div>
195
196<p>At the time of this writing, only C++ exception handling support is available
197   in LLVM.  So the remainder of this document will be somewhat C++-centric.</p>
198
199<p>From the C++ developers perspective, exceptions are defined in terms of the
200   <tt>throw</tt> and <tt>try</tt>/<tt>catch</tt> statements.  In this section
201   we will describe the implementation of LLVM exception handling in terms of
202   C++ examples.</p>
203
204<!-- ======================================================================= -->
205<h3>
206  <a name="throw">Throw</a>
207</h3>
208
209<div>
210
211<p>Languages that support exception handling typically provide a <tt>throw</tt>
212   operation to initiate the exception process.  Internally, a throw operation
213   breaks down into two steps.  First, a request is made to allocate exception
214   space for an exception structure.  This structure needs to survive beyond the
215   current activation.  This structure will contain the type and value of the
216   object being thrown.  Second, a call is made to the runtime to raise the
217   exception, passing the exception structure as an argument.</p>
218
219<p>In C++, the allocation of the exception structure is done by
220   the <tt>__cxa_allocate_exception</tt> runtime function.  The exception
221   raising is handled by <tt>__cxa_throw</tt>.  The type of the exception is
222   represented using a C++ RTTI structure.</p>
223
224</div>
225
226<!-- ======================================================================= -->
227<h3>
228  <a name="try_catch">Try/Catch</a>
229</h3>
230
231<div>
232
233<p>A call within the scope of a <i>try</i> statement can potentially raise an
234   exception.  In those circumstances, the LLVM C++ front-end replaces the call
235   with an <tt>invoke</tt> instruction.  Unlike a call, the <tt>invoke</tt> has
236   two potential continuation points: where to continue when the call succeeds
237   as per normal; and where to continue if the call raises an exception, either
238   by a throw or the unwinding of a throw.</p>
239
240<p>The term used to define a the place where an <tt>invoke</tt> continues after
241   an exception is called a <i>landing pad</i>.  LLVM landing pads are
242   conceptually alternative function entry points where an exception structure
243   reference and a type info index are passed in as arguments.  The landing pad
244   saves the exception structure reference and then proceeds to select the catch
245   block that corresponds to the type info of the exception object.</p>
246
247<p>Two LLVM intrinsic functions are used to convey information about the landing
248   pad to the back end.</p>
249
250<ol>
251  <li><a href="#llvm_eh_exception"><tt>llvm.eh.exception</tt></a> takes no
252      arguments and returns a pointer to the exception structure.  This only
253      returns a sensible value if called after an <tt>invoke</tt> has branched
254      to a landing pad.  Due to code generation limitations, it must currently
255      be called in the landing pad itself.</li>
256
257  <li><a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> takes a minimum
258      of three arguments.  The first argument is the reference to the exception
259      structure. The second argument is a reference to the personality function
260      to be used for this <tt>try</tt>/<tt>catch</tt> sequence. Each of the
261      remaining arguments is either a reference to the type info for
262      a <tt>catch</tt> statement, a <a href="#throw_filters">filter</a>
263      expression, or the number zero (<tt>0</tt>) representing
264      a <a href="#cleanups">cleanup</a>.  The exception is tested against the
265      arguments sequentially from first to last.  The result of
266      the <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> is a
267      positive number if the exception matched a type info, a negative number if
268      it matched a filter, and zero if it matched a cleanup.  If nothing is
269      matched, the behaviour of the program
270      is <a href="#restrictions">undefined</a>.  This only returns a sensible
271      value if called after an <tt>invoke</tt> has branched to a landing pad.
272      Due to codegen limitations, it must currently be called in the landing pad
273      itself.  If a type info matched, then the selector value is the index of
274      the type info in the exception table, which can be obtained using the
275      <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a>
276      intrinsic.</li>
277</ol>
278
279<p>Once the landing pad has the type info selector, the code branches to the
280   code for the first catch.  The catch then checks the value of the type info
281   selector against the index of type info for that catch.  Since the type info
282   index is not known until all the type info have been gathered in the backend,
283   the catch code will call the
284   <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic
285   to determine the index for a given type info.  If the catch fails to match
286   the selector then control is passed on to the next catch. Note: Since the
287   landing pad will not be used if there is no match in the list of type info on
288   the call to <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a>, then
289   neither the last catch nor <i>catch all</i> need to perform the check
290   against the selector.</p>
291
292<p>Finally, the entry and exit of catch code is bracketed with calls
293   to <tt>__cxa_begin_catch</tt> and <tt>__cxa_end_catch</tt>.</p>
294
295<ul>
296  <li><tt>__cxa_begin_catch</tt> takes a exception structure reference as an
297      argument and returns the value of the exception object.</li>
298
299  <li><tt>__cxa_end_catch</tt> takes no arguments. This function:<br><br>
300    <ol>
301      <li>Locates the most recently caught exception and decrements its handler
302          count,</li>
303      <li>Removes the exception from the "caught" stack if the handler count
304          goes to zero, and</li>
305      <li>Destroys the exception if the handler count goes to zero, and the
306          exception was not re-thrown by throw.</li>
307    </ol>
308    <p>Note: a rethrow from within the catch may replace this call with
309       a <tt>__cxa_rethrow</tt>.</p></li>
310</ul>
311
312</div>
313
314<!-- ======================================================================= -->
315<h3>
316  <a name="cleanups">Cleanups</a>
317</h3>
318
319<div>
320
321<p>A cleanup is extra code which needs to be run as part of unwinding
322   a scope.  C++ destructors are a prominent example, but other
323   languages and language extensions provide a variety of different
324   kinds of cleanup.  In general, a landing pad may need to run
325   arbitrary amounts of cleanup code before actually entering a catch
326   block.  To indicate the presence of cleanups, a landing pad's call
327   to <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> should
328   end with the argument <tt>i32 0</tt>; otherwise, the unwinder will
329   not stop at the landing pad if there are no catches or filters that
330   require it to.</p>
331
332<p>Do not allow a new exception to propagate out of the execution of a
333   cleanup.  This can corrupt the internal state of the unwinder.
334   Different languages describe different high-level semantics for
335   these situations: for example, C++ requires that the process be
336   terminated, whereas Ada cancels both exceptions and throws a third.</p>
337
338<p>When all cleanups have completed, if the exception is not handled
339   by the current function, resume unwinding by calling the
340   <a href="#llvm_eh_resume"><tt>llvm.eh.resume</tt></a> intrinsic,
341   passing in the results of <tt>llvm.eh.exception</tt> and
342   <tt>llvm.eh.selector</tt> for the original landing pad.</p>
343
344</div>
345
346<!-- ======================================================================= -->
347<h3>
348  <a name="throw_filters">Throw Filters</a>
349</h3>
350
351<div>
352
353<p>C++ allows the specification of which exception types can be thrown from a
354   function.  To represent this a top level landing pad may exist to filter out
355   invalid types.  To express this in LLVM code the landing pad will
356   call <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a>.  The
357   arguments are a reference to the exception structure, a reference to the
358   personality function, the length of the filter expression (the number of type
359   infos plus one), followed by the type infos themselves.
360   <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> will return a
361   negative value if the exception does not match any of the type infos.  If no
362   match is found then a call to <tt>__cxa_call_unexpected</tt> should be made,
363   otherwise <tt>_Unwind_Resume</tt>.  Each of these functions requires a
364   reference to the exception structure.  Note that the most general form of an
365   <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> call can contain
366   any number of type infos, filter expressions and cleanups (though having more
367   than one cleanup is pointless).  The LLVM C++ front-end can generate such
368   <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> calls due to
369   inlining creating nested exception handling scopes.</p>
370
371</div>
372
373<!-- ======================================================================= -->
374<h3>
375  <a name="restrictions">Restrictions</a>
376</h3>
377
378<div>
379
380<p>The unwinder delegates the decision of whether to stop in a call
381   frame to that call frame's language-specific personality function.
382   Not all personalities functions guarantee that they will stop to
383   perform cleanups: for example, the GNU C++ personality doesn't do
384   so unless the exception is actually caught somewhere further up the
385   stack.  When using this personality to implement EH for a language
386   that guarantees that cleanups will always be run, be sure to
387   indicate a catch-all in the
388   <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> call
389   rather than just cleanups.</p>
390
391<p>In order for inlining to behave correctly, landing pads must be
392   prepared to handle selector results that they did not originally
393   advertise.  Suppose that a function catches exceptions of
394   type <tt>A</tt>, and it's inlined into a function that catches
395   exceptions of type <tt>B</tt>.  The inliner will update the
396   selector for the inlined landing pad to include the fact
397   that <tt>B</tt> is caught.  If that landing pad assumes that it
398   will only be entered to catch an <tt>A</tt>, it's in for a rude
399   surprise.  Consequently, landing pads must test for the selector
400   results they understand and then resume exception propagation
401   with the <a href="#llvm_eh_resume"><tt>llvm.eh.resume</tt></a>
402   intrinsic if none of the conditions match.</p>
403
404</div>
405
406</div>
407
408<!-- ======================================================================= -->
409<h2>
410  <a name="format_common_intrinsics">Exception Handling Intrinsics</a>
411</h2>
412
413<div>
414
415<p>LLVM uses several intrinsic functions (name prefixed with "llvm.eh") to
416   provide exception handling information at various points in generated
417   code.</p>
418
419<!-- ======================================================================= -->
420<h4>
421  <a name="llvm_eh_exception">llvm.eh.exception</a>
422</h4>
423
424<div>
425
426<pre>
427  i8* %<a href="#llvm_eh_exception">llvm.eh.exception</a>()
428</pre>
429
430<p>This intrinsic returns a pointer to the exception structure.</p>
431
432</div>
433
434<!-- ======================================================================= -->
435<h4>
436  <a name="llvm_eh_selector">llvm.eh.selector</a>
437</h4>
438
439<div>
440
441<pre>
442  i32 %<a href="#llvm_eh_selector">llvm.eh.selector</a>(i8*, i8*, ...)
443</pre>
444
445<p>This intrinsic is used to compare the exception with the given type infos,
446   filters and cleanups.</p>
447
448<p><a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> takes a
449   minimum of three arguments.  The first argument is the reference to
450   the exception structure. The second argument is a reference to the
451   personality function to be used for this try catch sequence. Each
452   of the remaining arguments is either a reference to the type info
453   for a catch statement, a <a href="#throw_filters">filter</a>
454   expression, or the number zero representing
455   a <a href="#cleanups">cleanup</a>.  The exception is tested against
456   the arguments sequentially from first to last.  The result of
457   the <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> is a
458   positive number if the exception matched a type info, a negative
459   number if it matched a filter, and zero if it matched a cleanup.
460   If nothing is matched, or if only a cleanup is matched, different
461   personality functions may or may not cause control to stop at the
462   landing pad; see <a href="#restrictions">the restrictions</a> for
463   more information.  If a type info matched then the selector value
464   is the index of the type info in the exception table, which can be
465   obtained using the
466   <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic.</p>
467
468<p>If a landing pad containing a call to <tt>llvm.eh.selector</tt> is
469   inlined into an <tt>invoke</tt> instruction, the selector arguments
470   for the outer landing pad are appended to those of the inlined
471   landing pad.  Consequently, landing pads must be written to ignore
472   selector values that they did not originally advertise.</p>
473
474</div>
475
476<!-- ======================================================================= -->
477<h4>
478  <a name="llvm_eh_typeid_for">llvm.eh.typeid.for</a>
479</h4>
480
481<div>
482
483<pre>
484  i32 %<a href="#llvm_eh_typeid_for">llvm.eh.typeid.for</a>(i8*)
485</pre>
486
487<p>This intrinsic returns the type info index in the exception table of the
488   current function.  This value can be used to compare against the result
489   of <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a>.  The single
490   argument is a reference to a type info.</p>
491
492</div>
493
494<!-- ======================================================================= -->
495<h4>
496  <a name="llvm_eh_resume">llvm.eh.resume</a>
497</h4>
498
499<div>
500
501<pre>
502  void %<a href="#llvm_eh_resume">llvm.eh.resume</a>(i8*, i32) noreturn
503</pre>
504
505<p>This intrinsic is used to resume propagation of an exception after
506   landing at a landing pad.  The first argument should be the result
507   of <a href="#llvm_eh_exception">llvm.eh.exception</a> for that
508   landing pad, and the second argument should be the result of
509   <a href="#llvm_eh_selector">llvm.eh.selector</a>.  When a call to
510   this intrinsic is inlined into an invoke, the call is transformed
511   into a branch to the invoke's unwind destination, using its
512   arguments in place of the calls
513   to <a href="#llvm_eh_exception">llvm.eh.exception</a> and
514   <a href="#llvm_eh_selector">llvm.eh.selector</a> there.</p>
515
516<p>This intrinsic is not implicitly <tt>nounwind</tt>; calls to it
517   will always throw.  It may not be invoked.</p>
518
519</div>
520
521<!-- ======================================================================= -->
522<h4>
523  <a name="llvm_eh_sjlj_setjmp">llvm.eh.sjlj.setjmp</a>
524</h4>
525
526<div>
527
528<pre>
529  i32 %<a href="#llvm_eh_sjlj_setjmp">llvm.eh.sjlj.setjmp</a>(i8*)
530</pre>
531
532<p>The SJLJ exception handling uses this intrinsic to force register saving for
533   the current function and to store the address of the following instruction
534   for use as a destination address by <a href="#llvm_eh_sjlj_longjmp">
535   <tt>llvm.eh.sjlj.longjmp</tt></a>. The buffer format and the overall
536   functioning of this intrinsic is compatible with the GCC
537   <tt>__builtin_setjmp</tt> implementation, allowing code built with the
538   two compilers to interoperate.</p>
539
540<p>The single parameter is a pointer to a five word buffer in which the calling
541   context is saved. The front end places the frame pointer in the first word,
542   and the target implementation of this intrinsic should place the destination
543   address for a
544   <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> in the
545   second word. The following three words are available for use in a
546   target-specific manner.</p>
547
548</div>
549
550<!-- ======================================================================= -->
551<h4>
552  <a name="llvm_eh_sjlj_longjmp">llvm.eh.sjlj.longjmp</a>
553</h4>
554
555<div>
556
557<pre>
558  void %<a href="#llvm_eh_sjlj_longjmp">llvm.eh.sjlj.setjmp</a>(i8*)
559</pre>
560
561<p>The <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>
562   intrinsic is used to implement <tt>__builtin_longjmp()</tt> for SJLJ
563   style exception handling. The single parameter is a pointer to a
564   buffer populated by <a href="#llvm_eh_sjlj_setjmp">
565     <tt>llvm.eh.sjlj.setjmp</tt></a>. The frame pointer and stack pointer
566   are restored from the buffer, then control is transferred to the
567   destination address.</p>
568
569</div>
570<!-- ======================================================================= -->
571<h4>
572  <a name="llvm_eh_sjlj_lsda">llvm.eh.sjlj.lsda</a>
573</h4>
574
575<div>
576
577<pre>
578  i8* %<a href="#llvm_eh_sjlj_lsda">llvm.eh.sjlj.lsda</a>()
579</pre>
580
581<p>Used for SJLJ based exception handling, the <a href="#llvm_eh_sjlj_lsda">
582   <tt>llvm.eh.sjlj.lsda</tt></a> intrinsic returns the address of the Language
583   Specific Data Area (LSDA) for the current function. The SJLJ front-end code
584   stores this address in the exception handling function context for use by the
585   runtime.</p>
586
587</div>
588
589<!-- ======================================================================= -->
590<h4>
591  <a name="llvm_eh_sjlj_callsite">llvm.eh.sjlj.callsite</a>
592</h4>
593
594<div>
595
596<pre>
597  void %<a href="#llvm_eh_sjlj_callsite">llvm.eh.sjlj.callsite</a>(i32)
598</pre>
599
600<p>For SJLJ based exception handling, the <a href="#llvm_eh_sjlj_callsite">
601  <tt>llvm.eh.sjlj.callsite</tt></a> intrinsic identifies the callsite value
602  associated with the following invoke instruction. This is used to ensure
603  that landing pad entries in the LSDA are generated in the matching order.</p>
604
605</div>
606
607<!-- ======================================================================= -->
608<h4>
609  <a name="llvm_eh_sjlj_dispatchsetup">llvm.eh.sjlj.dispatchsetup</a>
610</h4>
611
612<div>
613
614<pre>
615  void %<a href="#llvm_eh_sjlj_dispatchsetup">llvm.eh.sjlj.dispatchsetup</a>(i32)
616</pre>
617
618<p>For SJLJ based exception handling, the <a href="#llvm_eh_sjlj_dispatchsetup">
619  <tt>llvm.eh.sjlj.dispatchsetup</tt></a> intrinsic is used by targets to do
620  any unwind-edge setup they need. By default, no action is taken.  </p>
621
622</div>
623
624</div>
625
626<!-- ======================================================================= -->
627<h2>
628  <a name="asm">Asm Table Formats</a>
629</h2>
630
631<div>
632
633<p>There are two tables that are used by the exception handling runtime to
634   determine which actions should take place when an exception is thrown.</p>
635
636<!-- ======================================================================= -->
637<h3>
638  <a name="unwind_tables">Exception Handling Frame</a>
639</h3>
640
641<div>
642
643<p>An exception handling frame <tt>eh_frame</tt> is very similar to the unwind
644   frame used by dwarf debug info.  The frame contains all the information
645   necessary to tear down the current frame and restore the state of the prior
646   frame.  There is an exception handling frame for each function in a compile
647   unit, plus a common exception handling frame that defines information common
648   to all functions in the unit.</p>
649
650<p>Todo - Table details here.</p>
651
652</div>
653
654<!-- ======================================================================= -->
655<h3>
656  <a name="exception_tables">Exception Tables</a>
657</h3>
658
659<div>
660
661<p>An exception table contains information about what actions to take when an
662   exception is thrown in a particular part of a function's code.  There is one
663   exception table per function except leaf routines and functions that have
664   only calls to non-throwing functions will not need an exception table.</p>
665
666<p>Todo - Table details here.</p>
667
668</div>
669
670</div>
671
672<!-- ======================================================================= -->
673<h2>
674  <a name="todo">ToDo</a>
675</h2>
676
677<div>
678
679<ol>
680
681  <li>Testing/Testing/Testing.</li>
682
683</ol>
684
685</div>
686
687<!-- *********************************************************************** -->
688
689<hr>
690<address>
691  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
692  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
693  <a href="http://validator.w3.org/check/referer"><img
694  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
695
696  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
697  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
698  Last modified: $Date$
699</address>
700
701</body>
702</html>
703