• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM Assembly Language Reference Manual</title>
6  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7  <meta name="author" content="Chris Lattner">
8  <meta name="description"
9  content="LLVM Assembly Language Reference Manual.">
10  <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<h1>LLVM Language Reference Manual</h1>
16<ol>
17  <li><a href="#abstract">Abstract</a></li>
18  <li><a href="#introduction">Introduction</a></li>
19  <li><a href="#identifiers">Identifiers</a></li>
20  <li><a href="#highlevel">High Level Structure</a>
21    <ol>
22      <li><a href="#modulestructure">Module Structure</a></li>
23      <li><a href="#linkage">Linkage Types</a>
24        <ol>
25          <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26          <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27          <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
28          <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
29          <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30          <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31          <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32          <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33          <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34          <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35          <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
36          <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
37          <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38          <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39          <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40          <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
41        </ol>
42      </li>
43      <li><a href="#callingconv">Calling Conventions</a></li>
44      <li><a href="#namedtypes">Named Types</a></li>
45      <li><a href="#globalvars">Global Variables</a></li>
46      <li><a href="#functionstructure">Functions</a></li>
47      <li><a href="#aliasstructure">Aliases</a></li>
48      <li><a href="#namedmetadatastructure">Named Metadata</a></li>
49      <li><a href="#paramattrs">Parameter Attributes</a></li>
50      <li><a href="#fnattrs">Function Attributes</a></li>
51      <li><a href="#gc">Garbage Collector Names</a></li>
52      <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
53      <li><a href="#datalayout">Data Layout</a></li>
54      <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
55      <li><a href="#volatile">Volatile Memory Accesses</a></li>
56    </ol>
57  </li>
58  <li><a href="#typesystem">Type System</a>
59    <ol>
60      <li><a href="#t_classifications">Type Classifications</a></li>
61      <li><a href="#t_primitive">Primitive Types</a>
62        <ol>
63          <li><a href="#t_integer">Integer Type</a></li>
64          <li><a href="#t_floating">Floating Point Types</a></li>
65          <li><a href="#t_x86mmx">X86mmx Type</a></li>
66          <li><a href="#t_void">Void Type</a></li>
67          <li><a href="#t_label">Label Type</a></li>
68          <li><a href="#t_metadata">Metadata Type</a></li>
69        </ol>
70      </li>
71      <li><a href="#t_derived">Derived Types</a>
72        <ol>
73          <li><a href="#t_aggregate">Aggregate Types</a>
74            <ol>
75              <li><a href="#t_array">Array Type</a></li>
76              <li><a href="#t_struct">Structure Type</a></li>
77              <li><a href="#t_opaque">Opaque Type</a></li>
78              <li><a href="#t_vector">Vector Type</a></li>
79            </ol>
80          </li>
81          <li><a href="#t_function">Function Type</a></li>
82          <li><a href="#t_pointer">Pointer Type</a></li>
83        </ol>
84      </li>
85    </ol>
86  </li>
87  <li><a href="#constants">Constants</a>
88    <ol>
89      <li><a href="#simpleconstants">Simple Constants</a></li>
90      <li><a href="#complexconstants">Complex Constants</a></li>
91      <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
92      <li><a href="#undefvalues">Undefined Values</a></li>
93      <li><a href="#trapvalues">Trap Values</a></li>
94      <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
95      <li><a href="#constantexprs">Constant Expressions</a></li>
96    </ol>
97  </li>
98  <li><a href="#othervalues">Other Values</a>
99    <ol>
100      <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
101      <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
102    </ol>
103  </li>
104  <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
105    <ol>
106      <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
107      <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
108          Global Variable</a></li>
109      <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
110         Global Variable</a></li>
111      <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
112         Global Variable</a></li>
113    </ol>
114  </li>
115  <li><a href="#instref">Instruction Reference</a>
116    <ol>
117      <li><a href="#terminators">Terminator Instructions</a>
118        <ol>
119          <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
120          <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
121          <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
122          <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
123          <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
124          <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
125          <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
126        </ol>
127      </li>
128      <li><a href="#binaryops">Binary Operations</a>
129        <ol>
130          <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
131          <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
132          <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
133          <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
134          <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
135          <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
136          <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
137          <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
138          <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
139          <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
140          <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
141          <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
142        </ol>
143      </li>
144      <li><a href="#bitwiseops">Bitwise Binary Operations</a>
145        <ol>
146          <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
147          <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
148          <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
149          <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
150          <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
151          <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
152        </ol>
153      </li>
154      <li><a href="#vectorops">Vector Operations</a>
155        <ol>
156          <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
157          <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
158          <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
159        </ol>
160      </li>
161      <li><a href="#aggregateops">Aggregate Operations</a>
162        <ol>
163          <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
164          <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
165        </ol>
166      </li>
167      <li><a href="#memoryops">Memory Access and Addressing Operations</a>
168        <ol>
169          <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
170         <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
171         <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
172         <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
173        </ol>
174      </li>
175      <li><a href="#convertops">Conversion Operations</a>
176        <ol>
177          <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
178          <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
179          <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
180          <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
181          <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
182          <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
183          <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
184          <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
185          <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
186          <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
187          <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
188          <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
189        </ol>
190      </li>
191      <li><a href="#otherops">Other Operations</a>
192        <ol>
193          <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
194          <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
195          <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
196          <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
197          <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
198          <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
199        </ol>
200      </li>
201    </ol>
202  </li>
203  <li><a href="#intrinsics">Intrinsic Functions</a>
204    <ol>
205      <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
206        <ol>
207          <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
208          <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
209          <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
210        </ol>
211      </li>
212      <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
213        <ol>
214          <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
215          <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
216          <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
217        </ol>
218      </li>
219      <li><a href="#int_codegen">Code Generator Intrinsics</a>
220        <ol>
221          <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
222          <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
223          <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
224          <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
225          <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
226          <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
227          <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
228        </ol>
229      </li>
230      <li><a href="#int_libc">Standard C Library Intrinsics</a>
231        <ol>
232          <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
233          <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
234          <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
235          <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
236          <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
237          <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
238          <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
239          <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
240          <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
241          <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
242          <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
243        </ol>
244      </li>
245      <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
246        <ol>
247          <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
248          <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
249          <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
250          <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
251        </ol>
252      </li>
253      <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
254        <ol>
255          <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
256          <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
257          <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
258          <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
259          <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
260          <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
261        </ol>
262      </li>
263      <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
264        <ol>
265          <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
266          <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
267        </ol>
268      </li>
269      <li><a href="#int_debugger">Debugger intrinsics</a></li>
270      <li><a href="#int_eh">Exception Handling intrinsics</a></li>
271      <li><a href="#int_trampoline">Trampoline Intrinsic</a>
272        <ol>
273          <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
274        </ol>
275      </li>
276      <li><a href="#int_atomics">Atomic intrinsics</a>
277        <ol>
278          <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
279          <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
280          <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
281          <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
282          <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
283          <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
284          <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
285          <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
286          <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
287          <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
288          <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
289          <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
290          <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
291        </ol>
292      </li>
293      <li><a href="#int_memorymarkers">Memory Use Markers</a>
294        <ol>
295          <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
296          <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
297          <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
298          <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
299        </ol>
300      </li>
301      <li><a href="#int_general">General intrinsics</a>
302        <ol>
303          <li><a href="#int_var_annotation">
304            '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
305          <li><a href="#int_annotation">
306            '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
307          <li><a href="#int_trap">
308            '<tt>llvm.trap</tt>' Intrinsic</a></li>
309          <li><a href="#int_stackprotector">
310            '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
311	  <li><a href="#int_objectsize">
312            '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
313        </ol>
314      </li>
315    </ol>
316  </li>
317</ol>
318
319<div class="doc_author">
320  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
321            and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
322</div>
323
324<!-- *********************************************************************** -->
325<h2><a name="abstract">Abstract</a></h2>
326<!-- *********************************************************************** -->
327
328<div>
329
330<p>This document is a reference manual for the LLVM assembly language. LLVM is
331   a Static Single Assignment (SSA) based representation that provides type
332   safety, low-level operations, flexibility, and the capability of representing
333   'all' high-level languages cleanly.  It is the common code representation
334   used throughout all phases of the LLVM compilation strategy.</p>
335
336</div>
337
338<!-- *********************************************************************** -->
339<h2><a name="introduction">Introduction</a></h2>
340<!-- *********************************************************************** -->
341
342<div>
343
344<p>The LLVM code representation is designed to be used in three different forms:
345   as an in-memory compiler IR, as an on-disk bitcode representation (suitable
346   for fast loading by a Just-In-Time compiler), and as a human readable
347   assembly language representation.  This allows LLVM to provide a powerful
348   intermediate representation for efficient compiler transformations and
349   analysis, while providing a natural means to debug and visualize the
350   transformations.  The three different forms of LLVM are all equivalent.  This
351   document describes the human readable representation and notation.</p>
352
353<p>The LLVM representation aims to be light-weight and low-level while being
354   expressive, typed, and extensible at the same time.  It aims to be a
355   "universal IR" of sorts, by being at a low enough level that high-level ideas
356   may be cleanly mapped to it (similar to how microprocessors are "universal
357   IR's", allowing many source languages to be mapped to them).  By providing
358   type information, LLVM can be used as the target of optimizations: for
359   example, through pointer analysis, it can be proven that a C automatic
360   variable is never accessed outside of the current function, allowing it to
361   be promoted to a simple SSA value instead of a memory location.</p>
362
363<!-- _______________________________________________________________________ -->
364<h4>
365  <a name="wellformed">Well-Formedness</a>
366</h4>
367
368<div>
369
370<p>It is important to note that this document describes 'well formed' LLVM
371   assembly language.  There is a difference between what the parser accepts and
372   what is considered 'well formed'.  For example, the following instruction is
373   syntactically okay, but not well formed:</p>
374
375<pre class="doc_code">
376%x = <a href="#i_add">add</a> i32 1, %x
377</pre>
378
379<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
380   LLVM infrastructure provides a verification pass that may be used to verify
381   that an LLVM module is well formed.  This pass is automatically run by the
382   parser after parsing input assembly and by the optimizer before it outputs
383   bitcode.  The violations pointed out by the verifier pass indicate bugs in
384   transformation passes or input to the parser.</p>
385
386</div>
387
388</div>
389
390<!-- Describe the typesetting conventions here. -->
391
392<!-- *********************************************************************** -->
393<h2><a name="identifiers">Identifiers</a></h2>
394<!-- *********************************************************************** -->
395
396<div>
397
398<p>LLVM identifiers come in two basic types: global and local. Global
399   identifiers (functions, global variables) begin with the <tt>'@'</tt>
400   character. Local identifiers (register names, types) begin with
401   the <tt>'%'</tt> character. Additionally, there are three different formats
402   for identifiers, for different purposes:</p>
403
404<ol>
405  <li>Named values are represented as a string of characters with their prefix.
406      For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
407      <tt>%a.really.long.identifier</tt>. The actual regular expression used is
408      '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
409      other characters in their names can be surrounded with quotes. Special
410      characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
411      ASCII code for the character in hexadecimal.  In this way, any character
412      can be used in a name value, even quotes themselves.</li>
413
414  <li>Unnamed values are represented as an unsigned numeric value with their
415      prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
416
417  <li>Constants, which are described in a <a href="#constants">section about
418      constants</a>, below.</li>
419</ol>
420
421<p>LLVM requires that values start with a prefix for two reasons: Compilers
422   don't need to worry about name clashes with reserved words, and the set of
423   reserved words may be expanded in the future without penalty.  Additionally,
424   unnamed identifiers allow a compiler to quickly come up with a temporary
425   variable without having to avoid symbol table conflicts.</p>
426
427<p>Reserved words in LLVM are very similar to reserved words in other
428   languages. There are keywords for different opcodes
429   ('<tt><a href="#i_add">add</a></tt>',
430   '<tt><a href="#i_bitcast">bitcast</a></tt>',
431   '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
432   ('<tt><a href="#t_void">void</a></tt>',
433   '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
434   reserved words cannot conflict with variable names, because none of them
435   start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
436
437<p>Here is an example of LLVM code to multiply the integer variable
438   '<tt>%X</tt>' by 8:</p>
439
440<p>The easy way:</p>
441
442<pre class="doc_code">
443%result = <a href="#i_mul">mul</a> i32 %X, 8
444</pre>
445
446<p>After strength reduction:</p>
447
448<pre class="doc_code">
449%result = <a href="#i_shl">shl</a> i32 %X, i8 3
450</pre>
451
452<p>And the hard way:</p>
453
454<pre class="doc_code">
455%0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
456%1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
457%result = <a href="#i_add">add</a> i32 %1, %1
458</pre>
459
460<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
461   lexical features of LLVM:</p>
462
463<ol>
464  <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
465      line.</li>
466
467  <li>Unnamed temporaries are created when the result of a computation is not
468      assigned to a named value.</li>
469
470  <li>Unnamed temporaries are numbered sequentially</li>
471</ol>
472
473<p>It also shows a convention that we follow in this document.  When
474   demonstrating instructions, we will follow an instruction with a comment that
475   defines the type and name of value produced.  Comments are shown in italic
476   text.</p>
477
478</div>
479
480<!-- *********************************************************************** -->
481<h2><a name="highlevel">High Level Structure</a></h2>
482<!-- *********************************************************************** -->
483<div>
484<!-- ======================================================================= -->
485<h3>
486  <a name="modulestructure">Module Structure</a>
487</h3>
488
489<div>
490
491<p>LLVM programs are composed of "Module"s, each of which is a translation unit
492   of the input programs.  Each module consists of functions, global variables,
493   and symbol table entries.  Modules may be combined together with the LLVM
494   linker, which merges function (and global variable) definitions, resolves
495   forward declarations, and merges symbol table entries. Here is an example of
496   the "hello world" module:</p>
497
498<pre class="doc_code">
499<i>; Declare the string constant as a global constant.</i>&nbsp;
500<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"      <i>; [13 x i8]*</i>&nbsp;
501
502<i>; External declaration of the puts function</i>&nbsp;
503<a href="#functionstructure">declare</a> i32 @puts(i8*)                                      <i>; i32 (i8*)* </i>&nbsp;
504
505<i>; Definition of main function</i>
506define i32 @main() {   <i>; i32()* </i>&nbsp;
507  <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
508  %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8*</i>&nbsp;
509
510  <i>; Call puts function to write out the string to stdout.</i>&nbsp;
511  <a href="#i_call">call</a> i32 @puts(i8* %cast210)           <i>; i32</i>&nbsp;
512  <a href="#i_ret">ret</a> i32 0&nbsp;
513}
514
515<i>; Named metadata</i>
516!1 = metadata !{i32 41}
517!foo = !{!1, null}
518</pre>
519
520<p>This example is made up of a <a href="#globalvars">global variable</a> named
521   "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
522   a <a href="#functionstructure">function definition</a> for
523   "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
524   "<tt>foo"</tt>.</p>
525
526<p>In general, a module is made up of a list of global values, where both
527   functions and global variables are global values.  Global values are
528   represented by a pointer to a memory location (in this case, a pointer to an
529   array of char, and a pointer to a function), and have one of the
530   following <a href="#linkage">linkage types</a>.</p>
531
532</div>
533
534<!-- ======================================================================= -->
535<h3>
536  <a name="linkage">Linkage Types</a>
537</h3>
538
539<div>
540
541<p>All Global Variables and Functions have one of the following types of
542   linkage:</p>
543
544<dl>
545  <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
546  <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
547      by objects in the current module. In particular, linking code into a
548      module with an private global value may cause the private to be renamed as
549      necessary to avoid collisions.  Because the symbol is private to the
550      module, all references can be updated. This doesn't show up in any symbol
551      table in the object file.</dd>
552
553  <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
554  <dd>Similar to <tt>private</tt>, but the symbol is passed through the
555      assembler and evaluated by the linker. Unlike normal strong symbols, they
556      are removed by the linker from the final linked image (executable or
557      dynamic library).</dd>
558
559  <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
560  <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
561      <tt>linker_private_weak</tt> symbols are subject to coalescing by the
562      linker. The symbols are removed by the linker from the final linked image
563      (executable or dynamic library).</dd>
564
565  <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
566  <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
567      of the object is not taken. For instance, functions that had an inline
568      definition, but the compiler decided not to inline it. Note,
569      unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
570      <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
571      visibility.  The symbols are removed by the linker from the final linked
572      image (executable or dynamic library).</dd>
573
574  <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
575  <dd>Similar to private, but the value shows as a local symbol
576      (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
577      corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
578
579  <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
580  <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
581      into the object file corresponding to the LLVM module.  They exist to
582      allow inlining and other optimizations to take place given knowledge of
583      the definition of the global, which is known to be somewhere outside the
584      module.  Globals with <tt>available_externally</tt> linkage are allowed to
585      be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
586      This linkage type is only allowed on definitions, not declarations.</dd>
587
588  <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
589  <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
590      the same name when linkage occurs.  This can be used to implement
591      some forms of inline functions, templates, or other code which must be
592      generated in each translation unit that uses it, but where the body may
593      be overridden with a more definitive definition later.  Unreferenced
594      <tt>linkonce</tt> globals are allowed to be discarded.  Note that
595      <tt>linkonce</tt> linkage does not actually allow the optimizer to
596      inline the body of this function into callers because it doesn't know if
597      this definition of the function is the definitive definition within the
598      program or whether it will be overridden by a stronger definition.
599      To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
600      linkage.</dd>
601
602  <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
603  <dd>"<tt>weak</tt>" linkage has the same merging semantics as
604      <tt>linkonce</tt> linkage, except that unreferenced globals with
605      <tt>weak</tt> linkage may not be discarded.  This is used for globals that
606      are declared "weak" in C source code.</dd>
607
608  <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
609  <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
610      they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
611      global scope.
612      Symbols with "<tt>common</tt>" linkage are merged in the same way as
613      <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
614      <tt>common</tt> symbols may not have an explicit section,
615      must have a zero initializer, and may not be marked '<a
616      href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
617      have common linkage.</dd>
618
619
620  <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
621  <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
622      pointer to array type.  When two global variables with appending linkage
623      are linked together, the two global arrays are appended together.  This is
624      the LLVM, typesafe, equivalent of having the system linker append together
625      "sections" with identical names when .o files are linked.</dd>
626
627  <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
628  <dd>The semantics of this linkage follow the ELF object file model: the symbol
629      is weak until linked, if not linked, the symbol becomes null instead of
630      being an undefined reference.</dd>
631
632  <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
633  <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
634  <dd>Some languages allow differing globals to be merged, such as two functions
635      with different semantics.  Other languages, such as <tt>C++</tt>, ensure
636      that only equivalent globals are ever merged (the "one definition rule"
637      &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
638      and <tt>weak_odr</tt> linkage types to indicate that the global will only
639      be merged with equivalent globals.  These linkage types are otherwise the
640      same as their non-<tt>odr</tt> versions.</dd>
641
642  <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
643  <dd>If none of the above identifiers are used, the global is externally
644      visible, meaning that it participates in linkage and can be used to
645      resolve external symbol references.</dd>
646</dl>
647
648<p>The next two types of linkage are targeted for Microsoft Windows platform
649   only. They are designed to support importing (exporting) symbols from (to)
650   DLLs (Dynamic Link Libraries).</p>
651
652<dl>
653  <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
654  <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
655      or variable via a global pointer to a pointer that is set up by the DLL
656      exporting the symbol. On Microsoft Windows targets, the pointer name is
657      formed by combining <code>__imp_</code> and the function or variable
658      name.</dd>
659
660  <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
661  <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
662      pointer to a pointer in a DLL, so that it can be referenced with the
663      <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
664      name is formed by combining <code>__imp_</code> and the function or
665      variable name.</dd>
666</dl>
667
668<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
669   another module defined a "<tt>.LC0</tt>" variable and was linked with this
670   one, one of the two would be renamed, preventing a collision.  Since
671   "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
672   declarations), they are accessible outside of the current module.</p>
673
674<p>It is illegal for a function <i>declaration</i> to have any linkage type
675   other than "externally visible", <tt>dllimport</tt>
676   or <tt>extern_weak</tt>.</p>
677
678<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
679   or <tt>weak_odr</tt> linkages.</p>
680
681</div>
682
683<!-- ======================================================================= -->
684<h3>
685  <a name="callingconv">Calling Conventions</a>
686</h3>
687
688<div>
689
690<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
691   and <a href="#i_invoke">invokes</a> can all have an optional calling
692   convention specified for the call.  The calling convention of any pair of
693   dynamic caller/callee must match, or the behavior of the program is
694   undefined.  The following calling conventions are supported by LLVM, and more
695   may be added in the future:</p>
696
697<dl>
698  <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
699  <dd>This calling convention (the default if no other calling convention is
700      specified) matches the target C calling conventions.  This calling
701      convention supports varargs function calls and tolerates some mismatch in
702      the declared prototype and implemented declaration of the function (as
703      does normal C).</dd>
704
705  <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
706  <dd>This calling convention attempts to make calls as fast as possible
707      (e.g. by passing things in registers).  This calling convention allows the
708      target to use whatever tricks it wants to produce fast code for the
709      target, without having to conform to an externally specified ABI
710      (Application Binary Interface).
711      <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
712      when this or the GHC convention is used.</a>  This calling convention
713      does not support varargs and requires the prototype of all callees to
714      exactly match the prototype of the function definition.</dd>
715
716  <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
717  <dd>This calling convention attempts to make code in the caller as efficient
718      as possible under the assumption that the call is not commonly executed.
719      As such, these calls often preserve all registers so that the call does
720      not break any live ranges in the caller side.  This calling convention
721      does not support varargs and requires the prototype of all callees to
722      exactly match the prototype of the function definition.</dd>
723
724  <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
725  <dd>This calling convention has been implemented specifically for use by the
726      <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
727      It passes everything in registers, going to extremes to achieve this by
728      disabling callee save registers. This calling convention should not be
729      used lightly but only for specific situations such as an alternative to
730      the <em>register pinning</em> performance technique often used when
731      implementing functional programming languages.At the moment only X86
732      supports this convention and it has the following limitations:
733      <ul>
734        <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
735            floating point types are supported.</li>
736        <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
737            6 floating point parameters.</li>
738      </ul>
739      This calling convention supports
740      <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
741      requires both the caller and callee are using it.
742  </dd>
743
744  <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
745  <dd>Any calling convention may be specified by number, allowing
746      target-specific calling conventions to be used.  Target specific calling
747      conventions start at 64.</dd>
748</dl>
749
750<p>More calling conventions can be added/defined on an as-needed basis, to
751   support Pascal conventions or any other well-known target-independent
752   convention.</p>
753
754</div>
755
756<!-- ======================================================================= -->
757<h3>
758  <a name="visibility">Visibility Styles</a>
759</h3>
760
761<div>
762
763<p>All Global Variables and Functions have one of the following visibility
764   styles:</p>
765
766<dl>
767  <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
768  <dd>On targets that use the ELF object file format, default visibility means
769      that the declaration is visible to other modules and, in shared libraries,
770      means that the declared entity may be overridden. On Darwin, default
771      visibility means that the declaration is visible to other modules. Default
772      visibility corresponds to "external linkage" in the language.</dd>
773
774  <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
775  <dd>Two declarations of an object with hidden visibility refer to the same
776      object if they are in the same shared object. Usually, hidden visibility
777      indicates that the symbol will not be placed into the dynamic symbol
778      table, so no other module (executable or shared library) can reference it
779      directly.</dd>
780
781  <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
782  <dd>On ELF, protected visibility indicates that the symbol will be placed in
783      the dynamic symbol table, but that references within the defining module
784      will bind to the local symbol. That is, the symbol cannot be overridden by
785      another module.</dd>
786</dl>
787
788</div>
789
790<!-- ======================================================================= -->
791<h3>
792  <a name="namedtypes">Named Types</a>
793</h3>
794
795<div>
796
797<p>LLVM IR allows you to specify name aliases for certain types.  This can make
798   it easier to read the IR and make the IR more condensed (particularly when
799   recursive types are involved).  An example of a name specification is:</p>
800
801<pre class="doc_code">
802%mytype = type { %mytype*, i32 }
803</pre>
804
805<p>You may give a name to any <a href="#typesystem">type</a> except
806   "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
807   is expected with the syntax "%mytype".</p>
808
809<p>Note that type names are aliases for the structural type that they indicate,
810   and that you can therefore specify multiple names for the same type.  This
811   often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
812   uses structural typing, the name is not part of the type.  When printing out
813   LLVM IR, the printer will pick <em>one name</em> to render all types of a
814   particular shape.  This means that if you have code where two different
815   source types end up having the same LLVM type, that the dumper will sometimes
816   print the "wrong" or unexpected type.  This is an important design point and
817   isn't going to change.</p>
818
819</div>
820
821<!-- ======================================================================= -->
822<h3>
823  <a name="globalvars">Global Variables</a>
824</h3>
825
826<div>
827
828<p>Global variables define regions of memory allocated at compilation time
829   instead of run-time.  Global variables may optionally be initialized, may
830   have an explicit section to be placed in, and may have an optional explicit
831   alignment specified.  A variable may be defined as "thread_local", which
832   means that it will not be shared by threads (each thread will have a
833   separated copy of the variable).  A variable may be defined as a global
834   "constant," which indicates that the contents of the variable
835   will <b>never</b> be modified (enabling better optimization, allowing the
836   global data to be placed in the read-only section of an executable, etc).
837   Note that variables that need runtime initialization cannot be marked
838   "constant" as there is a store to the variable.</p>
839
840<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
841   constant, even if the final definition of the global is not.  This capability
842   can be used to enable slightly better optimization of the program, but
843   requires the language definition to guarantee that optimizations based on the
844   'constantness' are valid for the translation units that do not include the
845   definition.</p>
846
847<p>As SSA values, global variables define pointer values that are in scope
848   (i.e. they dominate) all basic blocks in the program.  Global variables
849   always define a pointer to their "content" type because they describe a
850   region of memory, and all memory objects in LLVM are accessed through
851   pointers.</p>
852
853<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
854  that the address is not significant, only the content. Constants marked
855  like this can be merged with other constants if they have the same
856  initializer. Note that a constant with significant address <em>can</em>
857  be merged with a <tt>unnamed_addr</tt> constant, the result being a
858  constant whose address is significant.</p>
859
860<p>A global variable may be declared to reside in a target-specific numbered
861   address space. For targets that support them, address spaces may affect how
862   optimizations are performed and/or what target instructions are used to
863   access the variable. The default address space is zero. The address space
864   qualifier must precede any other attributes.</p>
865
866<p>LLVM allows an explicit section to be specified for globals.  If the target
867   supports it, it will emit globals to the section specified.</p>
868
869<p>An explicit alignment may be specified for a global, which must be a power
870   of 2.  If not present, or if the alignment is set to zero, the alignment of
871   the global is set by the target to whatever it feels convenient.  If an
872   explicit alignment is specified, the global is forced to have exactly that
873   alignment.  Targets and optimizers are not allowed to over-align the global
874   if the global has an assigned section.  In this case, the extra alignment
875   could be observable: for example, code could assume that the globals are
876   densely packed in their section and try to iterate over them as an array,
877   alignment padding would break this iteration.</p>
878
879<p>For example, the following defines a global in a numbered address space with
880   an initializer, section, and alignment:</p>
881
882<pre class="doc_code">
883@G = addrspace(5) constant float 1.0, section "foo", align 4
884</pre>
885
886</div>
887
888
889<!-- ======================================================================= -->
890<h3>
891  <a name="functionstructure">Functions</a>
892</h3>
893
894<div>
895
896<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
897   optional <a href="#linkage">linkage type</a>, an optional
898   <a href="#visibility">visibility style</a>, an optional
899   <a href="#callingconv">calling convention</a>,
900   an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
901   <a href="#paramattrs">parameter attribute</a> for the return type, a function
902   name, a (possibly empty) argument list (each with optional
903   <a href="#paramattrs">parameter attributes</a>), optional
904   <a href="#fnattrs">function attributes</a>, an optional section, an optional
905   alignment, an optional <a href="#gc">garbage collector name</a>, an opening
906   curly brace, a list of basic blocks, and a closing curly brace.</p>
907
908<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
909   optional <a href="#linkage">linkage type</a>, an optional
910   <a href="#visibility">visibility style</a>, an optional
911   <a href="#callingconv">calling convention</a>,
912   an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
913   <a href="#paramattrs">parameter attribute</a> for the return type, a function
914   name, a possibly empty list of arguments, an optional alignment, and an
915   optional <a href="#gc">garbage collector name</a>.</p>
916
917<p>A function definition contains a list of basic blocks, forming the CFG
918   (Control Flow Graph) for the function.  Each basic block may optionally start
919   with a label (giving the basic block a symbol table entry), contains a list
920   of instructions, and ends with a <a href="#terminators">terminator</a>
921   instruction (such as a branch or function return).</p>
922
923<p>The first basic block in a function is special in two ways: it is immediately
924   executed on entrance to the function, and it is not allowed to have
925   predecessor basic blocks (i.e. there can not be any branches to the entry
926   block of a function).  Because the block can have no predecessors, it also
927   cannot have any <a href="#i_phi">PHI nodes</a>.</p>
928
929<p>LLVM allows an explicit section to be specified for functions.  If the target
930   supports it, it will emit functions to the section specified.</p>
931
932<p>An explicit alignment may be specified for a function.  If not present, or if
933   the alignment is set to zero, the alignment of the function is set by the
934   target to whatever it feels convenient.  If an explicit alignment is
935   specified, the function is forced to have at least that much alignment.  All
936   alignments must be a power of 2.</p>
937
938<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
939  be significant and two identical functions can be merged</p>.
940
941<h5>Syntax:</h5>
942<pre class="doc_code">
943define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
944       [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
945       &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
946       [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
947       [<a href="#gc">gc</a>] { ... }
948</pre>
949
950</div>
951
952<!-- ======================================================================= -->
953<h3>
954  <a name="aliasstructure">Aliases</a>
955</h3>
956
957<div>
958
959<p>Aliases act as "second name" for the aliasee value (which can be either
960   function, global variable, another alias or bitcast of global value). Aliases
961   may have an optional <a href="#linkage">linkage type</a>, and an
962   optional <a href="#visibility">visibility style</a>.</p>
963
964<h5>Syntax:</h5>
965<pre class="doc_code">
966@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
967</pre>
968
969</div>
970
971<!-- ======================================================================= -->
972<h3>
973  <a name="namedmetadatastructure">Named Metadata</a>
974</h3>
975
976<div>
977
978<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
979   nodes</a> (but not metadata strings) are the only valid operands for
980   a named metadata.</p>
981
982<h5>Syntax:</h5>
983<pre class="doc_code">
984; Some unnamed metadata nodes, which are referenced by the named metadata.
985!0 = metadata !{metadata !"zero"}
986!1 = metadata !{metadata !"one"}
987!2 = metadata !{metadata !"two"}
988; A named metadata.
989!name = !{!0, !1, !2}
990</pre>
991
992</div>
993
994<!-- ======================================================================= -->
995<h3>
996  <a name="paramattrs">Parameter Attributes</a>
997</h3>
998
999<div>
1000
1001<p>The return type and each parameter of a function type may have a set of
1002   <i>parameter attributes</i> associated with them. Parameter attributes are
1003   used to communicate additional information about the result or parameters of
1004   a function. Parameter attributes are considered to be part of the function,
1005   not of the function type, so functions with different parameter attributes
1006   can have the same function type.</p>
1007
1008<p>Parameter attributes are simple keywords that follow the type specified. If
1009   multiple parameter attributes are needed, they are space separated. For
1010   example:</p>
1011
1012<pre class="doc_code">
1013declare i32 @printf(i8* noalias nocapture, ...)
1014declare i32 @atoi(i8 zeroext)
1015declare signext i8 @returns_signed_char()
1016</pre>
1017
1018<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1019   <tt>readonly</tt>) come immediately after the argument list.</p>
1020
1021<p>Currently, only the following parameter attributes are defined:</p>
1022
1023<dl>
1024  <dt><tt><b>zeroext</b></tt></dt>
1025  <dd>This indicates to the code generator that the parameter or return value
1026      should be zero-extended to the extent required by the target's ABI (which
1027      is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1028      parameter) or the callee (for a return value).</dd>
1029
1030  <dt><tt><b>signext</b></tt></dt>
1031  <dd>This indicates to the code generator that the parameter or return value
1032      should be sign-extended to the extent required by the target's ABI (which
1033      is usually 32-bits) by the caller (for a parameter) or the callee (for a
1034      return value).</dd>
1035
1036  <dt><tt><b>inreg</b></tt></dt>
1037  <dd>This indicates that this parameter or return value should be treated in a
1038      special target-dependent fashion during while emitting code for a function
1039      call or return (usually, by putting it in a register as opposed to memory,
1040      though some targets use it to distinguish between two different kinds of
1041      registers).  Use of this attribute is target-specific.</dd>
1042
1043  <dt><tt><b><a name="byval">byval</a></b></tt></dt>
1044  <dd><p>This indicates that the pointer parameter should really be passed by
1045      value to the function.  The attribute implies that a hidden copy of the
1046      pointee
1047      is made between the caller and the callee, so the callee is unable to
1048      modify the value in the callee.  This attribute is only valid on LLVM
1049      pointer arguments.  It is generally used to pass structs and arrays by
1050      value, but is also valid on pointers to scalars.  The copy is considered
1051      to belong to the caller not the callee (for example,
1052      <tt><a href="#readonly">readonly</a></tt> functions should not write to
1053      <tt>byval</tt> parameters). This is not a valid attribute for return
1054      values.</p>
1055
1056      <p>The byval attribute also supports specifying an alignment with
1057      the align attribute.  It indicates the alignment of the stack slot to
1058      form and the known alignment of the pointer specified to the call site. If
1059      the alignment is not specified, then the code generator makes a
1060      target-specific assumption.</p></dd>
1061
1062  <dt><tt><b><a name="sret">sret</a></b></tt></dt>
1063  <dd>This indicates that the pointer parameter specifies the address of a
1064      structure that is the return value of the function in the source program.
1065      This pointer must be guaranteed by the caller to be valid: loads and
1066      stores to the structure may be assumed by the callee to not to trap.  This
1067      may only be applied to the first parameter. This is not a valid attribute
1068      for return values. </dd>
1069
1070  <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
1071  <dd>This indicates that pointer values
1072      <a href="#pointeraliasing"><i>based</i></a> on the argument or return
1073      value do not alias pointer values which are not <i>based</i> on it,
1074      ignoring certain "irrelevant" dependencies.
1075      For a call to the parent function, dependencies between memory
1076      references from before or after the call and from those during the call
1077      are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1078      return value used in that call.
1079      The caller shares the responsibility with the callee for ensuring that
1080      these requirements are met.
1081      For further details, please see the discussion of the NoAlias response in
1082      <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1083<br>
1084      Note that this definition of <tt>noalias</tt> is intentionally
1085      similar to the definition of <tt>restrict</tt> in C99 for function
1086      arguments, though it is slightly weaker.
1087<br>
1088      For function return values, C99's <tt>restrict</tt> is not meaningful,
1089      while LLVM's <tt>noalias</tt> is.
1090      </dd>
1091
1092  <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
1093  <dd>This indicates that the callee does not make any copies of the pointer
1094      that outlive the callee itself. This is not a valid attribute for return
1095      values.</dd>
1096
1097  <dt><tt><b><a name="nest">nest</a></b></tt></dt>
1098  <dd>This indicates that the pointer parameter can be excised using the
1099      <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1100      attribute for return values.</dd>
1101</dl>
1102
1103</div>
1104
1105<!-- ======================================================================= -->
1106<h3>
1107  <a name="gc">Garbage Collector Names</a>
1108</h3>
1109
1110<div>
1111
1112<p>Each function may specify a garbage collector name, which is simply a
1113   string:</p>
1114
1115<pre class="doc_code">
1116define void @f() gc "name" { ... }
1117</pre>
1118
1119<p>The compiler declares the supported values of <i>name</i>. Specifying a
1120   collector which will cause the compiler to alter its output in order to
1121   support the named garbage collection algorithm.</p>
1122
1123</div>
1124
1125<!-- ======================================================================= -->
1126<h3>
1127  <a name="fnattrs">Function Attributes</a>
1128</h3>
1129
1130<div>
1131
1132<p>Function attributes are set to communicate additional information about a
1133   function. Function attributes are considered to be part of the function, not
1134   of the function type, so functions with different parameter attributes can
1135   have the same function type.</p>
1136
1137<p>Function attributes are simple keywords that follow the type specified. If
1138   multiple attributes are needed, they are space separated. For example:</p>
1139
1140<pre class="doc_code">
1141define void @f() noinline { ... }
1142define void @f() alwaysinline { ... }
1143define void @f() alwaysinline optsize { ... }
1144define void @f() optsize { ... }
1145</pre>
1146
1147<dl>
1148  <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1149  <dd>This attribute indicates that, when emitting the prologue and epilogue,
1150      the backend should forcibly align the stack pointer. Specify the
1151      desired alignment, which must be a power of two, in parentheses.
1152
1153  <dt><tt><b>alwaysinline</b></tt></dt>
1154  <dd>This attribute indicates that the inliner should attempt to inline this
1155      function into callers whenever possible, ignoring any active inlining size
1156      threshold for this caller.</dd>
1157
1158  <dt><tt><b>hotpatch</b></tt></dt>
1159  <dd>This attribute indicates that the function should be 'hotpatchable',
1160      meaning the function can be patched and/or hooked even while it is
1161      loaded into memory. On x86, the function prologue will be preceded
1162      by six bytes of padding and will begin with a two-byte instruction.
1163      Most of the functions in the Windows system DLLs in Windows XP SP2 or
1164      higher were compiled in this fashion.</dd>
1165
1166  <dt><tt><b>nonlazybind</b></tt></dt>
1167  <dd>This attribute suppresses lazy symbol binding for the function. This
1168      may make calls to the function faster, at the cost of extra program
1169      startup time if the function is not called during program startup.</dd>
1170
1171  <dt><tt><b>inlinehint</b></tt></dt>
1172  <dd>This attribute indicates that the source code contained a hint that inlining
1173      this function is desirable (such as the "inline" keyword in C/C++).  It
1174      is just a hint; it imposes no requirements on the inliner.</dd>
1175
1176  <dt><tt><b>naked</b></tt></dt>
1177  <dd>This attribute disables prologue / epilogue emission for the function.
1178      This can have very system-specific consequences.</dd>
1179
1180  <dt><tt><b>noimplicitfloat</b></tt></dt>
1181  <dd>This attributes disables implicit floating point instructions.</dd>
1182
1183  <dt><tt><b>noinline</b></tt></dt>
1184  <dd>This attribute indicates that the inliner should never inline this
1185      function in any situation. This attribute may not be used together with
1186      the <tt>alwaysinline</tt> attribute.</dd>
1187
1188  <dt><tt><b>noredzone</b></tt></dt>
1189  <dd>This attribute indicates that the code generator should not use a red
1190      zone, even if the target-specific ABI normally permits it.</dd>
1191
1192  <dt><tt><b>noreturn</b></tt></dt>
1193  <dd>This function attribute indicates that the function never returns
1194      normally.  This produces undefined behavior at runtime if the function
1195      ever does dynamically return.</dd>
1196
1197  <dt><tt><b>nounwind</b></tt></dt>
1198  <dd>This function attribute indicates that the function never returns with an
1199      unwind or exceptional control flow.  If the function does unwind, its
1200      runtime behavior is undefined.</dd>
1201
1202  <dt><tt><b>optsize</b></tt></dt>
1203  <dd>This attribute suggests that optimization passes and code generator passes
1204      make choices that keep the code size of this function low, and otherwise
1205      do optimizations specifically to reduce code size.</dd>
1206
1207  <dt><tt><b>readnone</b></tt></dt>
1208  <dd>This attribute indicates that the function computes its result (or decides
1209      to unwind an exception) based strictly on its arguments, without
1210      dereferencing any pointer arguments or otherwise accessing any mutable
1211      state (e.g. memory, control registers, etc) visible to caller functions.
1212      It does not write through any pointer arguments
1213      (including <tt><a href="#byval">byval</a></tt> arguments) and never
1214      changes any state visible to callers.  This means that it cannot unwind
1215      exceptions by calling the <tt>C++</tt> exception throwing methods, but
1216      could use the <tt>unwind</tt> instruction.</dd>
1217
1218  <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
1219  <dd>This attribute indicates that the function does not write through any
1220      pointer arguments (including <tt><a href="#byval">byval</a></tt>
1221      arguments) or otherwise modify any state (e.g. memory, control registers,
1222      etc) visible to caller functions.  It may dereference pointer arguments
1223      and read state that may be set in the caller.  A readonly function always
1224      returns the same value (or unwinds an exception identically) when called
1225      with the same set of arguments and global state.  It cannot unwind an
1226      exception by calling the <tt>C++</tt> exception throwing methods, but may
1227      use the <tt>unwind</tt> instruction.</dd>
1228
1229  <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
1230  <dd>This attribute indicates that the function should emit a stack smashing
1231      protector. It is in the form of a "canary"&mdash;a random value placed on
1232      the stack before the local variables that's checked upon return from the
1233      function to see if it has been overwritten. A heuristic is used to
1234      determine if a function needs stack protectors or not.<br>
1235<br>
1236      If a function that has an <tt>ssp</tt> attribute is inlined into a
1237      function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1238      function will have an <tt>ssp</tt> attribute.</dd>
1239
1240  <dt><tt><b>sspreq</b></tt></dt>
1241  <dd>This attribute indicates that the function should <em>always</em> emit a
1242      stack smashing protector. This overrides
1243      the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1244<br>
1245      If a function that has an <tt>sspreq</tt> attribute is inlined into a
1246      function that doesn't have an <tt>sspreq</tt> attribute or which has
1247      an <tt>ssp</tt> attribute, then the resulting function will have
1248      an <tt>sspreq</tt> attribute.</dd>
1249</dl>
1250
1251</div>
1252
1253<!-- ======================================================================= -->
1254<h3>
1255  <a name="moduleasm">Module-Level Inline Assembly</a>
1256</h3>
1257
1258<div>
1259
1260<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1261   the GCC "file scope inline asm" blocks.  These blocks are internally
1262   concatenated by LLVM and treated as a single unit, but may be separated in
1263   the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
1264
1265<pre class="doc_code">
1266module asm "inline asm code goes here"
1267module asm "more can go here"
1268</pre>
1269
1270<p>The strings can contain any character by escaping non-printable characters.
1271   The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1272   for the number.</p>
1273
1274<p>The inline asm code is simply printed to the machine code .s file when
1275   assembly code is generated.</p>
1276
1277</div>
1278
1279<!-- ======================================================================= -->
1280<h3>
1281  <a name="datalayout">Data Layout</a>
1282</h3>
1283
1284<div>
1285
1286<p>A module may specify a target specific data layout string that specifies how
1287   data is to be laid out in memory. The syntax for the data layout is
1288   simply:</p>
1289
1290<pre class="doc_code">
1291target datalayout = "<i>layout specification</i>"
1292</pre>
1293
1294<p>The <i>layout specification</i> consists of a list of specifications
1295   separated by the minus sign character ('-').  Each specification starts with
1296   a letter and may include other information after the letter to define some
1297   aspect of the data layout.  The specifications accepted are as follows:</p>
1298
1299<dl>
1300  <dt><tt>E</tt></dt>
1301  <dd>Specifies that the target lays out data in big-endian form. That is, the
1302      bits with the most significance have the lowest address location.</dd>
1303
1304  <dt><tt>e</tt></dt>
1305  <dd>Specifies that the target lays out data in little-endian form. That is,
1306      the bits with the least significance have the lowest address
1307      location.</dd>
1308
1309  <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1310  <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1311      <i>preferred</i> alignments. All sizes are in bits. Specifying
1312      the <i>pref</i> alignment is optional. If omitted, the
1313      preceding <tt>:</tt> should be omitted too.</dd>
1314
1315  <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1316  <dd>This specifies the alignment for an integer type of a given bit
1317      <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1318
1319  <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1320  <dd>This specifies the alignment for a vector type of a given bit
1321      <i>size</i>.</dd>
1322
1323  <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1324  <dd>This specifies the alignment for a floating point type of a given bit
1325      <i>size</i>. Only values of <i>size</i> that are supported by the target
1326      will work.  32 (float) and 64 (double) are supported on all targets;
1327      80 or 128 (different flavors of long double) are also supported on some
1328      targets.
1329
1330  <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1331  <dd>This specifies the alignment for an aggregate type of a given bit
1332      <i>size</i>.</dd>
1333
1334  <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1335  <dd>This specifies the alignment for a stack object of a given bit
1336      <i>size</i>.</dd>
1337
1338  <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1339  <dd>This specifies a set of native integer widths for the target CPU
1340      in bits.  For example, it might contain "n32" for 32-bit PowerPC,
1341      "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
1342      this set are considered to support most general arithmetic
1343      operations efficiently.</dd>
1344</dl>
1345
1346<p>When constructing the data layout for a given target, LLVM starts with a
1347   default set of specifications which are then (possibly) overridden by the
1348   specifications in the <tt>datalayout</tt> keyword. The default specifications
1349   are given in this list:</p>
1350
1351<ul>
1352  <li><tt>E</tt> - big endian</li>
1353  <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
1354  <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1355  <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1356  <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1357  <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1358  <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1359  alignment of 64-bits</li>
1360  <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1361  <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1362  <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1363  <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1364  <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1365  <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1366</ul>
1367
1368<p>When LLVM is determining the alignment for a given type, it uses the
1369   following rules:</p>
1370
1371<ol>
1372  <li>If the type sought is an exact match for one of the specifications, that
1373      specification is used.</li>
1374
1375  <li>If no match is found, and the type sought is an integer type, then the
1376      smallest integer type that is larger than the bitwidth of the sought type
1377      is used. If none of the specifications are larger than the bitwidth then
1378      the the largest integer type is used. For example, given the default
1379      specifications above, the i7 type will use the alignment of i8 (next
1380      largest) while both i65 and i256 will use the alignment of i64 (largest
1381      specified).</li>
1382
1383  <li>If no match is found, and the type sought is a vector type, then the
1384      largest vector type that is smaller than the sought vector type will be
1385      used as a fall back.  This happens because &lt;128 x double&gt; can be
1386      implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1387</ol>
1388
1389</div>
1390
1391<!-- ======================================================================= -->
1392<h3>
1393  <a name="pointeraliasing">Pointer Aliasing Rules</a>
1394</h3>
1395
1396<div>
1397
1398<p>Any memory access must be done through a pointer value associated
1399with an address range of the memory access, otherwise the behavior
1400is undefined. Pointer values are associated with address ranges
1401according to the following rules:</p>
1402
1403<ul>
1404  <li>A pointer value is associated with the addresses associated with
1405      any value it is <i>based</i> on.
1406  <li>An address of a global variable is associated with the address
1407      range of the variable's storage.</li>
1408  <li>The result value of an allocation instruction is associated with
1409      the address range of the allocated storage.</li>
1410  <li>A null pointer in the default address-space is associated with
1411      no address.</li>
1412  <li>An integer constant other than zero or a pointer value returned
1413      from a function not defined within LLVM may be associated with address
1414      ranges allocated through mechanisms other than those provided by
1415      LLVM. Such ranges shall not overlap with any ranges of addresses
1416      allocated by mechanisms provided by LLVM.</li>
1417</ul>
1418
1419<p>A pointer value is <i>based</i> on another pointer value according
1420   to the following rules:</p>
1421
1422<ul>
1423  <li>A pointer value formed from a
1424      <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1425      is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1426  <li>The result value of a
1427      <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1428      of the <tt>bitcast</tt>.</li>
1429  <li>A pointer value formed by an
1430      <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1431      pointer values that contribute (directly or indirectly) to the
1432      computation of the pointer's value.</li>
1433  <li>The "<i>based</i> on" relationship is transitive.</li>
1434</ul>
1435
1436<p>Note that this definition of <i>"based"</i> is intentionally
1437   similar to the definition of <i>"based"</i> in C99, though it is
1438   slightly weaker.</p>
1439
1440<p>LLVM IR does not associate types with memory. The result type of a
1441<tt><a href="#i_load">load</a></tt> merely indicates the size and
1442alignment of the memory from which to load, as well as the
1443interpretation of the value. The first operand type of a
1444<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1445and alignment of the store.</p>
1446
1447<p>Consequently, type-based alias analysis, aka TBAA, aka
1448<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1449LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1450additional information which specialized optimization passes may use
1451to implement type-based alias analysis.</p>
1452
1453</div>
1454
1455<!-- ======================================================================= -->
1456<h3>
1457  <a name="volatile">Volatile Memory Accesses</a>
1458</h3>
1459
1460<div>
1461
1462<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1463href="#i_store"><tt>store</tt></a>s, and <a
1464href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1465The optimizers must not change the number of volatile operations or change their
1466order of execution relative to other volatile operations.  The optimizers
1467<i>may</i> change the order of volatile operations relative to non-volatile
1468operations.  This is not Java's "volatile" and has no cross-thread
1469synchronization behavior.</p>
1470
1471</div>
1472
1473</div>
1474
1475<!-- *********************************************************************** -->
1476<h2><a name="typesystem">Type System</a></h2>
1477<!-- *********************************************************************** -->
1478
1479<div>
1480
1481<p>The LLVM type system is one of the most important features of the
1482   intermediate representation.  Being typed enables a number of optimizations
1483   to be performed on the intermediate representation directly, without having
1484   to do extra analyses on the side before the transformation.  A strong type
1485   system makes it easier to read the generated code and enables novel analyses
1486   and transformations that are not feasible to perform on normal three address
1487   code representations.</p>
1488
1489<!-- ======================================================================= -->
1490<h3>
1491  <a name="t_classifications">Type Classifications</a>
1492</h3>
1493
1494<div>
1495
1496<p>The types fall into a few useful classifications:</p>
1497
1498<table border="1" cellspacing="0" cellpadding="4">
1499  <tbody>
1500    <tr><th>Classification</th><th>Types</th></tr>
1501    <tr>
1502      <td><a href="#t_integer">integer</a></td>
1503      <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1504    </tr>
1505    <tr>
1506      <td><a href="#t_floating">floating point</a></td>
1507      <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1508    </tr>
1509    <tr>
1510      <td><a name="t_firstclass">first class</a></td>
1511      <td><a href="#t_integer">integer</a>,
1512          <a href="#t_floating">floating point</a>,
1513          <a href="#t_pointer">pointer</a>,
1514          <a href="#t_vector">vector</a>,
1515          <a href="#t_struct">structure</a>,
1516          <a href="#t_array">array</a>,
1517          <a href="#t_label">label</a>,
1518          <a href="#t_metadata">metadata</a>.
1519      </td>
1520    </tr>
1521    <tr>
1522      <td><a href="#t_primitive">primitive</a></td>
1523      <td><a href="#t_label">label</a>,
1524          <a href="#t_void">void</a>,
1525          <a href="#t_integer">integer</a>,
1526          <a href="#t_floating">floating point</a>,
1527          <a href="#t_x86mmx">x86mmx</a>,
1528          <a href="#t_metadata">metadata</a>.</td>
1529    </tr>
1530    <tr>
1531      <td><a href="#t_derived">derived</a></td>
1532      <td><a href="#t_array">array</a>,
1533          <a href="#t_function">function</a>,
1534          <a href="#t_pointer">pointer</a>,
1535          <a href="#t_struct">structure</a>,
1536          <a href="#t_vector">vector</a>,
1537          <a href="#t_opaque">opaque</a>.
1538      </td>
1539    </tr>
1540  </tbody>
1541</table>
1542
1543<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1544   important.  Values of these types are the only ones which can be produced by
1545   instructions.</p>
1546
1547</div>
1548
1549<!-- ======================================================================= -->
1550<h3>
1551  <a name="t_primitive">Primitive Types</a>
1552</h3>
1553
1554<div>
1555
1556<p>The primitive types are the fundamental building blocks of the LLVM
1557   system.</p>
1558
1559<!-- _______________________________________________________________________ -->
1560<h4>
1561  <a name="t_integer">Integer Type</a>
1562</h4>
1563
1564<div>
1565
1566<h5>Overview:</h5>
1567<p>The integer type is a very simple type that simply specifies an arbitrary
1568   bit width for the integer type desired. Any bit width from 1 bit to
1569   2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1570
1571<h5>Syntax:</h5>
1572<pre>
1573  iN
1574</pre>
1575
1576<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1577   value.</p>
1578
1579<h5>Examples:</h5>
1580<table class="layout">
1581  <tr class="layout">
1582    <td class="left"><tt>i1</tt></td>
1583    <td class="left">a single-bit integer.</td>
1584  </tr>
1585  <tr class="layout">
1586    <td class="left"><tt>i32</tt></td>
1587    <td class="left">a 32-bit integer.</td>
1588  </tr>
1589  <tr class="layout">
1590    <td class="left"><tt>i1942652</tt></td>
1591    <td class="left">a really big integer of over 1 million bits.</td>
1592  </tr>
1593</table>
1594
1595</div>
1596
1597<!-- _______________________________________________________________________ -->
1598<h4>
1599  <a name="t_floating">Floating Point Types</a>
1600</h4>
1601
1602<div>
1603
1604<table>
1605  <tbody>
1606    <tr><th>Type</th><th>Description</th></tr>
1607    <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1608    <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1609    <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1610    <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1611    <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1612  </tbody>
1613</table>
1614
1615</div>
1616
1617<!-- _______________________________________________________________________ -->
1618<h4>
1619  <a name="t_x86mmx">X86mmx Type</a>
1620</h4>
1621
1622<div>
1623
1624<h5>Overview:</h5>
1625<p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
1626
1627<h5>Syntax:</h5>
1628<pre>
1629  x86mmx
1630</pre>
1631
1632</div>
1633
1634<!-- _______________________________________________________________________ -->
1635<h4>
1636  <a name="t_void">Void Type</a>
1637</h4>
1638
1639<div>
1640
1641<h5>Overview:</h5>
1642<p>The void type does not represent any value and has no size.</p>
1643
1644<h5>Syntax:</h5>
1645<pre>
1646  void
1647</pre>
1648
1649</div>
1650
1651<!-- _______________________________________________________________________ -->
1652<h4>
1653  <a name="t_label">Label Type</a>
1654</h4>
1655
1656<div>
1657
1658<h5>Overview:</h5>
1659<p>The label type represents code labels.</p>
1660
1661<h5>Syntax:</h5>
1662<pre>
1663  label
1664</pre>
1665
1666</div>
1667
1668<!-- _______________________________________________________________________ -->
1669<h4>
1670  <a name="t_metadata">Metadata Type</a>
1671</h4>
1672
1673<div>
1674
1675<h5>Overview:</h5>
1676<p>The metadata type represents embedded metadata. No derived types may be
1677   created from metadata except for <a href="#t_function">function</a>
1678   arguments.
1679
1680<h5>Syntax:</h5>
1681<pre>
1682  metadata
1683</pre>
1684
1685</div>
1686
1687</div>
1688
1689<!-- ======================================================================= -->
1690<h3>
1691  <a name="t_derived">Derived Types</a>
1692</h3>
1693
1694<div>
1695
1696<p>The real power in LLVM comes from the derived types in the system.  This is
1697   what allows a programmer to represent arrays, functions, pointers, and other
1698   useful types.  Each of these types contain one or more element types which
1699   may be a primitive type, or another derived type.  For example, it is
1700   possible to have a two dimensional array, using an array as the element type
1701   of another array.</p>
1702
1703</div>
1704
1705
1706<!-- _______________________________________________________________________ -->
1707<h4>
1708  <a name="t_aggregate">Aggregate Types</a>
1709</h4>
1710
1711<div>
1712
1713<p>Aggregate Types are a subset of derived types that can contain multiple
1714  member types. <a href="#t_array">Arrays</a>,
1715  <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1716  aggregate types.</p>
1717
1718</div>
1719
1720<!-- _______________________________________________________________________ -->
1721<h4>
1722  <a name="t_array">Array Type</a>
1723</h4>
1724
1725<div>
1726
1727<h5>Overview:</h5>
1728<p>The array type is a very simple derived type that arranges elements
1729   sequentially in memory.  The array type requires a size (number of elements)
1730   and an underlying data type.</p>
1731
1732<h5>Syntax:</h5>
1733<pre>
1734  [&lt;# elements&gt; x &lt;elementtype&gt;]
1735</pre>
1736
1737<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1738   be any type with a size.</p>
1739
1740<h5>Examples:</h5>
1741<table class="layout">
1742  <tr class="layout">
1743    <td class="left"><tt>[40 x i32]</tt></td>
1744    <td class="left">Array of 40 32-bit integer values.</td>
1745  </tr>
1746  <tr class="layout">
1747    <td class="left"><tt>[41 x i32]</tt></td>
1748    <td class="left">Array of 41 32-bit integer values.</td>
1749  </tr>
1750  <tr class="layout">
1751    <td class="left"><tt>[4 x i8]</tt></td>
1752    <td class="left">Array of 4 8-bit integer values.</td>
1753  </tr>
1754</table>
1755<p>Here are some examples of multidimensional arrays:</p>
1756<table class="layout">
1757  <tr class="layout">
1758    <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1759    <td class="left">3x4 array of 32-bit integer values.</td>
1760  </tr>
1761  <tr class="layout">
1762    <td class="left"><tt>[12 x [10 x float]]</tt></td>
1763    <td class="left">12x10 array of single precision floating point values.</td>
1764  </tr>
1765  <tr class="layout">
1766    <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1767    <td class="left">2x3x4 array of 16-bit integer  values.</td>
1768  </tr>
1769</table>
1770
1771<p>There is no restriction on indexing beyond the end of the array implied by
1772   a static type (though there are restrictions on indexing beyond the bounds
1773   of an allocated object in some cases). This means that single-dimension
1774   'variable sized array' addressing can be implemented in LLVM with a zero
1775   length array type. An implementation of 'pascal style arrays' in LLVM could
1776   use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
1777
1778</div>
1779
1780<!-- _______________________________________________________________________ -->
1781<h4>
1782  <a name="t_function">Function Type</a>
1783</h4>
1784
1785<div>
1786
1787<h5>Overview:</h5>
1788<p>The function type can be thought of as a function signature.  It consists of
1789   a return type and a list of formal parameter types. The return type of a
1790   function type is a first class type or a void type.</p>
1791
1792<h5>Syntax:</h5>
1793<pre>
1794  &lt;returntype&gt; (&lt;parameter list&gt;)
1795</pre>
1796
1797<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1798   specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
1799   which indicates that the function takes a variable number of arguments.
1800   Variable argument functions can access their arguments with
1801   the <a href="#int_varargs">variable argument handling intrinsic</a>
1802   functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
1803   <a href="#t_label">label</a>.</p>
1804
1805<h5>Examples:</h5>
1806<table class="layout">
1807  <tr class="layout">
1808    <td class="left"><tt>i32 (i32)</tt></td>
1809    <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1810    </td>
1811  </tr><tr class="layout">
1812    <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
1813    </tt></td>
1814    <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1815      an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1816      returning <tt>float</tt>.
1817    </td>
1818  </tr><tr class="layout">
1819    <td class="left"><tt>i32 (i8*, ...)</tt></td>
1820    <td class="left">A vararg function that takes at least one
1821      <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1822      which returns an integer.  This is the signature for <tt>printf</tt> in
1823      LLVM.
1824    </td>
1825  </tr><tr class="layout">
1826    <td class="left"><tt>{i32, i32} (i32)</tt></td>
1827    <td class="left">A function taking an <tt>i32</tt>, returning a
1828        <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
1829    </td>
1830  </tr>
1831</table>
1832
1833</div>
1834
1835<!-- _______________________________________________________________________ -->
1836<h4>
1837  <a name="t_struct">Structure Type</a>
1838</h4>
1839
1840<div>
1841
1842<h5>Overview:</h5>
1843<p>The structure type is used to represent a collection of data members together
1844  in memory.  The elements of a structure may be any type that has a size.</p>
1845
1846<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1847   and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1848   with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1849   Structures in registers are accessed using the
1850   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1851   '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
1852
1853<p>Structures may optionally be "packed" structures, which indicate that the
1854  alignment of the struct is one byte, and that there is no padding between
1855  the elements.  In non-packed structs, padding between field types is defined
1856  by the target data string to match the underlying processor.</p>
1857
1858<p>Structures can either be "anonymous" or "named".  An anonymous structure is
1859  defined inline with other types (e.g. <tt>{i32, i32}*</tt>) and a named types
1860  are always defined at the top level with a name.  Anonmyous types are uniqued
1861  by their contents and can never be recursive since there is no way to write
1862  one.  Named types can be recursive.
1863</p>
1864
1865<h5>Syntax:</h5>
1866<pre>
1867  %T1 = type { &lt;type list&gt; }     <i>; Named normal struct type</i>
1868  %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Named packed struct type</i>
1869</pre>
1870
1871<h5>Examples:</h5>
1872<table class="layout">
1873  <tr class="layout">
1874    <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1875    <td class="left">A triple of three <tt>i32</tt> values</td>
1876  </tr>
1877  <tr class="layout">
1878    <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1879    <td class="left">A pair, where the first element is a <tt>float</tt> and the
1880      second element is a <a href="#t_pointer">pointer</a> to a
1881      <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1882      an <tt>i32</tt>.</td>
1883  </tr>
1884  <tr class="layout">
1885    <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
1886    <td class="left">A packed struct known to be 5 bytes in size.</td>
1887  </tr>
1888</table>
1889
1890</div>
1891
1892<!-- _______________________________________________________________________ -->
1893<h4>
1894  <a name="t_opaque">Opaque Type</a>
1895</h4>
1896
1897<div>
1898
1899<h5>Overview:</h5>
1900<p>Opaque types are used to represent named structure types that do not have a
1901   body specified.  This corresponds (for example) to the C notion of a forward
1902   declared structure.</p>
1903
1904<h5>Syntax:</h5>
1905<pre>
1906  %X = type opaque
1907  %52 = type opaque
1908</pre>
1909
1910<h5>Examples:</h5>
1911<table class="layout">
1912  <tr class="layout">
1913    <td class="left"><tt>opaque</tt></td>
1914    <td class="left">An opaque type.</td>
1915  </tr>
1916</table>
1917
1918</div>
1919
1920
1921
1922<!-- _______________________________________________________________________ -->
1923<h4>
1924  <a name="t_pointer">Pointer Type</a>
1925</h4>
1926
1927<div>
1928
1929<h5>Overview:</h5>
1930<p>The pointer type is used to specify memory locations.
1931   Pointers are commonly used to reference objects in memory.</p>
1932
1933<p>Pointer types may have an optional address space attribute defining the
1934   numbered address space where the pointed-to object resides. The default
1935   address space is number zero. The semantics of non-zero address
1936   spaces are target-specific.</p>
1937
1938<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1939   permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
1940
1941<h5>Syntax:</h5>
1942<pre>
1943  &lt;type&gt; *
1944</pre>
1945
1946<h5>Examples:</h5>
1947<table class="layout">
1948  <tr class="layout">
1949    <td class="left"><tt>[4 x i32]*</tt></td>
1950    <td class="left">A <a href="#t_pointer">pointer</a> to <a
1951                    href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1952  </tr>
1953  <tr class="layout">
1954    <td class="left"><tt>i32 (i32*) *</tt></td>
1955    <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1956      href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1957      <tt>i32</tt>.</td>
1958  </tr>
1959  <tr class="layout">
1960    <td class="left"><tt>i32 addrspace(5)*</tt></td>
1961    <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1962     that resides in address space #5.</td>
1963  </tr>
1964</table>
1965
1966</div>
1967
1968<!-- _______________________________________________________________________ -->
1969<h4>
1970  <a name="t_vector">Vector Type</a>
1971</h4>
1972
1973<div>
1974
1975<h5>Overview:</h5>
1976<p>A vector type is a simple derived type that represents a vector of elements.
1977   Vector types are used when multiple primitive data are operated in parallel
1978   using a single instruction (SIMD).  A vector type requires a size (number of
1979   elements) and an underlying primitive data type.  Vector types are considered
1980   <a href="#t_firstclass">first class</a>.</p>
1981
1982<h5>Syntax:</h5>
1983<pre>
1984  &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1985</pre>
1986
1987<p>The number of elements is a constant integer value larger than 0; elementtype
1988   may be any integer or floating point type.  Vectors of size zero are not
1989   allowed, and pointers are not allowed as the element type.</p>
1990
1991<h5>Examples:</h5>
1992<table class="layout">
1993  <tr class="layout">
1994    <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1995    <td class="left">Vector of 4 32-bit integer values.</td>
1996  </tr>
1997  <tr class="layout">
1998    <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1999    <td class="left">Vector of 8 32-bit floating-point values.</td>
2000  </tr>
2001  <tr class="layout">
2002    <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2003    <td class="left">Vector of 2 64-bit integer values.</td>
2004  </tr>
2005</table>
2006
2007</div>
2008
2009<!-- *********************************************************************** -->
2010<h2><a name="constants">Constants</a></h2>
2011<!-- *********************************************************************** -->
2012
2013<div>
2014
2015<p>LLVM has several different basic types of constants.  This section describes
2016   them all and their syntax.</p>
2017
2018<!-- ======================================================================= -->
2019<h3>
2020  <a name="simpleconstants">Simple Constants</a>
2021</h3>
2022
2023<div>
2024
2025<dl>
2026  <dt><b>Boolean constants</b></dt>
2027  <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
2028      constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
2029
2030  <dt><b>Integer constants</b></dt>
2031  <dd>Standard integers (such as '4') are constants of
2032      the <a href="#t_integer">integer</a> type.  Negative numbers may be used
2033      with integer types.</dd>
2034
2035  <dt><b>Floating point constants</b></dt>
2036  <dd>Floating point constants use standard decimal notation (e.g. 123.421),
2037      exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2038      notation (see below).  The assembler requires the exact decimal value of a
2039      floating-point constant.  For example, the assembler accepts 1.25 but
2040      rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
2041      constants must have a <a href="#t_floating">floating point</a> type. </dd>
2042
2043  <dt><b>Null pointer constants</b></dt>
2044  <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
2045      and must be of <a href="#t_pointer">pointer type</a>.</dd>
2046</dl>
2047
2048<p>The one non-intuitive notation for constants is the hexadecimal form of
2049   floating point constants.  For example, the form '<tt>double
2050   0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2051   '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
2052   constants are required (and the only time that they are generated by the
2053   disassembler) is when a floating point constant must be emitted but it cannot
2054   be represented as a decimal floating point number in a reasonable number of
2055   digits.  For example, NaN's, infinities, and other special values are
2056   represented in their IEEE hexadecimal format so that assembly and disassembly
2057   do not cause any bits to change in the constants.</p>
2058
2059<p>When using the hexadecimal form, constants of types float and double are
2060   represented using the 16-digit form shown above (which matches the IEEE754
2061   representation for double); float values must, however, be exactly
2062   representable as IEE754 single precision.  Hexadecimal format is always used
2063   for long double, and there are three forms of long double.  The 80-bit format
2064   used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2065   The 128-bit format used by PowerPC (two adjacent doubles) is represented
2066   by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
2067   is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2068   currently supported target uses this format.  Long doubles will only work if
2069   they match the long double format on your target.  All hexadecimal formats
2070   are big-endian (sign bit at the left).</p>
2071
2072<p>There are no constants of type x86mmx.</p>
2073</div>
2074
2075<!-- ======================================================================= -->
2076<h3>
2077<a name="aggregateconstants"></a> <!-- old anchor -->
2078<a name="complexconstants">Complex Constants</a>
2079</h3>
2080
2081<div>
2082
2083<p>Complex constants are a (potentially recursive) combination of simple
2084   constants and smaller complex constants.</p>
2085
2086<dl>
2087  <dt><b>Structure constants</b></dt>
2088  <dd>Structure constants are represented with notation similar to structure
2089      type definitions (a comma separated list of elements, surrounded by braces
2090      (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2091      where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2092      Structure constants must have <a href="#t_struct">structure type</a>, and
2093      the number and types of elements must match those specified by the
2094      type.</dd>
2095
2096  <dt><b>Array constants</b></dt>
2097  <dd>Array constants are represented with notation similar to array type
2098     definitions (a comma separated list of elements, surrounded by square
2099     brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
2100     ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
2101     the number and types of elements must match those specified by the
2102     type.</dd>
2103
2104  <dt><b>Vector constants</b></dt>
2105  <dd>Vector constants are represented with notation similar to vector type
2106      definitions (a comma separated list of elements, surrounded by
2107      less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
2108      42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
2109      have <a href="#t_vector">vector type</a>, and the number and types of
2110      elements must match those specified by the type.</dd>
2111
2112  <dt><b>Zero initialization</b></dt>
2113  <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
2114      value to zero of <em>any</em> type, including scalar and
2115      <a href="#t_aggregate">aggregate</a> types.
2116      This is often used to avoid having to print large zero initializers
2117      (e.g. for large arrays) and is always exactly equivalent to using explicit
2118      zero initializers.</dd>
2119
2120  <dt><b>Metadata node</b></dt>
2121  <dd>A metadata node is a structure-like constant with
2122      <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
2123      i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
2124      be interpreted as part of the instruction stream, metadata is a place to
2125      attach additional information such as debug info.</dd>
2126</dl>
2127
2128</div>
2129
2130<!-- ======================================================================= -->
2131<h3>
2132  <a name="globalconstants">Global Variable and Function Addresses</a>
2133</h3>
2134
2135<div>
2136
2137<p>The addresses of <a href="#globalvars">global variables</a>
2138   and <a href="#functionstructure">functions</a> are always implicitly valid
2139   (link-time) constants.  These constants are explicitly referenced when
2140   the <a href="#identifiers">identifier for the global</a> is used and always
2141   have <a href="#t_pointer">pointer</a> type. For example, the following is a
2142   legal LLVM file:</p>
2143
2144<pre class="doc_code">
2145@X = global i32 17
2146@Y = global i32 42
2147@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2148</pre>
2149
2150</div>
2151
2152<!-- ======================================================================= -->
2153<h3>
2154  <a name="undefvalues">Undefined Values</a>
2155</h3>
2156
2157<div>
2158
2159<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
2160   indicates that the user of the value may receive an unspecified bit-pattern.
2161   Undefined values may be of any type (other than '<tt>label</tt>'
2162   or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
2163
2164<p>Undefined values are useful because they indicate to the compiler that the
2165   program is well defined no matter what value is used.  This gives the
2166   compiler more freedom to optimize.  Here are some examples of (potentially
2167   surprising) transformations that are valid (in pseudo IR):</p>
2168
2169
2170<pre class="doc_code">
2171  %A = add %X, undef
2172  %B = sub %X, undef
2173  %C = xor %X, undef
2174Safe:
2175  %A = undef
2176  %B = undef
2177  %C = undef
2178</pre>
2179
2180<p>This is safe because all of the output bits are affected by the undef bits.
2181   Any output bit can have a zero or one depending on the input bits.</p>
2182
2183<pre class="doc_code">
2184  %A = or %X, undef
2185  %B = and %X, undef
2186Safe:
2187  %A = -1
2188  %B = 0
2189Unsafe:
2190  %A = undef
2191  %B = undef
2192</pre>
2193
2194<p>These logical operations have bits that are not always affected by the input.
2195   For example, if <tt>%X</tt> has a zero bit, then the output of the
2196   '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2197   the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2198   optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2199   However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2200   0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2201   all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2202   set, allowing the '<tt>or</tt>' to be folded to -1.</p>
2203
2204<pre class="doc_code">
2205  %A = select undef, %X, %Y
2206  %B = select undef, 42, %Y
2207  %C = select %X, %Y, undef
2208Safe:
2209  %A = %X     (or %Y)
2210  %B = 42     (or %Y)
2211  %C = %Y
2212Unsafe:
2213  %A = undef
2214  %B = undef
2215  %C = undef
2216</pre>
2217
2218<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2219   branch) conditions can go <em>either way</em>, but they have to come from one
2220   of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
2221   <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2222   have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2223   optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2224   same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2225   eliminated.</p>
2226
2227<pre class="doc_code">
2228  %A = xor undef, undef
2229
2230  %B = undef
2231  %C = xor %B, %B
2232
2233  %D = undef
2234  %E = icmp lt %D, 4
2235  %F = icmp gte %D, 4
2236
2237Safe:
2238  %A = undef
2239  %B = undef
2240  %C = undef
2241  %D = undef
2242  %E = undef
2243  %F = undef
2244</pre>
2245
2246<p>This example points out that two '<tt>undef</tt>' operands are not
2247   necessarily the same. This can be surprising to people (and also matches C
2248   semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2249   if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2250   short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2251   its value over its "live range".  This is true because the variable doesn't
2252   actually <em>have a live range</em>. Instead, the value is logically read
2253   from arbitrary registers that happen to be around when needed, so the value
2254   is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2255   need to have the same semantics or the core LLVM "replace all uses with"
2256   concept would not hold.</p>
2257
2258<pre class="doc_code">
2259  %A = fdiv undef, %X
2260  %B = fdiv %X, undef
2261Safe:
2262  %A = undef
2263b: unreachable
2264</pre>
2265
2266<p>These examples show the crucial difference between an <em>undefined
2267  value</em> and <em>undefined behavior</em>. An undefined value (like
2268  '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2269  the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2270  the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2271  defined on SNaN's. However, in the second example, we can make a more
2272  aggressive assumption: because the <tt>undef</tt> is allowed to be an
2273  arbitrary value, we are allowed to assume that it could be zero. Since a
2274  divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2275  the operation does not execute at all. This allows us to delete the divide and
2276  all code after it. Because the undefined operation "can't happen", the
2277  optimizer can assume that it occurs in dead code.</p>
2278
2279<pre class="doc_code">
2280a:  store undef -> %X
2281b:  store %X -> undef
2282Safe:
2283a: &lt;deleted&gt;
2284b: unreachable
2285</pre>
2286
2287<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2288   undefined value can be assumed to not have any effect; we can assume that the
2289   value is overwritten with bits that happen to match what was already there.
2290   However, a store <em>to</em> an undefined location could clobber arbitrary
2291   memory, therefore, it has undefined behavior.</p>
2292
2293</div>
2294
2295<!-- ======================================================================= -->
2296<h3>
2297  <a name="trapvalues">Trap Values</a>
2298</h3>
2299
2300<div>
2301
2302<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
2303   instead of representing an unspecified bit pattern, they represent the
2304   fact that an instruction or constant expression which cannot evoke side
2305   effects has nevertheless detected a condition which results in undefined
2306   behavior.</p>
2307
2308<p>There is currently no way of representing a trap value in the IR; they
2309   only exist when produced by operations such as
2310   <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
2311
2312<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
2313
2314<ul>
2315<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2316    their operands.</li>
2317
2318<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2319    to their dynamic predecessor basic block.</li>
2320
2321<li>Function arguments depend on the corresponding actual argument values in
2322    the dynamic callers of their functions.</li>
2323
2324<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2325    <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2326    control back to them.</li>
2327
2328<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2329    <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2330    or exception-throwing call instructions that dynamically transfer control
2331    back to them.</li>
2332
2333<li>Non-volatile loads and stores depend on the most recent stores to all of the
2334    referenced memory addresses, following the order in the IR
2335    (including loads and stores implied by intrinsics such as
2336    <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2337
2338<!-- TODO: In the case of multiple threads, this only applies if the store
2339     "happens-before" the load or store. -->
2340
2341<!-- TODO: floating-point exception state -->
2342
2343<li>An instruction with externally visible side effects depends on the most
2344    recent preceding instruction with externally visible side effects, following
2345    the order in the IR. (This includes
2346    <a href="#volatile">volatile operations</a>.)</li>
2347
2348<li>An instruction <i>control-depends</i> on a
2349    <a href="#terminators">terminator instruction</a>
2350    if the terminator instruction has multiple successors and the instruction
2351    is always executed when control transfers to one of the successors, and
2352    may not be executed when control is transferred to another.</li>
2353
2354<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2355    instruction if the set of instructions it otherwise depends on would be
2356    different if the terminator had transferred control to a different
2357    successor.</li>
2358
2359<li>Dependence is transitive.</li>
2360
2361</ul>
2362
2363<p>Whenever a trap value is generated, all values which depend on it evaluate
2364   to trap. If they have side effects, the evoke their side effects as if each
2365   operand with a trap value were undef. If they have externally-visible side
2366   effects, the behavior is undefined.</p>
2367
2368<p>Here are some examples:</p>
2369
2370<pre class="doc_code">
2371entry:
2372  %trap = sub nuw i32 0, 1           ; Results in a trap value.
2373  %still_trap = and i32 %trap, 0     ; Whereas (and i32 undef, 0) would return 0.
2374  %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2375  store i32 0, i32* %trap_yet_again  ; undefined behavior
2376
2377  store i32 %trap, i32* @g           ; Trap value conceptually stored to memory.
2378  %trap2 = load i32* @g              ; Returns a trap value, not just undef.
2379
2380  volatile store i32 %trap, i32* @g  ; External observation; undefined behavior.
2381
2382  %narrowaddr = bitcast i32* @g to i16*
2383  %wideaddr = bitcast i32* @g to i64*
2384  %trap3 = load i16* %narrowaddr     ; Returns a trap value.
2385  %trap4 = load i64* %wideaddr       ; Returns a trap value.
2386
2387  %cmp = icmp slt i32 %trap, 0       ; Returns a trap value.
2388  br i1 %cmp, label %true, label %end ; Branch to either destination.
2389
2390true:
2391  volatile store i32 0, i32* @g      ; This is control-dependent on %cmp, so
2392                                     ; it has undefined behavior.
2393  br label %end
2394
2395end:
2396  %p = phi i32 [ 0, %entry ], [ 1, %true ]
2397                                     ; Both edges into this PHI are
2398                                     ; control-dependent on %cmp, so this
2399                                     ; always results in a trap value.
2400
2401  volatile store i32 0, i32* @g      ; This would depend on the store in %true
2402                                     ; if %cmp is true, or the store in %entry
2403                                     ; otherwise, so this is undefined behavior.
2404
2405  br i1 %cmp, label %second_true, label %second_end
2406                                     ; The same branch again, but this time the
2407                                     ; true block doesn't have side effects.
2408
2409second_true:
2410  ; No side effects!
2411  ret void
2412
2413second_end:
2414  volatile store i32 0, i32* @g      ; This time, the instruction always depends
2415                                     ; on the store in %end. Also, it is
2416                                     ; control-equivalent to %end, so this is
2417                                     ; well-defined (again, ignoring earlier
2418                                     ; undefined behavior in this example).
2419</pre>
2420
2421</div>
2422
2423<!-- ======================================================================= -->
2424<h3>
2425  <a name="blockaddress">Addresses of Basic Blocks</a>
2426</h3>
2427
2428<div>
2429
2430<p><b><tt>blockaddress(@function, %block)</tt></b></p>
2431
2432<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2433   basic block in the specified function, and always has an i8* type.  Taking
2434   the address of the entry block is illegal.</p>
2435
2436<p>This value only has defined behavior when used as an operand to the
2437   '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2438   comparisons against null. Pointer equality tests between labels addresses
2439   results in undefined behavior &mdash; though, again, comparison against null
2440   is ok, and no label is equal to the null pointer. This may be passed around
2441   as an opaque pointer sized value as long as the bits are not inspected. This
2442   allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2443   long as the original value is reconstituted before the <tt>indirectbr</tt>
2444   instruction.</p>
2445
2446<p>Finally, some targets may provide defined semantics when using the value as
2447   the operand to an inline assembly, but that is target specific.</p>
2448
2449</div>
2450
2451
2452<!-- ======================================================================= -->
2453<h3>
2454  <a name="constantexprs">Constant Expressions</a>
2455</h3>
2456
2457<div>
2458
2459<p>Constant expressions are used to allow expressions involving other constants
2460   to be used as constants.  Constant expressions may be of
2461   any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2462   operation that does not have side effects (e.g. load and call are not
2463   supported). The following is the syntax for constant expressions:</p>
2464
2465<dl>
2466  <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
2467  <dd>Truncate a constant to another type. The bit size of CST must be larger
2468      than the bit size of TYPE. Both types must be integers.</dd>
2469
2470  <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
2471  <dd>Zero extend a constant to another type. The bit size of CST must be
2472      smaller than the bit size of TYPE.  Both types must be integers.</dd>
2473
2474  <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
2475  <dd>Sign extend a constant to another type. The bit size of CST must be
2476      smaller than the bit size of TYPE.  Both types must be integers.</dd>
2477
2478  <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
2479  <dd>Truncate a floating point constant to another floating point type. The
2480      size of CST must be larger than the size of TYPE. Both types must be
2481      floating point.</dd>
2482
2483  <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
2484  <dd>Floating point extend a constant to another type. The size of CST must be
2485      smaller or equal to the size of TYPE. Both types must be floating
2486      point.</dd>
2487
2488  <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
2489  <dd>Convert a floating point constant to the corresponding unsigned integer
2490      constant. TYPE must be a scalar or vector integer type. CST must be of
2491      scalar or vector floating point type. Both CST and TYPE must be scalars,
2492      or vectors of the same number of elements. If the value won't fit in the
2493      integer type, the results are undefined.</dd>
2494
2495  <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
2496  <dd>Convert a floating point constant to the corresponding signed integer
2497      constant.  TYPE must be a scalar or vector integer type. CST must be of
2498      scalar or vector floating point type. Both CST and TYPE must be scalars,
2499      or vectors of the same number of elements. If the value won't fit in the
2500      integer type, the results are undefined.</dd>
2501
2502  <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
2503  <dd>Convert an unsigned integer constant to the corresponding floating point
2504      constant. TYPE must be a scalar or vector floating point type. CST must be
2505      of scalar or vector integer type. Both CST and TYPE must be scalars, or
2506      vectors of the same number of elements. If the value won't fit in the
2507      floating point type, the results are undefined.</dd>
2508
2509  <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
2510  <dd>Convert a signed integer constant to the corresponding floating point
2511      constant. TYPE must be a scalar or vector floating point type. CST must be
2512      of scalar or vector integer type. Both CST and TYPE must be scalars, or
2513      vectors of the same number of elements. If the value won't fit in the
2514      floating point type, the results are undefined.</dd>
2515
2516  <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
2517  <dd>Convert a pointer typed constant to the corresponding integer constant
2518      <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2519      type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2520      make it fit in <tt>TYPE</tt>.</dd>
2521
2522  <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
2523  <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
2524      type.  CST must be of integer type. The CST value is zero extended,
2525      truncated, or unchanged to make it fit in a pointer size. This one is
2526      <i>really</i> dangerous!</dd>
2527
2528  <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
2529  <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2530      are the same as those for the <a href="#i_bitcast">bitcast
2531      instruction</a>.</dd>
2532
2533  <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2534  <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2535  <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2536      constants.  As with the <a href="#i_getelementptr">getelementptr</a>
2537      instruction, the index list may have zero or more indexes, which are
2538      required to make sense for the type of "CSTPTR".</dd>
2539
2540  <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
2541  <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2542
2543  <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
2544  <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2545
2546  <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
2547  <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2548
2549  <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
2550  <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2551      constants.</dd>
2552
2553  <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
2554  <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2555    constants.</dd>
2556
2557  <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
2558  <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2559      constants.</dd>
2560
2561  <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2562  <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2563    constants. The index list is interpreted in a similar manner as indices in
2564    a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2565    index value must be specified.</dd>
2566
2567  <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2568  <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2569    constants. The index list is interpreted in a similar manner as indices in
2570    a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2571    index value must be specified.</dd>
2572
2573  <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
2574  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2575      be any of the <a href="#binaryops">binary</a>
2576      or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
2577      on operands are the same as those for the corresponding instruction
2578      (e.g. no bitwise operations on floating point values are allowed).</dd>
2579</dl>
2580
2581</div>
2582
2583</div>
2584
2585<!-- *********************************************************************** -->
2586<h2><a name="othervalues">Other Values</a></h2>
2587<!-- *********************************************************************** -->
2588<div>
2589<!-- ======================================================================= -->
2590<h3>
2591<a name="inlineasm">Inline Assembler Expressions</a>
2592</h3>
2593
2594<div>
2595
2596<p>LLVM supports inline assembler expressions (as opposed
2597   to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2598   a special value.  This value represents the inline assembler as a string
2599   (containing the instructions to emit), a list of operand constraints (stored
2600   as a string), a flag that indicates whether or not the inline asm
2601   expression has side effects, and a flag indicating whether the function
2602   containing the asm needs to align its stack conservatively.  An example
2603   inline assembler expression is:</p>
2604
2605<pre class="doc_code">
2606i32 (i32) asm "bswap $0", "=r,r"
2607</pre>
2608
2609<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2610   a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
2611   have:</p>
2612
2613<pre class="doc_code">
2614%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2615</pre>
2616
2617<p>Inline asms with side effects not visible in the constraint list must be
2618   marked as having side effects.  This is done through the use of the
2619   '<tt>sideeffect</tt>' keyword, like so:</p>
2620
2621<pre class="doc_code">
2622call void asm sideeffect "eieio", ""()
2623</pre>
2624
2625<p>In some cases inline asms will contain code that will not work unless the
2626   stack is aligned in some way, such as calls or SSE instructions on x86,
2627   yet will not contain code that does that alignment within the asm.
2628   The compiler should make conservative assumptions about what the asm might
2629   contain and should generate its usual stack alignment code in the prologue
2630   if the '<tt>alignstack</tt>' keyword is present:</p>
2631
2632<pre class="doc_code">
2633call void asm alignstack "eieio", ""()
2634</pre>
2635
2636<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2637   first.</p>
2638
2639<p>TODO: The format of the asm and constraints string still need to be
2640   documented here.  Constraints on what can be done (e.g. duplication, moving,
2641   etc need to be documented).  This is probably best done by reference to
2642   another document that covers inline asm from a holistic perspective.</p>
2643
2644<h4>
2645<a name="inlineasm_md">Inline Asm Metadata</a>
2646</h4>
2647
2648<div>
2649
2650<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
2651   attached to it that contains a list of constant integers.  If present, the
2652  code generator will use the integer as the location cookie value when report
2653   errors through the LLVMContext error reporting mechanisms.  This allows a
2654   front-end to correlate backend errors that occur with inline asm back to the
2655   source code that produced it.  For example:</p>
2656
2657<pre class="doc_code">
2658call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2659...
2660!42 = !{ i32 1234567 }
2661</pre>
2662
2663<p>It is up to the front-end to make sense of the magic numbers it places in the
2664   IR.  If the MDNode contains multiple constants, the code generator will use
2665   the one that corresponds to the line of the asm that the error occurs on.</p>
2666
2667</div>
2668
2669</div>
2670
2671<!-- ======================================================================= -->
2672<h3>
2673  <a name="metadata">Metadata Nodes and Metadata Strings</a>
2674</h3>
2675
2676<div>
2677
2678<p>LLVM IR allows metadata to be attached to instructions in the program that
2679   can convey extra information about the code to the optimizers and code
2680   generator.  One example application of metadata is source-level debug
2681   information.  There are two metadata primitives: strings and nodes. All
2682   metadata has the <tt>metadata</tt> type and is identified in syntax by a
2683   preceding exclamation point ('<tt>!</tt>').</p>
2684
2685<p>A metadata string is a string surrounded by double quotes.  It can contain
2686   any character by escaping non-printable characters with "\xx" where "xx" is
2687   the two digit hex code.  For example: "<tt>!"test\00"</tt>".</p>
2688
2689<p>Metadata nodes are represented with notation similar to structure constants
2690   (a comma separated list of elements, surrounded by braces and preceded by an
2691   exclamation point).  For example: "<tt>!{ metadata !"test\00", i32
2692   10}</tt>".  Metadata nodes can have any values as their operand.</p>
2693
2694<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2695   metadata nodes, which can be looked up in the module symbol table. For
2696   example: "<tt>!foo =  metadata !{!4, !3}</tt>".
2697
2698<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2699   function is using two metadata arguments.</p>
2700
2701<div class="doc_code">
2702<pre>
2703call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2704</pre>
2705</div>
2706
2707<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2708   attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
2709
2710<div class="doc_code">
2711<pre>
2712%indvar.next = add i64 %indvar, 1, !dbg !21
2713</pre>
2714</div>
2715
2716</div>
2717
2718</div>
2719
2720<!-- *********************************************************************** -->
2721<h2>
2722  <a name="intrinsic_globals">Intrinsic Global Variables</a>
2723</h2>
2724<!-- *********************************************************************** -->
2725<div>
2726<p>LLVM has a number of "magic" global variables that contain data that affect
2727code generation or other IR semantics.  These are documented here.  All globals
2728of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
2729section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2730by LLVM.</p>
2731
2732<!-- ======================================================================= -->
2733<h3>
2734<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2735</h3>
2736
2737<div>
2738
2739<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2740href="#linkage_appending">appending linkage</a>.  This array contains a list of
2741pointers to global variables and functions which may optionally have a pointer
2742cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
2743
2744<pre>
2745  @X = global i8 4
2746  @Y = global i32 123
2747
2748  @llvm.used = appending global [2 x i8*] [
2749     i8* @X,
2750     i8* bitcast (i32* @Y to i8*)
2751  ], section "llvm.metadata"
2752</pre>
2753
2754<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2755compiler, assembler, and linker are required to treat the symbol as if there is
2756a reference to the global that it cannot see.  For example, if a variable has
2757internal linkage and no references other than that from the <tt>@llvm.used</tt>
2758list, it cannot be deleted.  This is commonly used to represent references from
2759inline asms and other things the compiler cannot "see", and corresponds to
2760"attribute((used))" in GNU C.</p>
2761
2762<p>On some targets, the code generator must emit a directive to the assembler or
2763object file to prevent the assembler and linker from molesting the symbol.</p>
2764
2765</div>
2766
2767<!-- ======================================================================= -->
2768<h3>
2769  <a name="intg_compiler_used">
2770    The '<tt>llvm.compiler.used</tt>' Global Variable
2771  </a>
2772</h3>
2773
2774<div>
2775
2776<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2777<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2778touching the symbol.  On targets that support it, this allows an intelligent
2779linker to optimize references to the symbol without being impeded as it would be
2780by <tt>@llvm.used</tt>.</p>
2781
2782<p>This is a rare construct that should only be used in rare circumstances, and
2783should not be exposed to source languages.</p>
2784
2785</div>
2786
2787<!-- ======================================================================= -->
2788<h3>
2789<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2790</h3>
2791
2792<div>
2793<pre>
2794%0 = type { i32, void ()* }
2795@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2796</pre>
2797<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities.  The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded.  The order of functions with the same priority is not defined.
2798</p>
2799
2800</div>
2801
2802<!-- ======================================================================= -->
2803<h3>
2804<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2805</h3>
2806
2807<div>
2808<pre>
2809%0 = type { i32, void ()* }
2810@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2811</pre>
2812
2813<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities.  The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded.  The order of functions with the same priority is not defined.
2814</p>
2815
2816</div>
2817
2818</div>
2819
2820<!-- *********************************************************************** -->
2821<h2><a name="instref">Instruction Reference</a></h2>
2822<!-- *********************************************************************** -->
2823
2824<div>
2825
2826<p>The LLVM instruction set consists of several different classifications of
2827   instructions: <a href="#terminators">terminator
2828   instructions</a>, <a href="#binaryops">binary instructions</a>,
2829   <a href="#bitwiseops">bitwise binary instructions</a>,
2830   <a href="#memoryops">memory instructions</a>, and
2831   <a href="#otherops">other instructions</a>.</p>
2832
2833<!-- ======================================================================= -->
2834<h3>
2835  <a name="terminators">Terminator Instructions</a>
2836</h3>
2837
2838<div>
2839
2840<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2841   in a program ends with a "Terminator" instruction, which indicates which
2842   block should be executed after the current block is finished. These
2843   terminator instructions typically yield a '<tt>void</tt>' value: they produce
2844   control flow, not values (the one exception being the
2845   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2846
2847<p>There are seven different terminator instructions: the
2848   '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2849   '<a href="#i_br"><tt>br</tt></a>' instruction, the
2850   '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2851   '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
2852   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2853   '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2854   '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
2855
2856<!-- _______________________________________________________________________ -->
2857<h4>
2858  <a name="i_ret">'<tt>ret</tt>' Instruction</a>
2859</h4>
2860
2861<div>
2862
2863<h5>Syntax:</h5>
2864<pre>
2865  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
2866  ret void                 <i>; Return from void function</i>
2867</pre>
2868
2869<h5>Overview:</h5>
2870<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2871   a value) from a function back to the caller.</p>
2872
2873<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2874   value and then causes control flow, and one that just causes control flow to
2875   occur.</p>
2876
2877<h5>Arguments:</h5>
2878<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2879   return value. The type of the return value must be a
2880   '<a href="#t_firstclass">first class</a>' type.</p>
2881
2882<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2883   non-void return type and contains a '<tt>ret</tt>' instruction with no return
2884   value or a return value with a type that does not match its type, or if it
2885   has a void return type and contains a '<tt>ret</tt>' instruction with a
2886   return value.</p>
2887
2888<h5>Semantics:</h5>
2889<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2890   the calling function's context.  If the caller is a
2891   "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2892   instruction after the call.  If the caller was an
2893   "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2894   the beginning of the "normal" destination block.  If the instruction returns
2895   a value, that value shall set the call or invoke instruction's return
2896   value.</p>
2897
2898<h5>Example:</h5>
2899<pre>
2900  ret i32 5                       <i>; Return an integer value of 5</i>
2901  ret void                        <i>; Return from a void function</i>
2902  ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
2903</pre>
2904
2905</div>
2906<!-- _______________________________________________________________________ -->
2907<h4>
2908  <a name="i_br">'<tt>br</tt>' Instruction</a>
2909</h4>
2910
2911<div>
2912
2913<h5>Syntax:</h5>
2914<pre>
2915  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
2916</pre>
2917
2918<h5>Overview:</h5>
2919<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2920   different basic block in the current function.  There are two forms of this
2921   instruction, corresponding to a conditional branch and an unconditional
2922   branch.</p>
2923
2924<h5>Arguments:</h5>
2925<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2926   '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
2927   of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2928   target.</p>
2929
2930<h5>Semantics:</h5>
2931<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2932   argument is evaluated.  If the value is <tt>true</tt>, control flows to the
2933   '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
2934   control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2935
2936<h5>Example:</h5>
2937<pre>
2938Test:
2939  %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2940  br i1 %cond, label %IfEqual, label %IfUnequal
2941IfEqual:
2942  <a href="#i_ret">ret</a> i32 1
2943IfUnequal:
2944  <a href="#i_ret">ret</a> i32 0
2945</pre>
2946
2947</div>
2948
2949<!-- _______________________________________________________________________ -->
2950<h4>
2951   <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2952</h4>
2953
2954<div>
2955
2956<h5>Syntax:</h5>
2957<pre>
2958  switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2959</pre>
2960
2961<h5>Overview:</h5>
2962<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2963   several different places.  It is a generalization of the '<tt>br</tt>'
2964   instruction, allowing a branch to occur to one of many possible
2965   destinations.</p>
2966
2967<h5>Arguments:</h5>
2968<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2969   comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2970   and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2971   The table is not allowed to contain duplicate constant entries.</p>
2972
2973<h5>Semantics:</h5>
2974<p>The <tt>switch</tt> instruction specifies a table of values and
2975   destinations. When the '<tt>switch</tt>' instruction is executed, this table
2976   is searched for the given value.  If the value is found, control flow is
2977   transferred to the corresponding destination; otherwise, control flow is
2978   transferred to the default destination.</p>
2979
2980<h5>Implementation:</h5>
2981<p>Depending on properties of the target machine and the particular
2982   <tt>switch</tt> instruction, this instruction may be code generated in
2983   different ways.  For example, it could be generated as a series of chained
2984   conditional branches or with a lookup table.</p>
2985
2986<h5>Example:</h5>
2987<pre>
2988 <i>; Emulate a conditional br instruction</i>
2989 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2990 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2991
2992 <i>; Emulate an unconditional br instruction</i>
2993 switch i32 0, label %dest [ ]
2994
2995 <i>; Implement a jump table:</i>
2996 switch i32 %val, label %otherwise [ i32 0, label %onzero
2997                                     i32 1, label %onone
2998                                     i32 2, label %ontwo ]
2999</pre>
3000
3001</div>
3002
3003
3004<!-- _______________________________________________________________________ -->
3005<h4>
3006   <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
3007</h4>
3008
3009<div>
3010
3011<h5>Syntax:</h5>
3012<pre>
3013  indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
3014</pre>
3015
3016<h5>Overview:</h5>
3017
3018<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
3019   within the current function, whose address is specified by
3020   "<tt>address</tt>".  Address must be derived from a <a
3021   href="#blockaddress">blockaddress</a> constant.</p>
3022
3023<h5>Arguments:</h5>
3024
3025<p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
3026   rest of the arguments indicate the full set of possible destinations that the
3027   address may point to.  Blocks are allowed to occur multiple times in the
3028   destination list, though this isn't particularly useful.</p>
3029
3030<p>This destination list is required so that dataflow analysis has an accurate
3031   understanding of the CFG.</p>
3032
3033<h5>Semantics:</h5>
3034
3035<p>Control transfers to the block specified in the address argument.  All
3036   possible destination blocks must be listed in the label list, otherwise this
3037   instruction has undefined behavior.  This implies that jumps to labels
3038   defined in other functions have undefined behavior as well.</p>
3039
3040<h5>Implementation:</h5>
3041
3042<p>This is typically implemented with a jump through a register.</p>
3043
3044<h5>Example:</h5>
3045<pre>
3046 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3047</pre>
3048
3049</div>
3050
3051
3052<!-- _______________________________________________________________________ -->
3053<h4>
3054  <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3055</h4>
3056
3057<div>
3058
3059<h5>Syntax:</h5>
3060<pre>
3061  &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
3062                to label &lt;normal label&gt; unwind label &lt;exception label&gt;
3063</pre>
3064
3065<h5>Overview:</h5>
3066<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
3067   function, with the possibility of control flow transfer to either the
3068   '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
3069   function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3070   control flow will return to the "normal" label.  If the callee (or any
3071   indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3072   instruction, control is interrupted and continued at the dynamically nearest
3073   "exception" label.</p>
3074
3075<h5>Arguments:</h5>
3076<p>This instruction requires several arguments:</p>
3077
3078<ol>
3079  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3080      convention</a> the call should use.  If none is specified, the call
3081      defaults to using C calling conventions.</li>
3082
3083  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
3084      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3085      '<tt>inreg</tt>' attributes are valid here.</li>
3086
3087  <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
3088      function value being invoked.  In most cases, this is a direct function
3089      invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3090      off an arbitrary pointer to function value.</li>
3091
3092  <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
3093      function to be invoked. </li>
3094
3095  <li>'<tt>function args</tt>': argument list whose types match the function
3096      signature argument types and parameter attributes. All arguments must be
3097      of <a href="#t_firstclass">first class</a> type. If the function
3098      signature indicates the function accepts a variable number of arguments,
3099      the extra arguments can be specified.</li>
3100
3101  <li>'<tt>normal label</tt>': the label reached when the called function
3102      executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
3103
3104  <li>'<tt>exception label</tt>': the label reached when a callee returns with
3105      the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
3106
3107  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
3108      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3109      '<tt>readnone</tt>' attributes are valid here.</li>
3110</ol>
3111
3112<h5>Semantics:</h5>
3113<p>This instruction is designed to operate as a standard
3114   '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
3115   primary difference is that it establishes an association with a label, which
3116   is used by the runtime library to unwind the stack.</p>
3117
3118<p>This instruction is used in languages with destructors to ensure that proper
3119   cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3120   exception.  Additionally, this is important for implementation of
3121   '<tt>catch</tt>' clauses in high-level languages that support them.</p>
3122
3123<p>For the purposes of the SSA form, the definition of the value returned by the
3124   '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3125   block to the "normal" label. If the callee unwinds then no return value is
3126   available.</p>
3127
3128<p>Note that the code generator does not yet completely support unwind, and
3129that the invoke/unwind semantics are likely to change in future versions.</p>
3130
3131<h5>Example:</h5>
3132<pre>
3133  %retval = invoke i32 @Test(i32 15) to label %Continue
3134              unwind label %TestCleanup              <i>; {i32}:retval set</i>
3135  %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
3136              unwind label %TestCleanup              <i>; {i32}:retval set</i>
3137</pre>
3138
3139</div>
3140
3141<!-- _______________________________________________________________________ -->
3142
3143<h4>
3144  <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3145</h4>
3146
3147<div>
3148
3149<h5>Syntax:</h5>
3150<pre>
3151  unwind
3152</pre>
3153
3154<h5>Overview:</h5>
3155<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
3156   at the first callee in the dynamic call stack which used
3157   an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3158   This is primarily used to implement exception handling.</p>
3159
3160<h5>Semantics:</h5>
3161<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
3162   immediately halt.  The dynamic call stack is then searched for the
3163   first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3164   Once found, execution continues at the "exceptional" destination block
3165   specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt>
3166   instruction in the dynamic call chain, undefined behavior results.</p>
3167
3168<p>Note that the code generator does not yet completely support unwind, and
3169that the invoke/unwind semantics are likely to change in future versions.</p>
3170
3171</div>
3172
3173<!-- _______________________________________________________________________ -->
3174
3175<h4>
3176  <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3177</h4>
3178
3179<div>
3180
3181<h5>Syntax:</h5>
3182<pre>
3183  unreachable
3184</pre>
3185
3186<h5>Overview:</h5>
3187<p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
3188   instruction is used to inform the optimizer that a particular portion of the
3189   code is not reachable.  This can be used to indicate that the code after a
3190   no-return function cannot be reached, and other facts.</p>
3191
3192<h5>Semantics:</h5>
3193<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
3194
3195</div>
3196
3197</div>
3198
3199<!-- ======================================================================= -->
3200<h3>
3201  <a name="binaryops">Binary Operations</a>
3202</h3>
3203
3204<div>
3205
3206<p>Binary operators are used to do most of the computation in a program.  They
3207   require two operands of the same type, execute an operation on them, and
3208   produce a single value.  The operands might represent multiple data, as is
3209   the case with the <a href="#t_vector">vector</a> data type.  The result value
3210   has the same type as its operands.</p>
3211
3212<p>There are several different binary operators:</p>
3213
3214<!-- _______________________________________________________________________ -->
3215<h4>
3216  <a name="i_add">'<tt>add</tt>' Instruction</a>
3217</h4>
3218
3219<div>
3220
3221<h5>Syntax:</h5>
3222<pre>
3223  &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3224  &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3225  &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3226  &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3227</pre>
3228
3229<h5>Overview:</h5>
3230<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
3231
3232<h5>Arguments:</h5>
3233<p>The two arguments to the '<tt>add</tt>' instruction must
3234   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3235   integer values. Both arguments must have identical types.</p>
3236
3237<h5>Semantics:</h5>
3238<p>The value produced is the integer sum of the two operands.</p>
3239
3240<p>If the sum has unsigned overflow, the result returned is the mathematical
3241   result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
3242
3243<p>Because LLVM integers use a two's complement representation, this instruction
3244   is appropriate for both signed and unsigned integers.</p>
3245
3246<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3247   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3248   <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3249   is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3250   respectively, occurs.</p>
3251
3252<h5>Example:</h5>
3253<pre>
3254  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
3255</pre>
3256
3257</div>
3258
3259<!-- _______________________________________________________________________ -->
3260<h4>
3261  <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3262</h4>
3263
3264<div>
3265
3266<h5>Syntax:</h5>
3267<pre>
3268  &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3269</pre>
3270
3271<h5>Overview:</h5>
3272<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3273
3274<h5>Arguments:</h5>
3275<p>The two arguments to the '<tt>fadd</tt>' instruction must be
3276   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3277   floating point values. Both arguments must have identical types.</p>
3278
3279<h5>Semantics:</h5>
3280<p>The value produced is the floating point sum of the two operands.</p>
3281
3282<h5>Example:</h5>
3283<pre>
3284  &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
3285</pre>
3286
3287</div>
3288
3289<!-- _______________________________________________________________________ -->
3290<h4>
3291   <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3292</h4>
3293
3294<div>
3295
3296<h5>Syntax:</h5>
3297<pre>
3298  &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3299  &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3300  &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3301  &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3302</pre>
3303
3304<h5>Overview:</h5>
3305<p>The '<tt>sub</tt>' instruction returns the difference of its two
3306   operands.</p>
3307
3308<p>Note that the '<tt>sub</tt>' instruction is used to represent the
3309   '<tt>neg</tt>' instruction present in most other intermediate
3310   representations.</p>
3311
3312<h5>Arguments:</h5>
3313<p>The two arguments to the '<tt>sub</tt>' instruction must
3314   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3315   integer values.  Both arguments must have identical types.</p>
3316
3317<h5>Semantics:</h5>
3318<p>The value produced is the integer difference of the two operands.</p>
3319
3320<p>If the difference has unsigned overflow, the result returned is the
3321   mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3322   result.</p>
3323
3324<p>Because LLVM integers use a two's complement representation, this instruction
3325   is appropriate for both signed and unsigned integers.</p>
3326
3327<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3328   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3329   <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3330   is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3331   respectively, occurs.</p>
3332
3333<h5>Example:</h5>
3334<pre>
3335  &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
3336  &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
3337</pre>
3338
3339</div>
3340
3341<!-- _______________________________________________________________________ -->
3342<h4>
3343   <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3344</h4>
3345
3346<div>
3347
3348<h5>Syntax:</h5>
3349<pre>
3350  &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3351</pre>
3352
3353<h5>Overview:</h5>
3354<p>The '<tt>fsub</tt>' instruction returns the difference of its two
3355   operands.</p>
3356
3357<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
3358   '<tt>fneg</tt>' instruction present in most other intermediate
3359   representations.</p>
3360
3361<h5>Arguments:</h5>
3362<p>The two arguments to the '<tt>fsub</tt>' instruction must be
3363   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3364   floating point values.  Both arguments must have identical types.</p>
3365
3366<h5>Semantics:</h5>
3367<p>The value produced is the floating point difference of the two operands.</p>
3368
3369<h5>Example:</h5>
3370<pre>
3371  &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
3372  &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
3373</pre>
3374
3375</div>
3376
3377<!-- _______________________________________________________________________ -->
3378<h4>
3379  <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3380</h4>
3381
3382<div>
3383
3384<h5>Syntax:</h5>
3385<pre>
3386  &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3387  &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3388  &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3389  &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3390</pre>
3391
3392<h5>Overview:</h5>
3393<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
3394
3395<h5>Arguments:</h5>
3396<p>The two arguments to the '<tt>mul</tt>' instruction must
3397   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3398   integer values.  Both arguments must have identical types.</p>
3399
3400<h5>Semantics:</h5>
3401<p>The value produced is the integer product of the two operands.</p>
3402
3403<p>If the result of the multiplication has unsigned overflow, the result
3404   returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3405   width of the result.</p>
3406
3407<p>Because LLVM integers use a two's complement representation, and the result
3408   is the same width as the operands, this instruction returns the correct
3409   result for both signed and unsigned integers.  If a full product
3410   (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3411   be sign-extended or zero-extended as appropriate to the width of the full
3412   product.</p>
3413
3414<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3415   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3416   <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3417   is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3418   respectively, occurs.</p>
3419
3420<h5>Example:</h5>
3421<pre>
3422  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
3423</pre>
3424
3425</div>
3426
3427<!-- _______________________________________________________________________ -->
3428<h4>
3429  <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3430</h4>
3431
3432<div>
3433
3434<h5>Syntax:</h5>
3435<pre>
3436  &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3437</pre>
3438
3439<h5>Overview:</h5>
3440<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
3441
3442<h5>Arguments:</h5>
3443<p>The two arguments to the '<tt>fmul</tt>' instruction must be
3444   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3445   floating point values.  Both arguments must have identical types.</p>
3446
3447<h5>Semantics:</h5>
3448<p>The value produced is the floating point product of the two operands.</p>
3449
3450<h5>Example:</h5>
3451<pre>
3452  &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
3453</pre>
3454
3455</div>
3456
3457<!-- _______________________________________________________________________ -->
3458<h4>
3459  <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3460</h4>
3461
3462<div>
3463
3464<h5>Syntax:</h5>
3465<pre>
3466  &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
3467  &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3468</pre>
3469
3470<h5>Overview:</h5>
3471<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
3472
3473<h5>Arguments:</h5>
3474<p>The two arguments to the '<tt>udiv</tt>' instruction must be
3475   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3476   values.  Both arguments must have identical types.</p>
3477
3478<h5>Semantics:</h5>
3479<p>The value produced is the unsigned integer quotient of the two operands.</p>
3480
3481<p>Note that unsigned integer division and signed integer division are distinct
3482   operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3483
3484<p>Division by zero leads to undefined behavior.</p>
3485
3486<p>If the <tt>exact</tt> keyword is present, the result value of the
3487   <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3488  multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3489
3490
3491<h5>Example:</h5>
3492<pre>
3493  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
3494</pre>
3495
3496</div>
3497
3498<!-- _______________________________________________________________________ -->
3499<h4>
3500  <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3501</h4>
3502
3503<div>
3504
3505<h5>Syntax:</h5>
3506<pre>
3507  &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
3508  &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3509</pre>
3510
3511<h5>Overview:</h5>
3512<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
3513
3514<h5>Arguments:</h5>
3515<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
3516   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3517   values.  Both arguments must have identical types.</p>
3518
3519<h5>Semantics:</h5>
3520<p>The value produced is the signed integer quotient of the two operands rounded
3521   towards zero.</p>
3522
3523<p>Note that signed integer division and unsigned integer division are distinct
3524   operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3525
3526<p>Division by zero leads to undefined behavior. Overflow also leads to
3527   undefined behavior; this is a rare case, but can occur, for example, by doing
3528   a 32-bit division of -2147483648 by -1.</p>
3529
3530<p>If the <tt>exact</tt> keyword is present, the result value of the
3531   <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
3532   be rounded.</p>
3533
3534<h5>Example:</h5>
3535<pre>
3536  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
3537</pre>
3538
3539</div>
3540
3541<!-- _______________________________________________________________________ -->
3542<h4>
3543  <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3544</h4>
3545
3546<div>
3547
3548<h5>Syntax:</h5>
3549<pre>
3550  &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3551</pre>
3552
3553<h5>Overview:</h5>
3554<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
3555
3556<h5>Arguments:</h5>
3557<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
3558   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3559   floating point values.  Both arguments must have identical types.</p>
3560
3561<h5>Semantics:</h5>
3562<p>The value produced is the floating point quotient of the two operands.</p>
3563
3564<h5>Example:</h5>
3565<pre>
3566  &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
3567</pre>
3568
3569</div>
3570
3571<!-- _______________________________________________________________________ -->
3572<h4>
3573  <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3574</h4>
3575
3576<div>
3577
3578<h5>Syntax:</h5>
3579<pre>
3580  &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3581</pre>
3582
3583<h5>Overview:</h5>
3584<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3585   division of its two arguments.</p>
3586
3587<h5>Arguments:</h5>
3588<p>The two arguments to the '<tt>urem</tt>' instruction must be
3589   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3590   values.  Both arguments must have identical types.</p>
3591
3592<h5>Semantics:</h5>
3593<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
3594   This instruction always performs an unsigned division to get the
3595   remainder.</p>
3596
3597<p>Note that unsigned integer remainder and signed integer remainder are
3598   distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3599
3600<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
3601
3602<h5>Example:</h5>
3603<pre>
3604  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
3605</pre>
3606
3607</div>
3608
3609<!-- _______________________________________________________________________ -->
3610<h4>
3611  <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3612</h4>
3613
3614<div>
3615
3616<h5>Syntax:</h5>
3617<pre>
3618  &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3619</pre>
3620
3621<h5>Overview:</h5>
3622<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3623   division of its two operands. This instruction can also take
3624   <a href="#t_vector">vector</a> versions of the values in which case the
3625   elements must be integers.</p>
3626
3627<h5>Arguments:</h5>
3628<p>The two arguments to the '<tt>srem</tt>' instruction must be
3629   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3630   values.  Both arguments must have identical types.</p>
3631
3632<h5>Semantics:</h5>
3633<p>This instruction returns the <i>remainder</i> of a division (where the result
3634   is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3635   <i>modulo</i> operator (where the result is either zero or has the same sign
3636   as the divisor, <tt>op2</tt>) of a value.
3637   For more information about the difference,
3638   see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3639   Math Forum</a>. For a table of how this is implemented in various languages,
3640   please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3641   Wikipedia: modulo operation</a>.</p>
3642
3643<p>Note that signed integer remainder and unsigned integer remainder are
3644   distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3645
3646<p>Taking the remainder of a division by zero leads to undefined behavior.
3647   Overflow also leads to undefined behavior; this is a rare case, but can
3648   occur, for example, by taking the remainder of a 32-bit division of
3649   -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
3650   lets srem be implemented using instructions that return both the result of
3651   the division and the remainder.)</p>
3652
3653<h5>Example:</h5>
3654<pre>
3655  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
3656</pre>
3657
3658</div>
3659
3660<!-- _______________________________________________________________________ -->
3661<h4>
3662  <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3663</h4>
3664
3665<div>
3666
3667<h5>Syntax:</h5>
3668<pre>
3669  &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3670</pre>
3671
3672<h5>Overview:</h5>
3673<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3674   its two operands.</p>
3675
3676<h5>Arguments:</h5>
3677<p>The two arguments to the '<tt>frem</tt>' instruction must be
3678   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3679   floating point values.  Both arguments must have identical types.</p>
3680
3681<h5>Semantics:</h5>
3682<p>This instruction returns the <i>remainder</i> of a division.  The remainder
3683   has the same sign as the dividend.</p>
3684
3685<h5>Example:</h5>
3686<pre>
3687  &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
3688</pre>
3689
3690</div>
3691
3692</div>
3693
3694<!-- ======================================================================= -->
3695<h3>
3696  <a name="bitwiseops">Bitwise Binary Operations</a>
3697</h3>
3698
3699<div>
3700
3701<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3702   program.  They are generally very efficient instructions and can commonly be
3703   strength reduced from other instructions.  They require two operands of the
3704   same type, execute an operation on them, and produce a single value.  The
3705   resulting value is the same type as its operands.</p>
3706
3707<!-- _______________________________________________________________________ -->
3708<h4>
3709  <a name="i_shl">'<tt>shl</tt>' Instruction</a>
3710</h4>
3711
3712<div>
3713
3714<h5>Syntax:</h5>
3715<pre>
3716  &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
3717  &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
3718  &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
3719  &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3720</pre>
3721
3722<h5>Overview:</h5>
3723<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3724   a specified number of bits.</p>
3725
3726<h5>Arguments:</h5>
3727<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3728    same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3729    integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
3730
3731<h5>Semantics:</h5>
3732<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3733   2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
3734   is (statically or dynamically) negative or equal to or larger than the number
3735   of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
3736   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3737   shift amount in <tt>op2</tt>.</p>
3738
3739<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3740   <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits.  If
3741   the <tt>nsw</tt> keyword is present, then the shift produces a
3742   <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3743   with the resultant sign bit.  As such, NUW/NSW have the same semantics as
3744   they would if the shift were expressed as a mul instruction with the same
3745   nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3746
3747<h5>Example:</h5>
3748<pre>
3749  &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
3750  &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
3751  &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
3752  &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
3753  &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
3754</pre>
3755
3756</div>
3757
3758<!-- _______________________________________________________________________ -->
3759<h4>
3760  <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
3761</h4>
3762
3763<div>
3764
3765<h5>Syntax:</h5>
3766<pre>
3767  &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
3768  &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3769</pre>
3770
3771<h5>Overview:</h5>
3772<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3773   operand shifted to the right a specified number of bits with zero fill.</p>
3774
3775<h5>Arguments:</h5>
3776<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
3777   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3778   type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3779
3780<h5>Semantics:</h5>
3781<p>This instruction always performs a logical shift right operation. The most
3782   significant bits of the result will be filled with zero bits after the shift.
3783   If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3784   number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3785   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3786   shift amount in <tt>op2</tt>.</p>
3787
3788<p>If the <tt>exact</tt> keyword is present, the result value of the
3789   <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3790   shifted out are non-zero.</p>
3791
3792
3793<h5>Example:</h5>
3794<pre>
3795  &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
3796  &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
3797  &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
3798  &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
3799  &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
3800  &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
3801</pre>
3802
3803</div>
3804
3805<!-- _______________________________________________________________________ -->
3806<h4>
3807  <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
3808</h4>
3809
3810<div>
3811
3812<h5>Syntax:</h5>
3813<pre>
3814  &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
3815  &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3816</pre>
3817
3818<h5>Overview:</h5>
3819<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3820   operand shifted to the right a specified number of bits with sign
3821   extension.</p>
3822
3823<h5>Arguments:</h5>
3824<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
3825   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3826   type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
3827
3828<h5>Semantics:</h5>
3829<p>This instruction always performs an arithmetic shift right operation, The
3830   most significant bits of the result will be filled with the sign bit
3831   of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
3832   larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3833   the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3834   the corresponding shift amount in <tt>op2</tt>.</p>
3835
3836<p>If the <tt>exact</tt> keyword is present, the result value of the
3837   <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3838   shifted out are non-zero.</p>
3839
3840<h5>Example:</h5>
3841<pre>
3842  &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
3843  &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
3844  &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
3845  &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
3846  &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
3847  &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
3848</pre>
3849
3850</div>
3851
3852<!-- _______________________________________________________________________ -->
3853<h4>
3854  <a name="i_and">'<tt>and</tt>' Instruction</a>
3855</h4>
3856
3857<div>
3858
3859<h5>Syntax:</h5>
3860<pre>
3861  &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3862</pre>
3863
3864<h5>Overview:</h5>
3865<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3866   operands.</p>
3867
3868<h5>Arguments:</h5>
3869<p>The two arguments to the '<tt>and</tt>' instruction must be
3870   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3871   values.  Both arguments must have identical types.</p>
3872
3873<h5>Semantics:</h5>
3874<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
3875
3876<table border="1" cellspacing="0" cellpadding="4">
3877  <tbody>
3878    <tr>
3879      <td>In0</td>
3880      <td>In1</td>
3881      <td>Out</td>
3882    </tr>
3883    <tr>
3884      <td>0</td>
3885      <td>0</td>
3886      <td>0</td>
3887    </tr>
3888    <tr>
3889      <td>0</td>
3890      <td>1</td>
3891      <td>0</td>
3892    </tr>
3893    <tr>
3894      <td>1</td>
3895      <td>0</td>
3896      <td>0</td>
3897    </tr>
3898    <tr>
3899      <td>1</td>
3900      <td>1</td>
3901      <td>1</td>
3902    </tr>
3903  </tbody>
3904</table>
3905
3906<h5>Example:</h5>
3907<pre>
3908  &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
3909  &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
3910  &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
3911</pre>
3912</div>
3913<!-- _______________________________________________________________________ -->
3914<h4>
3915  <a name="i_or">'<tt>or</tt>' Instruction</a>
3916</h4>
3917
3918<div>
3919
3920<h5>Syntax:</h5>
3921<pre>
3922  &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3923</pre>
3924
3925<h5>Overview:</h5>
3926<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3927   two operands.</p>
3928
3929<h5>Arguments:</h5>
3930<p>The two arguments to the '<tt>or</tt>' instruction must be
3931   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3932   values.  Both arguments must have identical types.</p>
3933
3934<h5>Semantics:</h5>
3935<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
3936
3937<table border="1" cellspacing="0" cellpadding="4">
3938  <tbody>
3939    <tr>
3940      <td>In0</td>
3941      <td>In1</td>
3942      <td>Out</td>
3943    </tr>
3944    <tr>
3945      <td>0</td>
3946      <td>0</td>
3947      <td>0</td>
3948    </tr>
3949    <tr>
3950      <td>0</td>
3951      <td>1</td>
3952      <td>1</td>
3953    </tr>
3954    <tr>
3955      <td>1</td>
3956      <td>0</td>
3957      <td>1</td>
3958    </tr>
3959    <tr>
3960      <td>1</td>
3961      <td>1</td>
3962      <td>1</td>
3963    </tr>
3964  </tbody>
3965</table>
3966
3967<h5>Example:</h5>
3968<pre>
3969  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
3970  &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
3971  &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
3972</pre>
3973
3974</div>
3975
3976<!-- _______________________________________________________________________ -->
3977<h4>
3978  <a name="i_xor">'<tt>xor</tt>' Instruction</a>
3979</h4>
3980
3981<div>
3982
3983<h5>Syntax:</h5>
3984<pre>
3985  &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3986</pre>
3987
3988<h5>Overview:</h5>
3989<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3990   its two operands.  The <tt>xor</tt> is used to implement the "one's
3991   complement" operation, which is the "~" operator in C.</p>
3992
3993<h5>Arguments:</h5>
3994<p>The two arguments to the '<tt>xor</tt>' instruction must be
3995   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3996   values.  Both arguments must have identical types.</p>
3997
3998<h5>Semantics:</h5>
3999<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
4000
4001<table border="1" cellspacing="0" cellpadding="4">
4002  <tbody>
4003    <tr>
4004      <td>In0</td>
4005      <td>In1</td>
4006      <td>Out</td>
4007    </tr>
4008    <tr>
4009      <td>0</td>
4010      <td>0</td>
4011      <td>0</td>
4012    </tr>
4013    <tr>
4014      <td>0</td>
4015      <td>1</td>
4016      <td>1</td>
4017    </tr>
4018    <tr>
4019      <td>1</td>
4020      <td>0</td>
4021      <td>1</td>
4022    </tr>
4023    <tr>
4024      <td>1</td>
4025      <td>1</td>
4026      <td>0</td>
4027    </tr>
4028  </tbody>
4029</table>
4030
4031<h5>Example:</h5>
4032<pre>
4033  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
4034  &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
4035  &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
4036  &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
4037</pre>
4038
4039</div>
4040
4041</div>
4042
4043<!-- ======================================================================= -->
4044<h3>
4045  <a name="vectorops">Vector Operations</a>
4046</h3>
4047
4048<div>
4049
4050<p>LLVM supports several instructions to represent vector operations in a
4051   target-independent manner.  These instructions cover the element-access and
4052   vector-specific operations needed to process vectors effectively.  While LLVM
4053   does directly support these vector operations, many sophisticated algorithms
4054   will want to use target-specific intrinsics to take full advantage of a
4055   specific target.</p>
4056
4057<!-- _______________________________________________________________________ -->
4058<h4>
4059   <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
4060</h4>
4061
4062<div>
4063
4064<h5>Syntax:</h5>
4065<pre>
4066  &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
4067</pre>
4068
4069<h5>Overview:</h5>
4070<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4071   from a vector at a specified index.</p>
4072
4073
4074<h5>Arguments:</h5>
4075<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4076   of <a href="#t_vector">vector</a> type.  The second operand is an index
4077   indicating the position from which to extract the element.  The index may be
4078   a variable.</p>
4079
4080<h5>Semantics:</h5>
4081<p>The result is a scalar of the same type as the element type of
4082   <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
4083   <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4084   results are undefined.</p>
4085
4086<h5>Example:</h5>
4087<pre>
4088  &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
4089</pre>
4090
4091</div>
4092
4093<!-- _______________________________________________________________________ -->
4094<h4>
4095   <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4096</h4>
4097
4098<div>
4099
4100<h5>Syntax:</h5>
4101<pre>
4102  &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
4103</pre>
4104
4105<h5>Overview:</h5>
4106<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4107   vector at a specified index.</p>
4108
4109<h5>Arguments:</h5>
4110<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4111   of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
4112   whose type must equal the element type of the first operand.  The third
4113   operand is an index indicating the position at which to insert the value.
4114   The index may be a variable.</p>
4115
4116<h5>Semantics:</h5>
4117<p>The result is a vector of the same type as <tt>val</tt>.  Its element values
4118   are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4119   value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4120   results are undefined.</p>
4121
4122<h5>Example:</h5>
4123<pre>
4124  &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
4125</pre>
4126
4127</div>
4128
4129<!-- _______________________________________________________________________ -->
4130<h4>
4131   <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4132</h4>
4133
4134<div>
4135
4136<h5>Syntax:</h5>
4137<pre>
4138  &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
4139</pre>
4140
4141<h5>Overview:</h5>
4142<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4143   from two input vectors, returning a vector with the same element type as the
4144   input and length that is the same as the shuffle mask.</p>
4145
4146<h5>Arguments:</h5>
4147<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4148   with types that match each other. The third argument is a shuffle mask whose
4149   element type is always 'i32'.  The result of the instruction is a vector
4150   whose length is the same as the shuffle mask and whose element type is the
4151   same as the element type of the first two operands.</p>
4152
4153<p>The shuffle mask operand is required to be a constant vector with either
4154   constant integer or undef values.</p>
4155
4156<h5>Semantics:</h5>
4157<p>The elements of the two input vectors are numbered from left to right across
4158   both of the vectors.  The shuffle mask operand specifies, for each element of
4159   the result vector, which element of the two input vectors the result element
4160   gets.  The element selector may be undef (meaning "don't care") and the
4161   second operand may be undef if performing a shuffle from only one vector.</p>
4162
4163<h5>Example:</h5>
4164<pre>
4165  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4166                          &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
4167  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
4168                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
4169  &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
4170                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
4171  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4172                          &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
4173</pre>
4174
4175</div>
4176
4177</div>
4178
4179<!-- ======================================================================= -->
4180<h3>
4181  <a name="aggregateops">Aggregate Operations</a>
4182</h3>
4183
4184<div>
4185
4186<p>LLVM supports several instructions for working with
4187  <a href="#t_aggregate">aggregate</a> values.</p>
4188
4189<!-- _______________________________________________________________________ -->
4190<h4>
4191   <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4192</h4>
4193
4194<div>
4195
4196<h5>Syntax:</h5>
4197<pre>
4198  &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4199</pre>
4200
4201<h5>Overview:</h5>
4202<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4203   from an <a href="#t_aggregate">aggregate</a> value.</p>
4204
4205<h5>Arguments:</h5>
4206<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
4207   of <a href="#t_struct">struct</a> or
4208   <a href="#t_array">array</a> type.  The operands are constant indices to
4209   specify which value to extract in a similar manner as indices in a
4210   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
4211   <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4212     <ul>
4213       <li>Since the value being indexed is not a pointer, the first index is
4214           omitted and assumed to be zero.</li>
4215       <li>At least one index must be specified.</li>
4216       <li>Not only struct indices but also array indices must be in
4217           bounds.</li>
4218     </ul>
4219
4220<h5>Semantics:</h5>
4221<p>The result is the value at the position in the aggregate specified by the
4222   index operands.</p>
4223
4224<h5>Example:</h5>
4225<pre>
4226  &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
4227</pre>
4228
4229</div>
4230
4231<!-- _______________________________________________________________________ -->
4232<h4>
4233   <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4234</h4>
4235
4236<div>
4237
4238<h5>Syntax:</h5>
4239<pre>
4240  &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, <idx>}*    <i>; yields &lt;aggregate type&gt;</i>
4241</pre>
4242
4243<h5>Overview:</h5>
4244<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4245   in an <a href="#t_aggregate">aggregate</a> value.</p>
4246
4247<h5>Arguments:</h5>
4248<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
4249   of <a href="#t_struct">struct</a> or
4250   <a href="#t_array">array</a> type.  The second operand is a first-class
4251   value to insert.  The following operands are constant indices indicating
4252   the position at which to insert the value in a similar manner as indices in a
4253   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
4254   value to insert must have the same type as the value identified by the
4255   indices.</p>
4256
4257<h5>Semantics:</h5>
4258<p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
4259   that of <tt>val</tt> except that the value at the position specified by the
4260   indices is that of <tt>elt</tt>.</p>
4261
4262<h5>Example:</h5>
4263<pre>
4264  %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
4265  %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
4266  %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
4267</pre>
4268
4269</div>
4270
4271</div>
4272
4273<!-- ======================================================================= -->
4274<h3>
4275  <a name="memoryops">Memory Access and Addressing Operations</a>
4276</h3>
4277
4278<div>
4279
4280<p>A key design point of an SSA-based representation is how it represents
4281   memory.  In LLVM, no memory locations are in SSA form, which makes things
4282   very simple.  This section describes how to read, write, and allocate
4283   memory in LLVM.</p>
4284
4285<!-- _______________________________________________________________________ -->
4286<h4>
4287  <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4288</h4>
4289
4290<div>
4291
4292<h5>Syntax:</h5>
4293<pre>
4294  &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
4295</pre>
4296
4297<h5>Overview:</h5>
4298<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
4299   currently executing function, to be automatically released when this function
4300   returns to its caller. The object is always allocated in the generic address
4301   space (address space zero).</p>
4302
4303<h5>Arguments:</h5>
4304<p>The '<tt>alloca</tt>' instruction
4305   allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4306   runtime stack, returning a pointer of the appropriate type to the program.
4307   If "NumElements" is specified, it is the number of elements allocated,
4308   otherwise "NumElements" is defaulted to be one.  If a constant alignment is
4309   specified, the value result of the allocation is guaranteed to be aligned to
4310   at least that boundary.  If not specified, or if zero, the target can choose
4311   to align the allocation on any convenient boundary compatible with the
4312   type.</p>
4313
4314<p>'<tt>type</tt>' may be any sized type.</p>
4315
4316<h5>Semantics:</h5>
4317<p>Memory is allocated; a pointer is returned.  The operation is undefined if
4318   there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
4319   memory is automatically released when the function returns.  The
4320   '<tt>alloca</tt>' instruction is commonly used to represent automatic
4321   variables that must have an address available.  When the function returns
4322   (either with the <tt><a href="#i_ret">ret</a></tt>
4323   or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4324   reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p>
4325
4326<h5>Example:</h5>
4327<pre>
4328  %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
4329  %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
4330  %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
4331  %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
4332</pre>
4333
4334</div>
4335
4336<!-- _______________________________________________________________________ -->
4337<h4>
4338  <a name="i_load">'<tt>load</tt>' Instruction</a>
4339</h4>
4340
4341<div>
4342
4343<h5>Syntax:</h5>
4344<pre>
4345  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4346  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4347  !&lt;index&gt; = !{ i32 1 }
4348</pre>
4349
4350<h5>Overview:</h5>
4351<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
4352
4353<h5>Arguments:</h5>
4354<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4355   from which to load.  The pointer must point to
4356   a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
4357   marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4358   number or order of execution of this <tt>load</tt> with other <a
4359   href="#volatile">volatile operations</a>.</p>
4360
4361<p>The optional constant <tt>align</tt> argument specifies the alignment of the
4362   operation (that is, the alignment of the memory address). A value of 0 or an
4363   omitted <tt>align</tt> argument means that the operation has the preferential
4364   alignment for the target. It is the responsibility of the code emitter to
4365   ensure that the alignment information is correct. Overestimating the
4366   alignment results in undefined behavior. Underestimating the alignment may
4367   produce less efficient code. An alignment of 1 is always safe.</p>
4368
4369<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4370   metatadata name &lt;index&gt; corresponding to a metadata node with
4371   one <tt>i32</tt> entry of value 1.  The existence of
4372   the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4373   and code generator that this load is not expected to be reused in the cache.
4374   The code generator may select special instructions to save cache bandwidth,
4375   such as the <tt>MOVNT</tt> instruction on x86.</p>
4376
4377<h5>Semantics:</h5>
4378<p>The location of memory pointed to is loaded.  If the value being loaded is of
4379   scalar type then the number of bytes read does not exceed the minimum number
4380   of bytes needed to hold all bits of the type.  For example, loading an
4381   <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
4382   <tt>i20</tt> with a size that is not an integral number of bytes, the result
4383   is undefined if the value was not originally written using a store of the
4384   same type.</p>
4385
4386<h5>Examples:</h5>
4387<pre>
4388  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
4389  <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
4390  %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
4391</pre>
4392
4393</div>
4394
4395<!-- _______________________________________________________________________ -->
4396<h4>
4397  <a name="i_store">'<tt>store</tt>' Instruction</a>
4398</h4>
4399
4400<div>
4401
4402<h5>Syntax:</h5>
4403<pre>
4404  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]                   <i>; yields {void}</i>
4405  volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]          <i>; yields {void}</i>
4406</pre>
4407
4408<h5>Overview:</h5>
4409<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
4410
4411<h5>Arguments:</h5>
4412<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4413   and an address at which to store it.  The type of the
4414   '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4415   the <a href="#t_firstclass">first class</a> type of the
4416   '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4417   <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4418   order of execution of this <tt>store</tt> with other <a
4419   href="#volatile">volatile operations</a>.</p>
4420
4421<p>The optional constant "align" argument specifies the alignment of the
4422   operation (that is, the alignment of the memory address). A value of 0 or an
4423   omitted "align" argument means that the operation has the preferential
4424   alignment for the target. It is the responsibility of the code emitter to
4425   ensure that the alignment information is correct. Overestimating the
4426   alignment results in an undefined behavior. Underestimating the alignment may
4427   produce less efficient code. An alignment of 1 is always safe.</p>
4428
4429<p>The optional !nontemporal metadata must reference a single metatadata
4430   name &lt;index&gt; corresponding to a metadata node with one i32 entry of
4431   value 1.  The existence of the !nontemporal metatadata on the
4432   instruction tells the optimizer and code generator that this load is
4433   not expected to be reused in the cache.  The code generator may
4434   select special instructions to save cache bandwidth, such as the
4435   MOVNT instruction on x86.</p>
4436
4437
4438<h5>Semantics:</h5>
4439<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4440   location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
4441   '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4442   does not exceed the minimum number of bytes needed to hold all bits of the
4443   type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
4444   writing a value of a type like <tt>i20</tt> with a size that is not an
4445   integral number of bytes, it is unspecified what happens to the extra bits
4446   that do not belong to the type, but they will typically be overwritten.</p>
4447
4448<h5>Example:</h5>
4449<pre>
4450  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
4451  store i32 3, i32* %ptr                          <i>; yields {void}</i>
4452  %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
4453</pre>
4454
4455</div>
4456
4457<!-- _______________________________________________________________________ -->
4458<h4>
4459   <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4460</h4>
4461
4462<div>
4463
4464<h5>Syntax:</h5>
4465<pre>
4466  &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4467  &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4468</pre>
4469
4470<h5>Overview:</h5>
4471<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4472   subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4473   It performs address calculation only and does not access memory.</p>
4474
4475<h5>Arguments:</h5>
4476<p>The first argument is always a pointer, and forms the basis of the
4477   calculation. The remaining arguments are indices that indicate which of the
4478   elements of the aggregate object are indexed. The interpretation of each
4479   index is dependent on the type being indexed into. The first index always
4480   indexes the pointer value given as the first argument, the second index
4481   indexes a value of the type pointed to (not necessarily the value directly
4482   pointed to, since the first index can be non-zero), etc. The first type
4483   indexed into must be a pointer value, subsequent types can be arrays,
4484   vectors, and structs. Note that subsequent types being indexed into
4485   can never be pointers, since that would require loading the pointer before
4486   continuing calculation.</p>
4487
4488<p>The type of each index argument depends on the type it is indexing into.
4489   When indexing into a (optionally packed) structure, only <tt>i32</tt>
4490   integer <b>constants</b> are allowed.  When indexing into an array, pointer
4491   or vector, integers of any width are allowed, and they are not required to be
4492   constant.</p>
4493
4494<p>For example, let's consider a C code fragment and how it gets compiled to
4495   LLVM:</p>
4496
4497<pre class="doc_code">
4498struct RT {
4499  char A;
4500  int B[10][20];
4501  char C;
4502};
4503struct ST {
4504  int X;
4505  double Y;
4506  struct RT Z;
4507};
4508
4509int *foo(struct ST *s) {
4510  return &amp;s[1].Z.B[5][13];
4511}
4512</pre>
4513
4514<p>The LLVM code generated by the GCC frontend is:</p>
4515
4516<pre class="doc_code">
4517%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8  }
4518%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
4519
4520define i32* @foo(%ST* %s) {
4521entry:
4522  %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4523  ret i32* %reg
4524}
4525</pre>
4526
4527<h5>Semantics:</h5>
4528<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
4529   type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4530   }</tt>' type, a structure.  The second index indexes into the third element
4531   of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4532   i8 }</tt>' type, another structure.  The third index indexes into the second
4533   element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4534   array.  The two dimensions of the array are subscripted into, yielding an
4535   '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a
4536   pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
4537
4538<p>Note that it is perfectly legal to index partially through a structure,
4539   returning a pointer to an inner element.  Because of this, the LLVM code for
4540   the given testcase is equivalent to:</p>
4541
4542<pre>
4543  define i32* @foo(%ST* %s) {
4544    %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
4545    %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
4546    %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
4547    %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
4548    %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
4549    ret i32* %t5
4550  }
4551</pre>
4552
4553<p>If the <tt>inbounds</tt> keyword is present, the result value of the
4554   <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4555   base pointer is not an <i>in bounds</i> address of an allocated object,
4556   or if any of the addresses that would be formed by successive addition of
4557   the offsets implied by the indices to the base address with infinitely
4558   precise arithmetic are not an <i>in bounds</i> address of that allocated
4559   object. The <i>in bounds</i> addresses for an allocated object are all
4560   the addresses that point into the object, plus the address one byte past
4561   the end.</p>
4562
4563<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4564   the base address with silently-wrapping two's complement arithmetic, and
4565   the result value of the <tt>getelementptr</tt> may be outside the object
4566   pointed to by the base pointer. The result value may not necessarily be
4567   used to access memory though, even if it happens to point into allocated
4568   storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4569   section for more information.</p>
4570
4571<p>The getelementptr instruction is often confusing.  For some more insight into
4572   how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
4573
4574<h5>Example:</h5>
4575<pre>
4576    <i>; yields [12 x i8]*:aptr</i>
4577    %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4578    <i>; yields i8*:vptr</i>
4579    %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
4580    <i>; yields i8*:eptr</i>
4581    %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4582    <i>; yields i32*:iptr</i>
4583    %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4584</pre>
4585
4586</div>
4587
4588</div>
4589
4590<!-- ======================================================================= -->
4591<h3>
4592  <a name="convertops">Conversion Operations</a>
4593</h3>
4594
4595<div>
4596
4597<p>The instructions in this category are the conversion instructions (casting)
4598   which all take a single operand and a type. They perform various bit
4599   conversions on the operand.</p>
4600
4601<!-- _______________________________________________________________________ -->
4602<h4>
4603   <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4604</h4>
4605
4606<div>
4607
4608<h5>Syntax:</h5>
4609<pre>
4610  &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4611</pre>
4612
4613<h5>Overview:</h5>
4614<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4615   type <tt>ty2</tt>.</p>
4616
4617<h5>Arguments:</h5>
4618<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
4619   Both types must be of <a href="#t_integer">integer</a> types, or vectors
4620   of the same number of integers.
4621   The bit size of the <tt>value</tt> must be larger than
4622   the bit size of the destination type, <tt>ty2</tt>.
4623   Equal sized types are not allowed.</p>
4624
4625<h5>Semantics:</h5>
4626<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4627   in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4628   source size must be larger than the destination size, <tt>trunc</tt> cannot
4629   be a <i>no-op cast</i>.  It will always truncate bits.</p>
4630
4631<h5>Example:</h5>
4632<pre>
4633  %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
4634  %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
4635  %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
4636  %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
4637</pre>
4638
4639</div>
4640
4641<!-- _______________________________________________________________________ -->
4642<h4>
4643   <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4644</h4>
4645
4646<div>
4647
4648<h5>Syntax:</h5>
4649<pre>
4650  &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4651</pre>
4652
4653<h5>Overview:</h5>
4654<p>The '<tt>zext</tt>' instruction zero extends its operand to type
4655   <tt>ty2</tt>.</p>
4656
4657
4658<h5>Arguments:</h5>
4659<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
4660   Both types must be of <a href="#t_integer">integer</a> types, or vectors
4661   of the same number of integers.
4662   The bit size of the <tt>value</tt> must be smaller than
4663   the bit size of the destination type,
4664   <tt>ty2</tt>.</p>
4665
4666<h5>Semantics:</h5>
4667<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
4668   bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
4669
4670<p>When zero extending from i1, the result will always be either 0 or 1.</p>
4671
4672<h5>Example:</h5>
4673<pre>
4674  %X = zext i32 257 to i64              <i>; yields i64:257</i>
4675  %Y = zext i1 true to i32              <i>; yields i32:1</i>
4676  %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
4677</pre>
4678
4679</div>
4680
4681<!-- _______________________________________________________________________ -->
4682<h4>
4683   <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4684</h4>
4685
4686<div>
4687
4688<h5>Syntax:</h5>
4689<pre>
4690  &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4691</pre>
4692
4693<h5>Overview:</h5>
4694<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4695
4696<h5>Arguments:</h5>
4697<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
4698   Both types must be of <a href="#t_integer">integer</a> types, or vectors
4699   of the same number of integers.
4700   The bit size of the <tt>value</tt> must be smaller than
4701   the bit size of the destination type,
4702   <tt>ty2</tt>.</p>
4703
4704<h5>Semantics:</h5>
4705<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4706   bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4707   of the type <tt>ty2</tt>.</p>
4708
4709<p>When sign extending from i1, the extension always results in -1 or 0.</p>
4710
4711<h5>Example:</h5>
4712<pre>
4713  %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
4714  %Y = sext i1 true to i32             <i>; yields i32:-1</i>
4715  %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
4716</pre>
4717
4718</div>
4719
4720<!-- _______________________________________________________________________ -->
4721<h4>
4722   <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4723</h4>
4724
4725<div>
4726
4727<h5>Syntax:</h5>
4728<pre>
4729  &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4730</pre>
4731
4732<h5>Overview:</h5>
4733<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4734   <tt>ty2</tt>.</p>
4735
4736<h5>Arguments:</h5>
4737<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4738   point</a> value to cast and a <a href="#t_floating">floating point</a> type
4739   to cast it to. The size of <tt>value</tt> must be larger than the size of
4740   <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4741   <i>no-op cast</i>.</p>
4742
4743<h5>Semantics:</h5>
4744<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4745   <a href="#t_floating">floating point</a> type to a smaller
4746   <a href="#t_floating">floating point</a> type.  If the value cannot fit
4747   within the destination type, <tt>ty2</tt>, then the results are
4748   undefined.</p>
4749
4750<h5>Example:</h5>
4751<pre>
4752  %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
4753  %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
4754</pre>
4755
4756</div>
4757
4758<!-- _______________________________________________________________________ -->
4759<h4>
4760   <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4761</h4>
4762
4763<div>
4764
4765<h5>Syntax:</h5>
4766<pre>
4767  &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4768</pre>
4769
4770<h5>Overview:</h5>
4771<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4772   floating point value.</p>
4773
4774<h5>Arguments:</h5>
4775<p>The '<tt>fpext</tt>' instruction takes a
4776   <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4777   a <a href="#t_floating">floating point</a> type to cast it to. The source
4778   type must be smaller than the destination type.</p>
4779
4780<h5>Semantics:</h5>
4781<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
4782   <a href="#t_floating">floating point</a> type to a larger
4783   <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4784   used to make a <i>no-op cast</i> because it always changes bits. Use
4785   <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
4786
4787<h5>Example:</h5>
4788<pre>
4789  %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
4790  %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
4791</pre>
4792
4793</div>
4794
4795<!-- _______________________________________________________________________ -->
4796<h4>
4797   <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4798</h4>
4799
4800<div>
4801
4802<h5>Syntax:</h5>
4803<pre>
4804  &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4805</pre>
4806
4807<h5>Overview:</h5>
4808<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
4809   unsigned integer equivalent of type <tt>ty2</tt>.</p>
4810
4811<h5>Arguments:</h5>
4812<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4813   scalar or vector <a href="#t_floating">floating point</a> value, and a type
4814   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4815   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4816   vector integer type with the same number of elements as <tt>ty</tt></p>
4817
4818<h5>Semantics:</h5>
4819<p>The '<tt>fptoui</tt>' instruction converts its
4820   <a href="#t_floating">floating point</a> operand into the nearest (rounding
4821   towards zero) unsigned integer value. If the value cannot fit
4822   in <tt>ty2</tt>, the results are undefined.</p>
4823
4824<h5>Example:</h5>
4825<pre>
4826  %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
4827  %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
4828  %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
4829</pre>
4830
4831</div>
4832
4833<!-- _______________________________________________________________________ -->
4834<h4>
4835   <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4836</h4>
4837
4838<div>
4839
4840<h5>Syntax:</h5>
4841<pre>
4842  &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4843</pre>
4844
4845<h5>Overview:</h5>
4846<p>The '<tt>fptosi</tt>' instruction converts
4847   <a href="#t_floating">floating point</a> <tt>value</tt> to
4848   type <tt>ty2</tt>.</p>
4849
4850<h5>Arguments:</h5>
4851<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4852   scalar or vector <a href="#t_floating">floating point</a> value, and a type
4853   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4854   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4855   vector integer type with the same number of elements as <tt>ty</tt></p>
4856
4857<h5>Semantics:</h5>
4858<p>The '<tt>fptosi</tt>' instruction converts its
4859   <a href="#t_floating">floating point</a> operand into the nearest (rounding
4860   towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4861   the results are undefined.</p>
4862
4863<h5>Example:</h5>
4864<pre>
4865  %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
4866  %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
4867  %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
4868</pre>
4869
4870</div>
4871
4872<!-- _______________________________________________________________________ -->
4873<h4>
4874   <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4875</h4>
4876
4877<div>
4878
4879<h5>Syntax:</h5>
4880<pre>
4881  &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4882</pre>
4883
4884<h5>Overview:</h5>
4885<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
4886   integer and converts that value to the <tt>ty2</tt> type.</p>
4887
4888<h5>Arguments:</h5>
4889<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4890   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4891   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4892   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4893   floating point type with the same number of elements as <tt>ty</tt></p>
4894
4895<h5>Semantics:</h5>
4896<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
4897   integer quantity and converts it to the corresponding floating point
4898   value. If the value cannot fit in the floating point value, the results are
4899   undefined.</p>
4900
4901<h5>Example:</h5>
4902<pre>
4903  %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
4904  %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
4905</pre>
4906
4907</div>
4908
4909<!-- _______________________________________________________________________ -->
4910<h4>
4911   <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4912</h4>
4913
4914<div>
4915
4916<h5>Syntax:</h5>
4917<pre>
4918  &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4919</pre>
4920
4921<h5>Overview:</h5>
4922<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4923   and converts that value to the <tt>ty2</tt> type.</p>
4924
4925<h5>Arguments:</h5>
4926<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4927   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4928   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4929   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4930   floating point type with the same number of elements as <tt>ty</tt></p>
4931
4932<h5>Semantics:</h5>
4933<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4934   quantity and converts it to the corresponding floating point value. If the
4935   value cannot fit in the floating point value, the results are undefined.</p>
4936
4937<h5>Example:</h5>
4938<pre>
4939  %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
4940  %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
4941</pre>
4942
4943</div>
4944
4945<!-- _______________________________________________________________________ -->
4946<h4>
4947   <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4948</h4>
4949
4950<div>
4951
4952<h5>Syntax:</h5>
4953<pre>
4954  &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4955</pre>
4956
4957<h5>Overview:</h5>
4958<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4959   the integer type <tt>ty2</tt>.</p>
4960
4961<h5>Arguments:</h5>
4962<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4963   must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4964   <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
4965
4966<h5>Semantics:</h5>
4967<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4968   <tt>ty2</tt> by interpreting the pointer value as an integer and either
4969   truncating or zero extending that value to the size of the integer type. If
4970   <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4971   <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4972   are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4973   change.</p>
4974
4975<h5>Example:</h5>
4976<pre>
4977  %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
4978  %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
4979</pre>
4980
4981</div>
4982
4983<!-- _______________________________________________________________________ -->
4984<h4>
4985   <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4986</h4>
4987
4988<div>
4989
4990<h5>Syntax:</h5>
4991<pre>
4992  &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
4993</pre>
4994
4995<h5>Overview:</h5>
4996<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4997   pointer type, <tt>ty2</tt>.</p>
4998
4999<h5>Arguments:</h5>
5000<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
5001   value to cast, and a type to cast it to, which must be a
5002   <a href="#t_pointer">pointer</a> type.</p>
5003
5004<h5>Semantics:</h5>
5005<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
5006   <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5007   the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5008   size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5009   than the size of a pointer then a zero extension is done. If they are the
5010   same size, nothing is done (<i>no-op cast</i>).</p>
5011
5012<h5>Example:</h5>
5013<pre>
5014  %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
5015  %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
5016  %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
5017</pre>
5018
5019</div>
5020
5021<!-- _______________________________________________________________________ -->
5022<h4>
5023   <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
5024</h4>
5025
5026<div>
5027
5028<h5>Syntax:</h5>
5029<pre>
5030  &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5031</pre>
5032
5033<h5>Overview:</h5>
5034<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5035   <tt>ty2</tt> without changing any bits.</p>
5036
5037<h5>Arguments:</h5>
5038<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5039   non-aggregate first class value, and a type to cast it to, which must also be
5040   a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5041   of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5042   identical. If the source type is a pointer, the destination type must also be
5043   a pointer.  This instruction supports bitwise conversion of vectors to
5044   integers and to vectors of other types (as long as they have the same
5045   size).</p>
5046
5047<h5>Semantics:</h5>
5048<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5049   <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5050   this conversion.  The conversion is done as if the <tt>value</tt> had been
5051   stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5052   be converted to other pointer types with this instruction. To convert
5053   pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5054   <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
5055
5056<h5>Example:</h5>
5057<pre>
5058  %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
5059  %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
5060  %Z = bitcast &lt;2 x int&gt; %V to i64;      <i>; yields i64: %V</i>
5061</pre>
5062
5063</div>
5064
5065</div>
5066
5067<!-- ======================================================================= -->
5068<h3>
5069  <a name="otherops">Other Operations</a>
5070</h3>
5071
5072<div>
5073
5074<p>The instructions in this category are the "miscellaneous" instructions, which
5075   defy better classification.</p>
5076
5077<!-- _______________________________________________________________________ -->
5078<h4>
5079  <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5080</h4>
5081
5082<div>
5083
5084<h5>Syntax:</h5>
5085<pre>
5086  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5087</pre>
5088
5089<h5>Overview:</h5>
5090<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5091   boolean values based on comparison of its two integer, integer vector, or
5092   pointer operands.</p>
5093
5094<h5>Arguments:</h5>
5095<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
5096   the condition code indicating the kind of comparison to perform. It is not a
5097   value, just a keyword. The possible condition code are:</p>
5098
5099<ol>
5100  <li><tt>eq</tt>: equal</li>
5101  <li><tt>ne</tt>: not equal </li>
5102  <li><tt>ugt</tt>: unsigned greater than</li>
5103  <li><tt>uge</tt>: unsigned greater or equal</li>
5104  <li><tt>ult</tt>: unsigned less than</li>
5105  <li><tt>ule</tt>: unsigned less or equal</li>
5106  <li><tt>sgt</tt>: signed greater than</li>
5107  <li><tt>sge</tt>: signed greater or equal</li>
5108  <li><tt>slt</tt>: signed less than</li>
5109  <li><tt>sle</tt>: signed less or equal</li>
5110</ol>
5111
5112<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
5113   <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5114   typed.  They must also be identical types.</p>
5115
5116<h5>Semantics:</h5>
5117<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5118   condition code given as <tt>cond</tt>. The comparison performed always yields
5119   either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
5120   result, as follows:</p>
5121
5122<ol>
5123  <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
5124      <tt>false</tt> otherwise. No sign interpretation is necessary or
5125      performed.</li>
5126
5127  <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
5128      <tt>false</tt> otherwise. No sign interpretation is necessary or
5129      performed.</li>
5130
5131  <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
5132      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5133
5134  <li><tt>uge</tt>: interprets the operands as unsigned values and yields
5135      <tt>true</tt> if <tt>op1</tt> is greater than or equal
5136      to <tt>op2</tt>.</li>
5137
5138  <li><tt>ult</tt>: interprets the operands as unsigned values and yields
5139      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5140
5141  <li><tt>ule</tt>: interprets the operands as unsigned values and yields
5142      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5143
5144  <li><tt>sgt</tt>: interprets the operands as signed values and yields
5145      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5146
5147  <li><tt>sge</tt>: interprets the operands as signed values and yields
5148      <tt>true</tt> if <tt>op1</tt> is greater than or equal
5149      to <tt>op2</tt>.</li>
5150
5151  <li><tt>slt</tt>: interprets the operands as signed values and yields
5152      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5153
5154  <li><tt>sle</tt>: interprets the operands as signed values and yields
5155      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5156</ol>
5157
5158<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
5159   values are compared as if they were integers.</p>
5160
5161<p>If the operands are integer vectors, then they are compared element by
5162   element. The result is an <tt>i1</tt> vector with the same number of elements
5163   as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
5164
5165<h5>Example:</h5>
5166<pre>
5167  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
5168  &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
5169  &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
5170  &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
5171  &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
5172  &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
5173</pre>
5174
5175<p>Note that the code generator does not yet support vector types with
5176   the <tt>icmp</tt> instruction.</p>
5177
5178</div>
5179
5180<!-- _______________________________________________________________________ -->
5181<h4>
5182  <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5183</h4>
5184
5185<div>
5186
5187<h5>Syntax:</h5>
5188<pre>
5189  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5190</pre>
5191
5192<h5>Overview:</h5>
5193<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5194   values based on comparison of its operands.</p>
5195
5196<p>If the operands are floating point scalars, then the result type is a boolean
5197(<a href="#t_integer"><tt>i1</tt></a>).</p>
5198
5199<p>If the operands are floating point vectors, then the result type is a vector
5200   of boolean with the same number of elements as the operands being
5201   compared.</p>
5202
5203<h5>Arguments:</h5>
5204<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
5205   the condition code indicating the kind of comparison to perform. It is not a
5206   value, just a keyword. The possible condition code are:</p>
5207
5208<ol>
5209  <li><tt>false</tt>: no comparison, always returns false</li>
5210  <li><tt>oeq</tt>: ordered and equal</li>
5211  <li><tt>ogt</tt>: ordered and greater than </li>
5212  <li><tt>oge</tt>: ordered and greater than or equal</li>
5213  <li><tt>olt</tt>: ordered and less than </li>
5214  <li><tt>ole</tt>: ordered and less than or equal</li>
5215  <li><tt>one</tt>: ordered and not equal</li>
5216  <li><tt>ord</tt>: ordered (no nans)</li>
5217  <li><tt>ueq</tt>: unordered or equal</li>
5218  <li><tt>ugt</tt>: unordered or greater than </li>
5219  <li><tt>uge</tt>: unordered or greater than or equal</li>
5220  <li><tt>ult</tt>: unordered or less than </li>
5221  <li><tt>ule</tt>: unordered or less than or equal</li>
5222  <li><tt>une</tt>: unordered or not equal</li>
5223  <li><tt>uno</tt>: unordered (either nans)</li>
5224  <li><tt>true</tt>: no comparison, always returns true</li>
5225</ol>
5226
5227<p><i>Ordered</i> means that neither operand is a QNAN while
5228   <i>unordered</i> means that either operand may be a QNAN.</p>
5229
5230<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5231   a <a href="#t_floating">floating point</a> type or
5232   a <a href="#t_vector">vector</a> of floating point type.  They must have
5233   identical types.</p>
5234
5235<h5>Semantics:</h5>
5236<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
5237   according to the condition code given as <tt>cond</tt>.  If the operands are
5238   vectors, then the vectors are compared element by element.  Each comparison
5239   performed always yields an <a href="#t_integer">i1</a> result, as
5240   follows:</p>
5241
5242<ol>
5243  <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
5244
5245  <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5246      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5247
5248  <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5249      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5250
5251  <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5252      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5253
5254  <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5255      <tt>op1</tt> is less than <tt>op2</tt>.</li>
5256
5257  <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5258      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5259
5260  <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5261      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5262
5263  <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
5264
5265  <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
5266      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5267
5268  <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
5269      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5270
5271  <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
5272      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5273
5274  <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
5275      <tt>op1</tt> is less than <tt>op2</tt>.</li>
5276
5277  <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
5278      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5279
5280  <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
5281      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5282
5283  <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
5284
5285  <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5286</ol>
5287
5288<h5>Example:</h5>
5289<pre>
5290  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
5291  &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
5292  &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
5293  &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
5294</pre>
5295
5296<p>Note that the code generator does not yet support vector types with
5297   the <tt>fcmp</tt> instruction.</p>
5298
5299</div>
5300
5301<!-- _______________________________________________________________________ -->
5302<h4>
5303  <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5304</h4>
5305
5306<div>
5307
5308<h5>Syntax:</h5>
5309<pre>
5310  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5311</pre>
5312
5313<h5>Overview:</h5>
5314<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5315   SSA graph representing the function.</p>
5316
5317<h5>Arguments:</h5>
5318<p>The type of the incoming values is specified with the first type field. After
5319   this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5320   one pair for each predecessor basic block of the current block.  Only values
5321   of <a href="#t_firstclass">first class</a> type may be used as the value
5322   arguments to the PHI node.  Only labels may be used as the label
5323   arguments.</p>
5324
5325<p>There must be no non-phi instructions between the start of a basic block and
5326   the PHI instructions: i.e. PHI instructions must be first in a basic
5327   block.</p>
5328
5329<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5330   occur on the edge from the corresponding predecessor block to the current
5331   block (but after any definition of an '<tt>invoke</tt>' instruction's return
5332   value on the same edge).</p>
5333
5334<h5>Semantics:</h5>
5335<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
5336   specified by the pair corresponding to the predecessor basic block that
5337   executed just prior to the current block.</p>
5338
5339<h5>Example:</h5>
5340<pre>
5341Loop:       ; Infinite loop that counts from 0 on up...
5342  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5343  %nextindvar = add i32 %indvar, 1
5344  br label %Loop
5345</pre>
5346
5347</div>
5348
5349<!-- _______________________________________________________________________ -->
5350<h4>
5351   <a name="i_select">'<tt>select</tt>' Instruction</a>
5352</h4>
5353
5354<div>
5355
5356<h5>Syntax:</h5>
5357<pre>
5358  &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
5359
5360  <i>selty</i> is either i1 or {&lt;N x i1&gt;}
5361</pre>
5362
5363<h5>Overview:</h5>
5364<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5365   condition, without branching.</p>
5366
5367
5368<h5>Arguments:</h5>
5369<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5370   values indicating the condition, and two values of the
5371   same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
5372   vectors and the condition is a scalar, then entire vectors are selected, not
5373   individual elements.</p>
5374
5375<h5>Semantics:</h5>
5376<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5377   first value argument; otherwise, it returns the second value argument.</p>
5378
5379<p>If the condition is a vector of i1, then the value arguments must be vectors
5380   of the same size, and the selection is done element by element.</p>
5381
5382<h5>Example:</h5>
5383<pre>
5384  %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
5385</pre>
5386
5387<p>Note that the code generator does not yet support conditions
5388   with vector type.</p>
5389
5390</div>
5391
5392<!-- _______________________________________________________________________ -->
5393<h4>
5394  <a name="i_call">'<tt>call</tt>' Instruction</a>
5395</h4>
5396
5397<div>
5398
5399<h5>Syntax:</h5>
5400<pre>
5401  &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
5402</pre>
5403
5404<h5>Overview:</h5>
5405<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
5406
5407<h5>Arguments:</h5>
5408<p>This instruction requires several arguments:</p>
5409
5410<ol>
5411  <li>The optional "tail" marker indicates that the callee function does not
5412      access any allocas or varargs in the caller.  Note that calls may be
5413      marked "tail" even if they do not occur before
5414      a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
5415      present, the function call is eligible for tail call optimization,
5416      but <a href="CodeGenerator.html#tailcallopt">might not in fact be
5417      optimized into a jump</a>.  The code generator may optimize calls marked
5418      "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5419      sibling call optimization</a> when the caller and callee have
5420      matching signatures, or 2) forced tail call optimization when the
5421      following extra requirements are met:
5422      <ul>
5423        <li>Caller and callee both have the calling
5424            convention <tt>fastcc</tt>.</li>
5425        <li>The call is in tail position (ret immediately follows call and ret
5426            uses value of call or is void).</li>
5427        <li>Option <tt>-tailcallopt</tt> is enabled,
5428            or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
5429        <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5430            constraints are met.</a></li>
5431      </ul>
5432  </li>
5433
5434  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5435      convention</a> the call should use.  If none is specified, the call
5436      defaults to using C calling conventions.  The calling convention of the
5437      call must match the calling convention of the target function, or else the
5438      behavior is undefined.</li>
5439
5440  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5441      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5442      '<tt>inreg</tt>' attributes are valid here.</li>
5443
5444  <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5445      type of the return value.  Functions that return no value are marked
5446      <tt><a href="#t_void">void</a></tt>.</li>
5447
5448  <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5449      being invoked.  The argument types must match the types implied by this
5450      signature.  This type can be omitted if the function is not varargs and if
5451      the function type does not return a pointer to a function.</li>
5452
5453  <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5454      be invoked. In most cases, this is a direct function invocation, but
5455      indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5456      to function value.</li>
5457
5458  <li>'<tt>function args</tt>': argument list whose types match the function
5459      signature argument types and parameter attributes. All arguments must be
5460      of <a href="#t_firstclass">first class</a> type. If the function
5461      signature indicates the function accepts a variable number of arguments,
5462      the extra arguments can be specified.</li>
5463
5464  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5465      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5466      '<tt>readnone</tt>' attributes are valid here.</li>
5467</ol>
5468
5469<h5>Semantics:</h5>
5470<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5471   a specified function, with its incoming arguments bound to the specified
5472   values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5473   function, control flow continues with the instruction after the function
5474   call, and the return value of the function is bound to the result
5475   argument.</p>
5476
5477<h5>Example:</h5>
5478<pre>
5479  %retval = call i32 @test(i32 %argc)
5480  call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
5481  %X = tail call i32 @foo()                                    <i>; yields i32</i>
5482  %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
5483  call void %foo(i8 97 signext)
5484
5485  %struct.A = type { i32, i8 }
5486  %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
5487  %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
5488  %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
5489  %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
5490  %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
5491</pre>
5492
5493<p>llvm treats calls to some functions with names and arguments that match the
5494standard C99 library as being the C99 library functions, and may perform
5495optimizations or generate code for them under that assumption.  This is
5496something we'd like to change in the future to provide better support for
5497freestanding environments and non-C-based languages.</p>
5498
5499</div>
5500
5501<!-- _______________________________________________________________________ -->
5502<h4>
5503  <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
5504</h4>
5505
5506<div>
5507
5508<h5>Syntax:</h5>
5509<pre>
5510  &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
5511</pre>
5512
5513<h5>Overview:</h5>
5514<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
5515   the "variable argument" area of a function call.  It is used to implement the
5516   <tt>va_arg</tt> macro in C.</p>
5517
5518<h5>Arguments:</h5>
5519<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5520   argument. It returns a value of the specified argument type and increments
5521   the <tt>va_list</tt> to point to the next argument.  The actual type
5522   of <tt>va_list</tt> is target specific.</p>
5523
5524<h5>Semantics:</h5>
5525<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5526   from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5527   to the next argument.  For more information, see the variable argument
5528   handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
5529
5530<p>It is legal for this instruction to be called in a function which does not
5531   take a variable number of arguments, for example, the <tt>vfprintf</tt>
5532   function.</p>
5533
5534<p><tt>va_arg</tt> is an LLVM instruction instead of
5535   an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5536   argument.</p>
5537
5538<h5>Example:</h5>
5539<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5540
5541<p>Note that the code generator does not yet fully support va_arg on many
5542   targets. Also, it does not currently support va_arg with aggregate types on
5543   any target.</p>
5544
5545</div>
5546
5547</div>
5548
5549</div>
5550
5551<!-- *********************************************************************** -->
5552<h2><a name="intrinsics">Intrinsic Functions</a></h2>
5553<!-- *********************************************************************** -->
5554
5555<div>
5556
5557<p>LLVM supports the notion of an "intrinsic function".  These functions have
5558   well known names and semantics and are required to follow certain
5559   restrictions.  Overall, these intrinsics represent an extension mechanism for
5560   the LLVM language that does not require changing all of the transformations
5561   in LLVM when adding to the language (or the bitcode reader/writer, the
5562   parser, etc...).</p>
5563
5564<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
5565   prefix is reserved in LLVM for intrinsic names; thus, function names may not
5566   begin with this prefix.  Intrinsic functions must always be external
5567   functions: you cannot define the body of intrinsic functions.  Intrinsic
5568   functions may only be used in call or invoke instructions: it is illegal to
5569   take the address of an intrinsic function.  Additionally, because intrinsic
5570   functions are part of the LLVM language, it is required if any are added that
5571   they be documented here.</p>
5572
5573<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5574   family of functions that perform the same operation but on different data
5575   types. Because LLVM can represent over 8 million different integer types,
5576   overloading is used commonly to allow an intrinsic function to operate on any
5577   integer type. One or more of the argument types or the result type can be
5578   overloaded to accept any integer type. Argument types may also be defined as
5579   exactly matching a previous argument's type or the result type. This allows
5580   an intrinsic function which accepts multiple arguments, but needs all of them
5581   to be of the same type, to only be overloaded with respect to a single
5582   argument or the result.</p>
5583
5584<p>Overloaded intrinsics will have the names of its overloaded argument types
5585   encoded into its function name, each preceded by a period. Only those types
5586   which are overloaded result in a name suffix. Arguments whose type is matched
5587   against another type do not. For example, the <tt>llvm.ctpop</tt> function
5588   can take an integer of any width and returns an integer of exactly the same
5589   integer width. This leads to a family of functions such as
5590   <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5591   %val)</tt>.  Only one type, the return type, is overloaded, and only one type
5592   suffix is required. Because the argument's type is matched against the return
5593   type, it does not require its own name suffix.</p>
5594
5595<p>To learn how to add an intrinsic function, please see the
5596   <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
5597
5598<!-- ======================================================================= -->
5599<h3>
5600  <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5601</h3>
5602
5603<div>
5604
5605<p>Variable argument support is defined in LLVM with
5606   the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5607   intrinsic functions.  These functions are related to the similarly named
5608   macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
5609
5610<p>All of these functions operate on arguments that use a target-specific value
5611   type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
5612   not define what this type is, so all transformations should be prepared to
5613   handle these functions regardless of the type used.</p>
5614
5615<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
5616   instruction and the variable argument handling intrinsic functions are
5617   used.</p>
5618
5619<pre class="doc_code">
5620define i32 @test(i32 %X, ...) {
5621  ; Initialize variable argument processing
5622  %ap = alloca i8*
5623  %ap2 = bitcast i8** %ap to i8*
5624  call void @llvm.va_start(i8* %ap2)
5625
5626  ; Read a single integer argument
5627  %tmp = va_arg i8** %ap, i32
5628
5629  ; Demonstrate usage of llvm.va_copy and llvm.va_end
5630  %aq = alloca i8*
5631  %aq2 = bitcast i8** %aq to i8*
5632  call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5633  call void @llvm.va_end(i8* %aq2)
5634
5635  ; Stop processing of arguments.
5636  call void @llvm.va_end(i8* %ap2)
5637  ret i32 %tmp
5638}
5639
5640declare void @llvm.va_start(i8*)
5641declare void @llvm.va_copy(i8*, i8*)
5642declare void @llvm.va_end(i8*)
5643</pre>
5644
5645<!-- _______________________________________________________________________ -->
5646<h4>
5647  <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5648</h4>
5649
5650
5651<div>
5652
5653<h5>Syntax:</h5>
5654<pre>
5655  declare void %llvm.va_start(i8* &lt;arglist&gt;)
5656</pre>
5657
5658<h5>Overview:</h5>
5659<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5660   for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
5661
5662<h5>Arguments:</h5>
5663<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
5664
5665<h5>Semantics:</h5>
5666<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
5667   macro available in C.  In a target-dependent way, it initializes
5668   the <tt>va_list</tt> element to which the argument points, so that the next
5669   call to <tt>va_arg</tt> will produce the first variable argument passed to
5670   the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5671   need to know the last argument of the function as the compiler can figure
5672   that out.</p>
5673
5674</div>
5675
5676<!-- _______________________________________________________________________ -->
5677<h4>
5678 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5679</h4>
5680
5681<div>
5682
5683<h5>Syntax:</h5>
5684<pre>
5685  declare void @llvm.va_end(i8* &lt;arglist&gt;)
5686</pre>
5687
5688<h5>Overview:</h5>
5689<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
5690   which has been initialized previously
5691   with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5692   or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
5693
5694<h5>Arguments:</h5>
5695<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5696
5697<h5>Semantics:</h5>
5698<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
5699   macro available in C.  In a target-dependent way, it destroys
5700   the <tt>va_list</tt> element to which the argument points.  Calls
5701   to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5702   and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5703   with calls to <tt>llvm.va_end</tt>.</p>
5704
5705</div>
5706
5707<!-- _______________________________________________________________________ -->
5708<h4>
5709  <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5710</h4>
5711
5712<div>
5713
5714<h5>Syntax:</h5>
5715<pre>
5716  declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5717</pre>
5718
5719<h5>Overview:</h5>
5720<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5721   from the source argument list to the destination argument list.</p>
5722
5723<h5>Arguments:</h5>
5724<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
5725   The second argument is a pointer to a <tt>va_list</tt> element to copy
5726   from.</p>
5727
5728<h5>Semantics:</h5>
5729<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5730   macro available in C.  In a target-dependent way, it copies the
5731   source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5732   element.  This intrinsic is necessary because
5733   the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5734   arbitrarily complex and require, for example, memory allocation.</p>
5735
5736</div>
5737
5738</div>
5739
5740<!-- ======================================================================= -->
5741<h3>
5742  <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5743</h3>
5744
5745<div>
5746
5747<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
5748Collection</a> (GC) requires the implementation and generation of these
5749intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5750roots on the stack</a>, as well as garbage collector implementations that
5751require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5752barriers.  Front-ends for type-safe garbage collected languages should generate
5753these intrinsics to make use of the LLVM garbage collectors.  For more details,
5754see <a href="GarbageCollection.html">Accurate Garbage Collection with
5755LLVM</a>.</p>
5756
5757<p>The garbage collection intrinsics only operate on objects in the generic
5758   address space (address space zero).</p>
5759
5760<!-- _______________________________________________________________________ -->
5761<h4>
5762  <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5763</h4>
5764
5765<div>
5766
5767<h5>Syntax:</h5>
5768<pre>
5769  declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5770</pre>
5771
5772<h5>Overview:</h5>
5773<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
5774   the code generator, and allows some metadata to be associated with it.</p>
5775
5776<h5>Arguments:</h5>
5777<p>The first argument specifies the address of a stack object that contains the
5778   root pointer.  The second pointer (which must be either a constant or a
5779   global value address) contains the meta-data to be associated with the
5780   root.</p>
5781
5782<h5>Semantics:</h5>
5783<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
5784   location.  At compile-time, the code generator generates information to allow
5785   the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5786   intrinsic may only be used in a function which <a href="#gc">specifies a GC
5787   algorithm</a>.</p>
5788
5789</div>
5790
5791<!-- _______________________________________________________________________ -->
5792<h4>
5793  <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5794</h4>
5795
5796<div>
5797
5798<h5>Syntax:</h5>
5799<pre>
5800  declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5801</pre>
5802
5803<h5>Overview:</h5>
5804<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5805   locations, allowing garbage collector implementations that require read
5806   barriers.</p>
5807
5808<h5>Arguments:</h5>
5809<p>The second argument is the address to read from, which should be an address
5810   allocated from the garbage collector.  The first object is a pointer to the
5811   start of the referenced object, if needed by the language runtime (otherwise
5812   null).</p>
5813
5814<h5>Semantics:</h5>
5815<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5816   instruction, but may be replaced with substantially more complex code by the
5817   garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5818   may only be used in a function which <a href="#gc">specifies a GC
5819   algorithm</a>.</p>
5820
5821</div>
5822
5823<!-- _______________________________________________________________________ -->
5824<h4>
5825  <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5826</h4>
5827
5828<div>
5829
5830<h5>Syntax:</h5>
5831<pre>
5832  declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5833</pre>
5834
5835<h5>Overview:</h5>
5836<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5837   locations, allowing garbage collector implementations that require write
5838   barriers (such as generational or reference counting collectors).</p>
5839
5840<h5>Arguments:</h5>
5841<p>The first argument is the reference to store, the second is the start of the
5842   object to store it to, and the third is the address of the field of Obj to
5843   store to.  If the runtime does not require a pointer to the object, Obj may
5844   be null.</p>
5845
5846<h5>Semantics:</h5>
5847<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5848   instruction, but may be replaced with substantially more complex code by the
5849   garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5850   may only be used in a function which <a href="#gc">specifies a GC
5851   algorithm</a>.</p>
5852
5853</div>
5854
5855</div>
5856
5857<!-- ======================================================================= -->
5858<h3>
5859  <a name="int_codegen">Code Generator Intrinsics</a>
5860</h3>
5861
5862<div>
5863
5864<p>These intrinsics are provided by LLVM to expose special features that may
5865   only be implemented with code generator support.</p>
5866
5867<!-- _______________________________________________________________________ -->
5868<h4>
5869  <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5870</h4>
5871
5872<div>
5873
5874<h5>Syntax:</h5>
5875<pre>
5876  declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
5877</pre>
5878
5879<h5>Overview:</h5>
5880<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5881   target-specific value indicating the return address of the current function
5882   or one of its callers.</p>
5883
5884<h5>Arguments:</h5>
5885<p>The argument to this intrinsic indicates which function to return the address
5886   for.  Zero indicates the calling function, one indicates its caller, etc.
5887   The argument is <b>required</b> to be a constant integer value.</p>
5888
5889<h5>Semantics:</h5>
5890<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5891   indicating the return address of the specified call frame, or zero if it
5892   cannot be identified.  The value returned by this intrinsic is likely to be
5893   incorrect or 0 for arguments other than zero, so it should only be used for
5894   debugging purposes.</p>
5895
5896<p>Note that calling this intrinsic does not prevent function inlining or other
5897   aggressive transformations, so the value returned may not be that of the
5898   obvious source-language caller.</p>
5899
5900</div>
5901
5902<!-- _______________________________________________________________________ -->
5903<h4>
5904  <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5905</h4>
5906
5907<div>
5908
5909<h5>Syntax:</h5>
5910<pre>
5911  declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
5912</pre>
5913
5914<h5>Overview:</h5>
5915<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5916   target-specific frame pointer value for the specified stack frame.</p>
5917
5918<h5>Arguments:</h5>
5919<p>The argument to this intrinsic indicates which function to return the frame
5920   pointer for.  Zero indicates the calling function, one indicates its caller,
5921   etc.  The argument is <b>required</b> to be a constant integer value.</p>
5922
5923<h5>Semantics:</h5>
5924<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5925   indicating the frame address of the specified call frame, or zero if it
5926   cannot be identified.  The value returned by this intrinsic is likely to be
5927   incorrect or 0 for arguments other than zero, so it should only be used for
5928   debugging purposes.</p>
5929
5930<p>Note that calling this intrinsic does not prevent function inlining or other
5931   aggressive transformations, so the value returned may not be that of the
5932   obvious source-language caller.</p>
5933
5934</div>
5935
5936<!-- _______________________________________________________________________ -->
5937<h4>
5938  <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5939</h4>
5940
5941<div>
5942
5943<h5>Syntax:</h5>
5944<pre>
5945  declare i8* @llvm.stacksave()
5946</pre>
5947
5948<h5>Overview:</h5>
5949<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5950   of the function stack, for use
5951   with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
5952   useful for implementing language features like scoped automatic variable
5953   sized arrays in C99.</p>
5954
5955<h5>Semantics:</h5>
5956<p>This intrinsic returns a opaque pointer value that can be passed
5957   to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
5958   an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5959   from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5960   to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5961   In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5962   stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
5963
5964</div>
5965
5966<!-- _______________________________________________________________________ -->
5967<h4>
5968  <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5969</h4>
5970
5971<div>
5972
5973<h5>Syntax:</h5>
5974<pre>
5975  declare void @llvm.stackrestore(i8* %ptr)
5976</pre>
5977
5978<h5>Overview:</h5>
5979<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5980   the function stack to the state it was in when the
5981   corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5982   executed.  This is useful for implementing language features like scoped
5983   automatic variable sized arrays in C99.</p>
5984
5985<h5>Semantics:</h5>
5986<p>See the description
5987   for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
5988
5989</div>
5990
5991<!-- _______________________________________________________________________ -->
5992<h4>
5993  <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5994</h4>
5995
5996<div>
5997
5998<h5>Syntax:</h5>
5999<pre>
6000  declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
6001</pre>
6002
6003<h5>Overview:</h5>
6004<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6005   insert a prefetch instruction if supported; otherwise, it is a noop.
6006   Prefetches have no effect on the behavior of the program but can change its
6007   performance characteristics.</p>
6008
6009<h5>Arguments:</h5>
6010<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6011   specifier determining if the fetch should be for a read (0) or write (1),
6012   and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
6013   locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6014   specifies whether the prefetch is performed on the data (1) or instruction (0)
6015   cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6016   must be constant integers.</p>
6017
6018<h5>Semantics:</h5>
6019<p>This intrinsic does not modify the behavior of the program.  In particular,
6020   prefetches cannot trap and do not produce a value.  On targets that support
6021   this intrinsic, the prefetch can provide hints to the processor cache for
6022   better performance.</p>
6023
6024</div>
6025
6026<!-- _______________________________________________________________________ -->
6027<h4>
6028  <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
6029</h4>
6030
6031<div>
6032
6033<h5>Syntax:</h5>
6034<pre>
6035  declare void @llvm.pcmarker(i32 &lt;id&gt;)
6036</pre>
6037
6038<h5>Overview:</h5>
6039<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6040   Counter (PC) in a region of code to simulators and other tools.  The method
6041   is target specific, but it is expected that the marker will use exported
6042   symbols to transmit the PC of the marker.  The marker makes no guarantees
6043   that it will remain with any specific instruction after optimizations.  It is
6044   possible that the presence of a marker will inhibit optimizations.  The
6045   intended use is to be inserted after optimizations to allow correlations of
6046   simulation runs.</p>
6047
6048<h5>Arguments:</h5>
6049<p><tt>id</tt> is a numerical id identifying the marker.</p>
6050
6051<h5>Semantics:</h5>
6052<p>This intrinsic does not modify the behavior of the program.  Backends that do
6053   not support this intrinsic may ignore it.</p>
6054
6055</div>
6056
6057<!-- _______________________________________________________________________ -->
6058<h4>
6059  <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
6060</h4>
6061
6062<div>
6063
6064<h5>Syntax:</h5>
6065<pre>
6066  declare i64 @llvm.readcyclecounter()
6067</pre>
6068
6069<h5>Overview:</h5>
6070<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6071   counter register (or similar low latency, high accuracy clocks) on those
6072   targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
6073   should map to RPCC.  As the backing counters overflow quickly (on the order
6074   of 9 seconds on alpha), this should only be used for small timings.</p>
6075
6076<h5>Semantics:</h5>
6077<p>When directly supported, reading the cycle counter should not modify any
6078   memory.  Implementations are allowed to either return a application specific
6079   value or a system wide value.  On backends without support, this is lowered
6080   to a constant 0.</p>
6081
6082</div>
6083
6084</div>
6085
6086<!-- ======================================================================= -->
6087<h3>
6088  <a name="int_libc">Standard C Library Intrinsics</a>
6089</h3>
6090
6091<div>
6092
6093<p>LLVM provides intrinsics for a few important standard C library functions.
6094   These intrinsics allow source-language front-ends to pass information about
6095   the alignment of the pointer arguments to the code generator, providing
6096   opportunity for more efficient code generation.</p>
6097
6098<!-- _______________________________________________________________________ -->
6099<h4>
6100  <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
6101</h4>
6102
6103<div>
6104
6105<h5>Syntax:</h5>
6106<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
6107   integer bit width and for different address spaces. Not all targets support
6108   all bit widths however.</p>
6109
6110<pre>
6111  declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6112                                          i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6113  declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6114                                          i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6115</pre>
6116
6117<h5>Overview:</h5>
6118<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6119   source location to the destination location.</p>
6120
6121<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
6122   intrinsics do not return a value, takes extra alignment/isvolatile arguments
6123   and the pointers can be in specified address spaces.</p>
6124
6125<h5>Arguments:</h5>
6126
6127<p>The first argument is a pointer to the destination, the second is a pointer
6128   to the source.  The third argument is an integer argument specifying the
6129   number of bytes to copy, the fourth argument is the alignment of the
6130   source and destination locations, and the fifth is a boolean indicating a
6131   volatile access.</p>
6132
6133<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6134   then the caller guarantees that both the source and destination pointers are
6135   aligned to that boundary.</p>
6136
6137<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6138   <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6139   The detailed access behavior is not very cleanly specified and it is unwise
6140   to depend on it.</p>
6141
6142<h5>Semantics:</h5>
6143
6144<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6145   source location to the destination location, which are not allowed to
6146   overlap.  It copies "len" bytes of memory over.  If the argument is known to
6147   be aligned to some boundary, this can be specified as the fourth argument,
6148   otherwise it should be set to 0 or 1.</p>
6149
6150</div>
6151
6152<!-- _______________________________________________________________________ -->
6153<h4>
6154  <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
6155</h4>
6156
6157<div>
6158
6159<h5>Syntax:</h5>
6160<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
6161   width and for different address space. Not all targets support all bit
6162   widths however.</p>
6163
6164<pre>
6165  declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6166                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6167  declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6168                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6169</pre>
6170
6171<h5>Overview:</h5>
6172<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6173   source location to the destination location. It is similar to the
6174   '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6175   overlap.</p>
6176
6177<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
6178   intrinsics do not return a value, takes extra alignment/isvolatile arguments
6179   and the pointers can be in specified address spaces.</p>
6180
6181<h5>Arguments:</h5>
6182
6183<p>The first argument is a pointer to the destination, the second is a pointer
6184   to the source.  The third argument is an integer argument specifying the
6185   number of bytes to copy, the fourth argument is the alignment of the
6186   source and destination locations, and the fifth is a boolean indicating a
6187   volatile access.</p>
6188
6189<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6190   then the caller guarantees that the source and destination pointers are
6191   aligned to that boundary.</p>
6192
6193<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6194   <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6195   The detailed access behavior is not very cleanly specified and it is unwise
6196   to depend on it.</p>
6197
6198<h5>Semantics:</h5>
6199
6200<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6201   source location to the destination location, which may overlap.  It copies
6202   "len" bytes of memory over.  If the argument is known to be aligned to some
6203   boundary, this can be specified as the fourth argument, otherwise it should
6204   be set to 0 or 1.</p>
6205
6206</div>
6207
6208<!-- _______________________________________________________________________ -->
6209<h4>
6210  <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
6211</h4>
6212
6213<div>
6214
6215<h5>Syntax:</h5>
6216<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
6217   width and for different address spaces. However, not all targets support all
6218   bit widths.</p>
6219
6220<pre>
6221  declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6222                                     i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6223  declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6224                                     i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6225</pre>
6226
6227<h5>Overview:</h5>
6228<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6229   particular byte value.</p>
6230
6231<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
6232   intrinsic does not return a value and takes extra alignment/volatile
6233   arguments.  Also, the destination can be in an arbitrary address space.</p>
6234
6235<h5>Arguments:</h5>
6236<p>The first argument is a pointer to the destination to fill, the second is the
6237   byte value with which to fill it, the third argument is an integer argument
6238   specifying the number of bytes to fill, and the fourth argument is the known
6239   alignment of the destination location.</p>
6240
6241<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6242   then the caller guarantees that the destination pointer is aligned to that
6243   boundary.</p>
6244
6245<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6246   <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6247   The detailed access behavior is not very cleanly specified and it is unwise
6248   to depend on it.</p>
6249
6250<h5>Semantics:</h5>
6251<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6252   at the destination location.  If the argument is known to be aligned to some
6253   boundary, this can be specified as the fourth argument, otherwise it should
6254   be set to 0 or 1.</p>
6255
6256</div>
6257
6258<!-- _______________________________________________________________________ -->
6259<h4>
6260  <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
6261</h4>
6262
6263<div>
6264
6265<h5>Syntax:</h5>
6266<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6267   floating point or vector of floating point type. Not all targets support all
6268   types however.</p>
6269
6270<pre>
6271  declare float     @llvm.sqrt.f32(float %Val)
6272  declare double    @llvm.sqrt.f64(double %Val)
6273  declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
6274  declare fp128     @llvm.sqrt.f128(fp128 %Val)
6275  declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6276</pre>
6277
6278<h5>Overview:</h5>
6279<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6280   returning the same value as the libm '<tt>sqrt</tt>' functions would.
6281   Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6282   behavior for negative numbers other than -0.0 (which allows for better
6283   optimization, because there is no need to worry about errno being
6284   set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
6285
6286<h5>Arguments:</h5>
6287<p>The argument and return value are floating point numbers of the same
6288   type.</p>
6289
6290<h5>Semantics:</h5>
6291<p>This function returns the sqrt of the specified operand if it is a
6292   nonnegative floating point number.</p>
6293
6294</div>
6295
6296<!-- _______________________________________________________________________ -->
6297<h4>
6298  <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
6299</h4>
6300
6301<div>
6302
6303<h5>Syntax:</h5>
6304<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6305   floating point or vector of floating point type. Not all targets support all
6306   types however.</p>
6307
6308<pre>
6309  declare float     @llvm.powi.f32(float  %Val, i32 %power)
6310  declare double    @llvm.powi.f64(double %Val, i32 %power)
6311  declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
6312  declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
6313  declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
6314</pre>
6315
6316<h5>Overview:</h5>
6317<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6318   specified (positive or negative) power.  The order of evaluation of
6319   multiplications is not defined.  When a vector of floating point type is
6320   used, the second argument remains a scalar integer value.</p>
6321
6322<h5>Arguments:</h5>
6323<p>The second argument is an integer power, and the first is a value to raise to
6324   that power.</p>
6325
6326<h5>Semantics:</h5>
6327<p>This function returns the first value raised to the second power with an
6328   unspecified sequence of rounding operations.</p>
6329
6330</div>
6331
6332<!-- _______________________________________________________________________ -->
6333<h4>
6334  <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6335</h4>
6336
6337<div>
6338
6339<h5>Syntax:</h5>
6340<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6341   floating point or vector of floating point type. Not all targets support all
6342   types however.</p>
6343
6344<pre>
6345  declare float     @llvm.sin.f32(float  %Val)
6346  declare double    @llvm.sin.f64(double %Val)
6347  declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
6348  declare fp128     @llvm.sin.f128(fp128 %Val)
6349  declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
6350</pre>
6351
6352<h5>Overview:</h5>
6353<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
6354
6355<h5>Arguments:</h5>
6356<p>The argument and return value are floating point numbers of the same
6357   type.</p>
6358
6359<h5>Semantics:</h5>
6360<p>This function returns the sine of the specified operand, returning the same
6361   values as the libm <tt>sin</tt> functions would, and handles error conditions
6362   in the same way.</p>
6363
6364</div>
6365
6366<!-- _______________________________________________________________________ -->
6367<h4>
6368  <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6369</h4>
6370
6371<div>
6372
6373<h5>Syntax:</h5>
6374<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6375   floating point or vector of floating point type. Not all targets support all
6376   types however.</p>
6377
6378<pre>
6379  declare float     @llvm.cos.f32(float  %Val)
6380  declare double    @llvm.cos.f64(double %Val)
6381  declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
6382  declare fp128     @llvm.cos.f128(fp128 %Val)
6383  declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
6384</pre>
6385
6386<h5>Overview:</h5>
6387<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
6388
6389<h5>Arguments:</h5>
6390<p>The argument and return value are floating point numbers of the same
6391   type.</p>
6392
6393<h5>Semantics:</h5>
6394<p>This function returns the cosine of the specified operand, returning the same
6395   values as the libm <tt>cos</tt> functions would, and handles error conditions
6396   in the same way.</p>
6397
6398</div>
6399
6400<!-- _______________________________________________________________________ -->
6401<h4>
6402  <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6403</h4>
6404
6405<div>
6406
6407<h5>Syntax:</h5>
6408<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6409   floating point or vector of floating point type. Not all targets support all
6410   types however.</p>
6411
6412<pre>
6413  declare float     @llvm.pow.f32(float  %Val, float %Power)
6414  declare double    @llvm.pow.f64(double %Val, double %Power)
6415  declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
6416  declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
6417  declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
6418</pre>
6419
6420<h5>Overview:</h5>
6421<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6422   specified (positive or negative) power.</p>
6423
6424<h5>Arguments:</h5>
6425<p>The second argument is a floating point power, and the first is a value to
6426   raise to that power.</p>
6427
6428<h5>Semantics:</h5>
6429<p>This function returns the first value raised to the second power, returning
6430   the same values as the libm <tt>pow</tt> functions would, and handles error
6431   conditions in the same way.</p>
6432
6433</div>
6434
6435</div>
6436
6437<!-- _______________________________________________________________________ -->
6438<h4>
6439  <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
6440</h4>
6441
6442<div>
6443
6444<h5>Syntax:</h5>
6445<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
6446   floating point or vector of floating point type. Not all targets support all
6447   types however.</p>
6448
6449<pre>
6450  declare float     @llvm.exp.f32(float  %Val)
6451  declare double    @llvm.exp.f64(double %Val)
6452  declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
6453  declare fp128     @llvm.exp.f128(fp128 %Val)
6454  declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
6455</pre>
6456
6457<h5>Overview:</h5>
6458<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
6459
6460<h5>Arguments:</h5>
6461<p>The argument and return value are floating point numbers of the same
6462   type.</p>
6463
6464<h5>Semantics:</h5>
6465<p>This function returns the same values as the libm <tt>exp</tt> functions
6466   would, and handles error conditions in the same way.</p>
6467
6468</div>
6469
6470<!-- _______________________________________________________________________ -->
6471<h4>
6472  <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
6473</h4>
6474
6475<div>
6476
6477<h5>Syntax:</h5>
6478<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
6479   floating point or vector of floating point type. Not all targets support all
6480   types however.</p>
6481
6482<pre>
6483  declare float     @llvm.log.f32(float  %Val)
6484  declare double    @llvm.log.f64(double %Val)
6485  declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
6486  declare fp128     @llvm.log.f128(fp128 %Val)
6487  declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
6488</pre>
6489
6490<h5>Overview:</h5>
6491<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
6492
6493<h5>Arguments:</h5>
6494<p>The argument and return value are floating point numbers of the same
6495   type.</p>
6496
6497<h5>Semantics:</h5>
6498<p>This function returns the same values as the libm <tt>log</tt> functions
6499   would, and handles error conditions in the same way.</p>
6500
6501<h4>
6502  <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
6503</h4>
6504
6505<div>
6506
6507<h5>Syntax:</h5>
6508<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
6509   floating point or vector of floating point type. Not all targets support all
6510   types however.</p>
6511
6512<pre>
6513  declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
6514  declare double    @llvm.fma.f64(double %a, double %b, double %c)
6515  declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
6516  declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
6517  declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
6518</pre>
6519
6520<h5>Overview:</h5>
6521<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
6522   operation.</p>
6523
6524<h5>Arguments:</h5>
6525<p>The argument and return value are floating point numbers of the same
6526   type.</p>
6527
6528<h5>Semantics:</h5>
6529<p>This function returns the same values as the libm <tt>fma</tt> functions
6530   would.</p>
6531
6532</div>
6533
6534<!-- ======================================================================= -->
6535<h3>
6536  <a name="int_manip">Bit Manipulation Intrinsics</a>
6537</h3>
6538
6539<div>
6540
6541<p>LLVM provides intrinsics for a few important bit manipulation operations.
6542   These allow efficient code generation for some algorithms.</p>
6543
6544<!-- _______________________________________________________________________ -->
6545<h4>
6546  <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
6547</h4>
6548
6549<div>
6550
6551<h5>Syntax:</h5>
6552<p>This is an overloaded intrinsic function. You can use bswap on any integer
6553   type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6554
6555<pre>
6556  declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6557  declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6558  declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
6559</pre>
6560
6561<h5>Overview:</h5>
6562<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6563   values with an even number of bytes (positive multiple of 16 bits).  These
6564   are useful for performing operations on data that is not in the target's
6565   native byte order.</p>
6566
6567<h5>Semantics:</h5>
6568<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6569   and low byte of the input i16 swapped.  Similarly,
6570   the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6571   bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6572   2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6573   The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6574   extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6575   more, respectively).</p>
6576
6577</div>
6578
6579<!-- _______________________________________________________________________ -->
6580<h4>
6581  <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
6582</h4>
6583
6584<div>
6585
6586<h5>Syntax:</h5>
6587<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
6588   width, or on any vector with integer elements. Not all targets support all
6589  bit widths or vector types, however.</p>
6590
6591<pre>
6592  declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
6593  declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
6594  declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
6595  declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6596  declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
6597  declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
6598</pre>
6599
6600<h5>Overview:</h5>
6601<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6602   in a value.</p>
6603
6604<h5>Arguments:</h5>
6605<p>The only argument is the value to be counted.  The argument may be of any
6606   integer type, or a vector with integer elements.
6607   The return type must match the argument type.</p>
6608
6609<h5>Semantics:</h5>
6610<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
6611   element of a vector.</p>
6612
6613</div>
6614
6615<!-- _______________________________________________________________________ -->
6616<h4>
6617  <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
6618</h4>
6619
6620<div>
6621
6622<h5>Syntax:</h5>
6623<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6624   integer bit width, or any vector whose elements are integers. Not all
6625   targets support all bit widths or vector types, however.</p>
6626
6627<pre>
6628  declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
6629  declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
6630  declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
6631  declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6632  declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
6633  declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
6634</pre>
6635
6636<h5>Overview:</h5>
6637<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6638   leading zeros in a variable.</p>
6639
6640<h5>Arguments:</h5>
6641<p>The only argument is the value to be counted.  The argument may be of any
6642   integer type, or any vector type with integer element type.
6643   The return type must match the argument type.</p>
6644
6645<h5>Semantics:</h5>
6646<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6647   zeros in a variable, or within each element of the vector if the operation
6648   is of vector type.  If the src == 0 then the result is the size in bits of
6649   the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
6650
6651</div>
6652
6653<!-- _______________________________________________________________________ -->
6654<h4>
6655  <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
6656</h4>
6657
6658<div>
6659
6660<h5>Syntax:</h5>
6661<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6662   integer bit width, or any vector of integer elements. Not all targets
6663   support all bit widths or vector types, however.</p>
6664
6665<pre>
6666  declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
6667  declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
6668  declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
6669  declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6670  declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
6671  declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
6672</pre>
6673
6674<h5>Overview:</h5>
6675<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6676   trailing zeros.</p>
6677
6678<h5>Arguments:</h5>
6679<p>The only argument is the value to be counted.  The argument may be of any
6680   integer type, or a vectory with integer element type..  The return type
6681   must match the argument type.</p>
6682
6683<h5>Semantics:</h5>
6684<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6685   zeros in a variable, or within each element of a vector.
6686   If the src == 0 then the result is the size in bits of
6687   the type of src.  For example, <tt>llvm.cttz(2) = 1</tt>.</p>
6688
6689</div>
6690
6691</div>
6692
6693<!-- ======================================================================= -->
6694<h3>
6695  <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6696</h3>
6697
6698<div>
6699
6700<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
6701
6702<!-- _______________________________________________________________________ -->
6703<h4>
6704  <a name="int_sadd_overflow">
6705    '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
6706  </a>
6707</h4>
6708
6709<div>
6710
6711<h5>Syntax:</h5>
6712<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
6713   on any integer bit width.</p>
6714
6715<pre>
6716  declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6717  declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6718  declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6719</pre>
6720
6721<h5>Overview:</h5>
6722<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6723   a signed addition of the two arguments, and indicate whether an overflow
6724   occurred during the signed summation.</p>
6725
6726<h5>Arguments:</h5>
6727<p>The arguments (%a and %b) and the first element of the result structure may
6728   be of integer types of any bit width, but they must have the same bit
6729   width. The second element of the result structure must be of
6730   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6731   undergo signed addition.</p>
6732
6733<h5>Semantics:</h5>
6734<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6735   a signed addition of the two variables. They return a structure &mdash; the
6736   first element of which is the signed summation, and the second element of
6737   which is a bit specifying if the signed summation resulted in an
6738   overflow.</p>
6739
6740<h5>Examples:</h5>
6741<pre>
6742  %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6743  %sum = extractvalue {i32, i1} %res, 0
6744  %obit = extractvalue {i32, i1} %res, 1
6745  br i1 %obit, label %overflow, label %normal
6746</pre>
6747
6748</div>
6749
6750<!-- _______________________________________________________________________ -->
6751<h4>
6752  <a name="int_uadd_overflow">
6753    '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
6754  </a>
6755</h4>
6756
6757<div>
6758
6759<h5>Syntax:</h5>
6760<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
6761   on any integer bit width.</p>
6762
6763<pre>
6764  declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6765  declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6766  declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6767</pre>
6768
6769<h5>Overview:</h5>
6770<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6771   an unsigned addition of the two arguments, and indicate whether a carry
6772   occurred during the unsigned summation.</p>
6773
6774<h5>Arguments:</h5>
6775<p>The arguments (%a and %b) and the first element of the result structure may
6776   be of integer types of any bit width, but they must have the same bit
6777   width. The second element of the result structure must be of
6778   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6779   undergo unsigned addition.</p>
6780
6781<h5>Semantics:</h5>
6782<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6783   an unsigned addition of the two arguments. They return a structure &mdash;
6784   the first element of which is the sum, and the second element of which is a
6785   bit specifying if the unsigned summation resulted in a carry.</p>
6786
6787<h5>Examples:</h5>
6788<pre>
6789  %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6790  %sum = extractvalue {i32, i1} %res, 0
6791  %obit = extractvalue {i32, i1} %res, 1
6792  br i1 %obit, label %carry, label %normal
6793</pre>
6794
6795</div>
6796
6797<!-- _______________________________________________________________________ -->
6798<h4>
6799  <a name="int_ssub_overflow">
6800    '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
6801  </a>
6802</h4>
6803
6804<div>
6805
6806<h5>Syntax:</h5>
6807<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
6808   on any integer bit width.</p>
6809
6810<pre>
6811  declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6812  declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6813  declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6814</pre>
6815
6816<h5>Overview:</h5>
6817<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6818   a signed subtraction of the two arguments, and indicate whether an overflow
6819   occurred during the signed subtraction.</p>
6820
6821<h5>Arguments:</h5>
6822<p>The arguments (%a and %b) and the first element of the result structure may
6823   be of integer types of any bit width, but they must have the same bit
6824   width. The second element of the result structure must be of
6825   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6826   undergo signed subtraction.</p>
6827
6828<h5>Semantics:</h5>
6829<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6830   a signed subtraction of the two arguments. They return a structure &mdash;
6831   the first element of which is the subtraction, and the second element of
6832   which is a bit specifying if the signed subtraction resulted in an
6833   overflow.</p>
6834
6835<h5>Examples:</h5>
6836<pre>
6837  %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6838  %sum = extractvalue {i32, i1} %res, 0
6839  %obit = extractvalue {i32, i1} %res, 1
6840  br i1 %obit, label %overflow, label %normal
6841</pre>
6842
6843</div>
6844
6845<!-- _______________________________________________________________________ -->
6846<h4>
6847  <a name="int_usub_overflow">
6848    '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
6849  </a>
6850</h4>
6851
6852<div>
6853
6854<h5>Syntax:</h5>
6855<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
6856   on any integer bit width.</p>
6857
6858<pre>
6859  declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6860  declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6861  declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6862</pre>
6863
6864<h5>Overview:</h5>
6865<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6866   an unsigned subtraction of the two arguments, and indicate whether an
6867   overflow occurred during the unsigned subtraction.</p>
6868
6869<h5>Arguments:</h5>
6870<p>The arguments (%a and %b) and the first element of the result structure may
6871   be of integer types of any bit width, but they must have the same bit
6872   width. The second element of the result structure must be of
6873   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6874   undergo unsigned subtraction.</p>
6875
6876<h5>Semantics:</h5>
6877<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6878   an unsigned subtraction of the two arguments. They return a structure &mdash;
6879   the first element of which is the subtraction, and the second element of
6880   which is a bit specifying if the unsigned subtraction resulted in an
6881   overflow.</p>
6882
6883<h5>Examples:</h5>
6884<pre>
6885  %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6886  %sum = extractvalue {i32, i1} %res, 0
6887  %obit = extractvalue {i32, i1} %res, 1
6888  br i1 %obit, label %overflow, label %normal
6889</pre>
6890
6891</div>
6892
6893<!-- _______________________________________________________________________ -->
6894<h4>
6895  <a name="int_smul_overflow">
6896    '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
6897  </a>
6898</h4>
6899
6900<div>
6901
6902<h5>Syntax:</h5>
6903<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
6904   on any integer bit width.</p>
6905
6906<pre>
6907  declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6908  declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6909  declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6910</pre>
6911
6912<h5>Overview:</h5>
6913
6914<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6915   a signed multiplication of the two arguments, and indicate whether an
6916   overflow occurred during the signed multiplication.</p>
6917
6918<h5>Arguments:</h5>
6919<p>The arguments (%a and %b) and the first element of the result structure may
6920   be of integer types of any bit width, but they must have the same bit
6921   width. The second element of the result structure must be of
6922   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6923   undergo signed multiplication.</p>
6924
6925<h5>Semantics:</h5>
6926<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6927   a signed multiplication of the two arguments. They return a structure &mdash;
6928   the first element of which is the multiplication, and the second element of
6929   which is a bit specifying if the signed multiplication resulted in an
6930   overflow.</p>
6931
6932<h5>Examples:</h5>
6933<pre>
6934  %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6935  %sum = extractvalue {i32, i1} %res, 0
6936  %obit = extractvalue {i32, i1} %res, 1
6937  br i1 %obit, label %overflow, label %normal
6938</pre>
6939
6940</div>
6941
6942<!-- _______________________________________________________________________ -->
6943<h4>
6944  <a name="int_umul_overflow">
6945    '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
6946  </a>
6947</h4>
6948
6949<div>
6950
6951<h5>Syntax:</h5>
6952<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6953   on any integer bit width.</p>
6954
6955<pre>
6956  declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6957  declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6958  declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6959</pre>
6960
6961<h5>Overview:</h5>
6962<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6963   a unsigned multiplication of the two arguments, and indicate whether an
6964   overflow occurred during the unsigned multiplication.</p>
6965
6966<h5>Arguments:</h5>
6967<p>The arguments (%a and %b) and the first element of the result structure may
6968   be of integer types of any bit width, but they must have the same bit
6969   width. The second element of the result structure must be of
6970   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6971   undergo unsigned multiplication.</p>
6972
6973<h5>Semantics:</h5>
6974<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6975   an unsigned multiplication of the two arguments. They return a structure
6976   &mdash; the first element of which is the multiplication, and the second
6977   element of which is a bit specifying if the unsigned multiplication resulted
6978   in an overflow.</p>
6979
6980<h5>Examples:</h5>
6981<pre>
6982  %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6983  %sum = extractvalue {i32, i1} %res, 0
6984  %obit = extractvalue {i32, i1} %res, 1
6985  br i1 %obit, label %overflow, label %normal
6986</pre>
6987
6988</div>
6989
6990</div>
6991
6992<!-- ======================================================================= -->
6993<h3>
6994  <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6995</h3>
6996
6997<div>
6998
6999<p>Half precision floating point is a storage-only format. This means that it is
7000   a dense encoding (in memory) but does not support computation in the
7001   format.</p>
7002
7003<p>This means that code must first load the half-precision floating point
7004   value as an i16, then convert it to float with <a
7005   href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7006   Computation can then be performed on the float value (including extending to
7007   double etc).  To store the value back to memory, it is first converted to
7008   float if needed, then converted to i16 with
7009   <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7010   storing as an i16 value.</p>
7011
7012<!-- _______________________________________________________________________ -->
7013<h4>
7014  <a name="int_convert_to_fp16">
7015    '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7016  </a>
7017</h4>
7018
7019<div>
7020
7021<h5>Syntax:</h5>
7022<pre>
7023  declare i16 @llvm.convert.to.fp16(f32 %a)
7024</pre>
7025
7026<h5>Overview:</h5>
7027<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7028   a conversion from single precision floating point format to half precision
7029   floating point format.</p>
7030
7031<h5>Arguments:</h5>
7032<p>The intrinsic function contains single argument - the value to be
7033   converted.</p>
7034
7035<h5>Semantics:</h5>
7036<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7037   a conversion from single precision floating point format to half precision
7038   floating point format. The return value is an <tt>i16</tt> which
7039   contains the converted number.</p>
7040
7041<h5>Examples:</h5>
7042<pre>
7043  %res = call i16 @llvm.convert.to.fp16(f32 %a)
7044  store i16 %res, i16* @x, align 2
7045</pre>
7046
7047</div>
7048
7049<!-- _______________________________________________________________________ -->
7050<h4>
7051  <a name="int_convert_from_fp16">
7052    '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7053  </a>
7054</h4>
7055
7056<div>
7057
7058<h5>Syntax:</h5>
7059<pre>
7060  declare f32 @llvm.convert.from.fp16(i16 %a)
7061</pre>
7062
7063<h5>Overview:</h5>
7064<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7065   a conversion from half precision floating point format to single precision
7066   floating point format.</p>
7067
7068<h5>Arguments:</h5>
7069<p>The intrinsic function contains single argument - the value to be
7070   converted.</p>
7071
7072<h5>Semantics:</h5>
7073<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
7074   conversion from half single precision floating point format to single
7075   precision floating point format. The input half-float value is represented by
7076   an <tt>i16</tt> value.</p>
7077
7078<h5>Examples:</h5>
7079<pre>
7080  %a = load i16* @x, align 2
7081  %res = call f32 @llvm.convert.from.fp16(i16 %a)
7082</pre>
7083
7084</div>
7085
7086</div>
7087
7088<!-- ======================================================================= -->
7089<h3>
7090  <a name="int_debugger">Debugger Intrinsics</a>
7091</h3>
7092
7093<div>
7094
7095<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7096   prefix), are described in
7097   the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7098   Level Debugging</a> document.</p>
7099
7100</div>
7101
7102<!-- ======================================================================= -->
7103<h3>
7104  <a name="int_eh">Exception Handling Intrinsics</a>
7105</h3>
7106
7107<div>
7108
7109<p>The LLVM exception handling intrinsics (which all start with
7110   <tt>llvm.eh.</tt> prefix), are described in
7111   the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7112   Handling</a> document.</p>
7113
7114</div>
7115
7116<!-- ======================================================================= -->
7117<h3>
7118  <a name="int_trampoline">Trampoline Intrinsic</a>
7119</h3>
7120
7121<div>
7122
7123<p>This intrinsic makes it possible to excise one parameter, marked with
7124   the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7125   The result is a callable
7126   function pointer lacking the nest parameter - the caller does not need to
7127   provide a value for it.  Instead, the value to use is stored in advance in a
7128   "trampoline", a block of memory usually allocated on the stack, which also
7129   contains code to splice the nest value into the argument list.  This is used
7130   to implement the GCC nested function address extension.</p>
7131
7132<p>For example, if the function is
7133   <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7134   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
7135   follows:</p>
7136
7137<pre class="doc_code">
7138  %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7139  %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7140  %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
7141  %fp = bitcast i8* %p to i32 (i32, i32)*
7142</pre>
7143
7144<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7145   to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
7146
7147<!-- _______________________________________________________________________ -->
7148<h4>
7149  <a name="int_it">
7150    '<tt>llvm.init.trampoline</tt>' Intrinsic
7151  </a>
7152</h4>
7153
7154<div>
7155
7156<h5>Syntax:</h5>
7157<pre>
7158  declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
7159</pre>
7160
7161<h5>Overview:</h5>
7162<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
7163   function pointer suitable for executing it.</p>
7164
7165<h5>Arguments:</h5>
7166<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7167   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
7168   sufficiently aligned block of memory; this memory is written to by the
7169   intrinsic.  Note that the size and the alignment are target-specific - LLVM
7170   currently provides no portable way of determining them, so a front-end that
7171   generates this intrinsic needs to have some target-specific knowledge.
7172   The <tt>func</tt> argument must hold a function bitcast to
7173   an <tt>i8*</tt>.</p>
7174
7175<h5>Semantics:</h5>
7176<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
7177   dependent code, turning it into a function.  A pointer to this function is
7178   returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
7179   function pointer type</a> before being called.  The new function's signature
7180   is the same as that of <tt>func</tt> with any arguments marked with
7181   the <tt>nest</tt> attribute removed.  At most one such <tt>nest</tt> argument
7182   is allowed, and it must be of pointer type.  Calling the new function is
7183   equivalent to calling <tt>func</tt> with the same argument list, but
7184   with <tt>nval</tt> used for the missing <tt>nest</tt> argument.  If, after
7185   calling <tt>llvm.init.trampoline</tt>, the memory pointed to
7186   by <tt>tramp</tt> is modified, then the effect of any later call to the
7187   returned function pointer is undefined.</p>
7188
7189</div>
7190
7191</div>
7192
7193<!-- ======================================================================= -->
7194<h3>
7195  <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
7196</h3>
7197
7198<div>
7199
7200<p>These intrinsic functions expand the "universal IR" of LLVM to represent
7201   hardware constructs for atomic operations and memory synchronization.  This
7202   provides an interface to the hardware, not an interface to the programmer. It
7203   is aimed at a low enough level to allow any programming models or APIs
7204   (Application Programming Interfaces) which need atomic behaviors to map
7205   cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7206   hardware provides a "universal IR" for source languages, it also provides a
7207   starting point for developing a "universal" atomic operation and
7208   synchronization IR.</p>
7209
7210<p>These do <em>not</em> form an API such as high-level threading libraries,
7211   software transaction memory systems, atomic primitives, and intrinsic
7212   functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7213   application libraries.  The hardware interface provided by LLVM should allow
7214   a clean implementation of all of these APIs and parallel programming models.
7215   No one model or paradigm should be selected above others unless the hardware
7216   itself ubiquitously does so.</p>
7217
7218<!-- _______________________________________________________________________ -->
7219<h4>
7220  <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
7221</h4>
7222
7223<div>
7224<h5>Syntax:</h5>
7225<pre>
7226  declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
7227</pre>
7228
7229<h5>Overview:</h5>
7230<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7231   specific pairs of memory access types.</p>
7232
7233<h5>Arguments:</h5>
7234<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7235   The first four arguments enables a specific barrier as listed below.  The
7236   fifth argument specifies that the barrier applies to io or device or uncached
7237   memory.</p>
7238
7239<ul>
7240  <li><tt>ll</tt>: load-load barrier</li>
7241  <li><tt>ls</tt>: load-store barrier</li>
7242  <li><tt>sl</tt>: store-load barrier</li>
7243  <li><tt>ss</tt>: store-store barrier</li>
7244  <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7245</ul>
7246
7247<h5>Semantics:</h5>
7248<p>This intrinsic causes the system to enforce some ordering constraints upon
7249   the loads and stores of the program. This barrier does not
7250   indicate <em>when</em> any events will occur, it only enforces
7251   an <em>order</em> in which they occur. For any of the specified pairs of load
7252   and store operations (f.ex.  load-load, or store-load), all of the first
7253   operations preceding the barrier will complete before any of the second
7254   operations succeeding the barrier begin. Specifically the semantics for each
7255   pairing is as follows:</p>
7256
7257<ul>
7258  <li><tt>ll</tt>: All loads before the barrier must complete before any load
7259      after the barrier begins.</li>
7260  <li><tt>ls</tt>: All loads before the barrier must complete before any
7261      store after the barrier begins.</li>
7262  <li><tt>ss</tt>: All stores before the barrier must complete before any
7263      store after the barrier begins.</li>
7264  <li><tt>sl</tt>: All stores before the barrier must complete before any
7265      load after the barrier begins.</li>
7266</ul>
7267
7268<p>These semantics are applied with a logical "and" behavior when more than one
7269   is enabled in a single memory barrier intrinsic.</p>
7270
7271<p>Backends may implement stronger barriers than those requested when they do
7272   not support as fine grained a barrier as requested.  Some architectures do
7273   not need all types of barriers and on such architectures, these become
7274   noops.</p>
7275
7276<h5>Example:</h5>
7277<pre>
7278%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7279%ptr      = bitcast i8* %mallocP to i32*
7280            store i32 4, %ptr
7281
7282%result1  = load i32* %ptr      <i>; yields {i32}:result1 = 4</i>
7283            call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
7284                                <i>; guarantee the above finishes</i>
7285            store i32 8, %ptr   <i>; before this begins</i>
7286</pre>
7287
7288</div>
7289
7290<!-- _______________________________________________________________________ -->
7291<h4>
7292  <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
7293</h4>
7294
7295<div>
7296
7297<h5>Syntax:</h5>
7298<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7299   any integer bit width and for different address spaces. Not all targets
7300   support all bit widths however.</p>
7301
7302<pre>
7303  declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7304  declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7305  declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7306  declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
7307</pre>
7308
7309<h5>Overview:</h5>
7310<p>This loads a value in memory and compares it to a given value. If they are
7311   equal, it stores a new value into the memory.</p>
7312
7313<h5>Arguments:</h5>
7314<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7315   as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7316   same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7317   this integer type. While any bit width integer may be used, targets may only
7318   lower representations they support in hardware.</p>
7319
7320<h5>Semantics:</h5>
7321<p>This entire intrinsic must be executed atomically. It first loads the value
7322   in memory pointed to by <tt>ptr</tt> and compares it with the
7323   value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7324   memory. The loaded value is yielded in all cases. This provides the
7325   equivalent of an atomic compare-and-swap operation within the SSA
7326   framework.</p>
7327
7328<h5>Examples:</h5>
7329<pre>
7330%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7331%ptr      = bitcast i8* %mallocP to i32*
7332            store i32 4, %ptr
7333
7334%val1     = add i32 4, 4
7335%result1  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
7336                                          <i>; yields {i32}:result1 = 4</i>
7337%stored1  = icmp eq i32 %result1, 4       <i>; yields {i1}:stored1 = true</i>
7338%memval1  = load i32* %ptr                <i>; yields {i32}:memval1 = 8</i>
7339
7340%val2     = add i32 1, 1
7341%result2  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
7342                                          <i>; yields {i32}:result2 = 8</i>
7343%stored2  = icmp eq i32 %result2, 5       <i>; yields {i1}:stored2 = false</i>
7344
7345%memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
7346</pre>
7347
7348</div>
7349
7350<!-- _______________________________________________________________________ -->
7351<h4>
7352  <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7353</h4>
7354
7355<div>
7356<h5>Syntax:</h5>
7357
7358<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7359   integer bit width. Not all targets support all bit widths however.</p>
7360
7361<pre>
7362  declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7363  declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7364  declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7365  declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
7366</pre>
7367
7368<h5>Overview:</h5>
7369<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7370   the value from memory. It then stores the value in <tt>val</tt> in the memory
7371   at <tt>ptr</tt>.</p>
7372
7373<h5>Arguments:</h5>
7374<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7375  the <tt>val</tt> argument and the result must be integers of the same bit
7376  width.  The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7377  integer type. The targets may only lower integer representations they
7378  support.</p>
7379
7380<h5>Semantics:</h5>
7381<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7382   stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7383   equivalent of an atomic swap operation within the SSA framework.</p>
7384
7385<h5>Examples:</h5>
7386<pre>
7387%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7388%ptr      = bitcast i8* %mallocP to i32*
7389            store i32 4, %ptr
7390
7391%val1     = add i32 4, 4
7392%result1  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
7393                                        <i>; yields {i32}:result1 = 4</i>
7394%stored1  = icmp eq i32 %result1, 4     <i>; yields {i1}:stored1 = true</i>
7395%memval1  = load i32* %ptr              <i>; yields {i32}:memval1 = 8</i>
7396
7397%val2     = add i32 1, 1
7398%result2  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
7399                                        <i>; yields {i32}:result2 = 8</i>
7400
7401%stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
7402%memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
7403</pre>
7404
7405</div>
7406
7407<!-- _______________________________________________________________________ -->
7408<h4>
7409  <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
7410</h4>
7411
7412<div>
7413
7414<h5>Syntax:</h5>
7415<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7416   any integer bit width. Not all targets support all bit widths however.</p>
7417
7418<pre>
7419  declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7420  declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7421  declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7422  declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7423</pre>
7424
7425<h5>Overview:</h5>
7426<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7427   at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7428
7429<h5>Arguments:</h5>
7430<p>The intrinsic takes two arguments, the first a pointer to an integer value
7431   and the second an integer value. The result is also an integer value. These
7432   integer types can have any bit width, but they must all have the same bit
7433   width. The targets may only lower integer representations they support.</p>
7434
7435<h5>Semantics:</h5>
7436<p>This intrinsic does a series of operations atomically. It first loads the
7437   value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7438   to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
7439
7440<h5>Examples:</h5>
7441<pre>
7442%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7443%ptr      = bitcast i8* %mallocP to i32*
7444            store i32 4, %ptr
7445%result1  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
7446                                <i>; yields {i32}:result1 = 4</i>
7447%result2  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
7448                                <i>; yields {i32}:result2 = 8</i>
7449%result3  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
7450                                <i>; yields {i32}:result3 = 10</i>
7451%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
7452</pre>
7453
7454</div>
7455
7456<!-- _______________________________________________________________________ -->
7457<h4>
7458  <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7459</h4>
7460
7461<div>
7462
7463<h5>Syntax:</h5>
7464<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7465   any integer bit width and for different address spaces. Not all targets
7466   support all bit widths however.</p>
7467
7468<pre>
7469  declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7470  declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7471  declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7472  declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7473</pre>
7474
7475<h5>Overview:</h5>
7476<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
7477   <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7478
7479<h5>Arguments:</h5>
7480<p>The intrinsic takes two arguments, the first a pointer to an integer value
7481   and the second an integer value. The result is also an integer value. These
7482   integer types can have any bit width, but they must all have the same bit
7483   width. The targets may only lower integer representations they support.</p>
7484
7485<h5>Semantics:</h5>
7486<p>This intrinsic does a series of operations atomically. It first loads the
7487   value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7488   result to <tt>ptr</tt>. It yields the original value stored
7489   at <tt>ptr</tt>.</p>
7490
7491<h5>Examples:</h5>
7492<pre>
7493%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7494%ptr      = bitcast i8* %mallocP to i32*
7495            store i32 8, %ptr
7496%result1  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
7497                                <i>; yields {i32}:result1 = 8</i>
7498%result2  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
7499                                <i>; yields {i32}:result2 = 4</i>
7500%result3  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
7501                                <i>; yields {i32}:result3 = 2</i>
7502%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = -3</i>
7503</pre>
7504
7505</div>
7506
7507<!-- _______________________________________________________________________ -->
7508<h4>
7509  <a name="int_atomic_load_and">
7510    '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
7511  </a>
7512  <br>
7513  <a name="int_atomic_load_nand">
7514    '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
7515  </a>
7516  <br>
7517  <a name="int_atomic_load_or">
7518    '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
7519  </a>
7520  <br>
7521  <a name="int_atomic_load_xor">
7522    '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
7523  </a>
7524</h4>
7525
7526<div>
7527
7528<h5>Syntax:</h5>
7529<p>These are overloaded intrinsics. You can
7530  use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7531  <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7532  bit width and for different address spaces. Not all targets support all bit
7533  widths however.</p>
7534
7535<pre>
7536  declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7537  declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7538  declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7539  declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7540</pre>
7541
7542<pre>
7543  declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7544  declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7545  declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7546  declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7547</pre>
7548
7549<pre>
7550  declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7551  declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7552  declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7553  declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7554</pre>
7555
7556<pre>
7557  declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7558  declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7559  declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7560  declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7561</pre>
7562
7563<h5>Overview:</h5>
7564<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7565   the value stored in memory at <tt>ptr</tt>. It yields the original value
7566   at <tt>ptr</tt>.</p>
7567
7568<h5>Arguments:</h5>
7569<p>These intrinsics take two arguments, the first a pointer to an integer value
7570   and the second an integer value. The result is also an integer value. These
7571   integer types can have any bit width, but they must all have the same bit
7572   width. The targets may only lower integer representations they support.</p>
7573
7574<h5>Semantics:</h5>
7575<p>These intrinsics does a series of operations atomically. They first load the
7576   value stored at <tt>ptr</tt>. They then do the bitwise
7577   operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7578   original value stored at <tt>ptr</tt>.</p>
7579
7580<h5>Examples:</h5>
7581<pre>
7582%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7583%ptr      = bitcast i8* %mallocP to i32*
7584            store i32 0x0F0F, %ptr
7585%result0  = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
7586                                <i>; yields {i32}:result0 = 0x0F0F</i>
7587%result1  = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
7588                                <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
7589%result2  = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
7590                                <i>; yields {i32}:result2 = 0xF0</i>
7591%result3  = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
7592                                <i>; yields {i32}:result3 = FF</i>
7593%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = F0</i>
7594</pre>
7595
7596</div>
7597
7598<!-- _______________________________________________________________________ -->
7599<h4>
7600  <a name="int_atomic_load_max">
7601    '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
7602  </a>
7603  <br>
7604  <a name="int_atomic_load_min">
7605    '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
7606  </a>
7607  <br>
7608  <a name="int_atomic_load_umax">
7609    '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
7610  </a>
7611  <br>
7612  <a name="int_atomic_load_umin">
7613    '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
7614  </a>
7615</h4>
7616
7617<div>
7618
7619<h5>Syntax:</h5>
7620<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7621   <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7622   <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7623   address spaces. Not all targets support all bit widths however.</p>
7624
7625<pre>
7626  declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7627  declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7628  declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7629  declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7630</pre>
7631
7632<pre>
7633  declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7634  declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7635  declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7636  declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7637</pre>
7638
7639<pre>
7640  declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7641  declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7642  declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7643  declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7644</pre>
7645
7646<pre>
7647  declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7648  declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7649  declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7650  declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7651</pre>
7652
7653<h5>Overview:</h5>
7654<p>These intrinsics takes the signed or unsigned minimum or maximum of
7655   <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7656   original value at <tt>ptr</tt>.</p>
7657
7658<h5>Arguments:</h5>
7659<p>These intrinsics take two arguments, the first a pointer to an integer value
7660   and the second an integer value. The result is also an integer value. These
7661   integer types can have any bit width, but they must all have the same bit
7662   width. The targets may only lower integer representations they support.</p>
7663
7664<h5>Semantics:</h5>
7665<p>These intrinsics does a series of operations atomically. They first load the
7666   value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7667   max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7668   yield the original value stored at <tt>ptr</tt>.</p>
7669
7670<h5>Examples:</h5>
7671<pre>
7672%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7673%ptr      = bitcast i8* %mallocP to i32*
7674            store i32 7, %ptr
7675%result0  = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
7676                                <i>; yields {i32}:result0 = 7</i>
7677%result1  = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
7678                                <i>; yields {i32}:result1 = -2</i>
7679%result2  = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
7680                                <i>; yields {i32}:result2 = 8</i>
7681%result3  = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
7682                                <i>; yields {i32}:result3 = 8</i>
7683%memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 30</i>
7684</pre>
7685
7686</div>
7687
7688</div>
7689
7690<!-- ======================================================================= -->
7691<h3>
7692  <a name="int_memorymarkers">Memory Use Markers</a>
7693</h3>
7694
7695<div>
7696
7697<p>This class of intrinsics exists to information about the lifetime of memory
7698   objects and ranges where variables are immutable.</p>
7699
7700<!-- _______________________________________________________________________ -->
7701<h4>
7702  <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7703</h4>
7704
7705<div>
7706
7707<h5>Syntax:</h5>
7708<pre>
7709  declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7710</pre>
7711
7712<h5>Overview:</h5>
7713<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7714   object's lifetime.</p>
7715
7716<h5>Arguments:</h5>
7717<p>The first argument is a constant integer representing the size of the
7718   object, or -1 if it is variable sized.  The second argument is a pointer to
7719   the object.</p>
7720
7721<h5>Semantics:</h5>
7722<p>This intrinsic indicates that before this point in the code, the value of the
7723   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
7724   never be used and has an undefined value.  A load from the pointer that
7725   precedes this intrinsic can be replaced with
7726   <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7727
7728</div>
7729
7730<!-- _______________________________________________________________________ -->
7731<h4>
7732  <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7733</h4>
7734
7735<div>
7736
7737<h5>Syntax:</h5>
7738<pre>
7739  declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7740</pre>
7741
7742<h5>Overview:</h5>
7743<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7744   object's lifetime.</p>
7745
7746<h5>Arguments:</h5>
7747<p>The first argument is a constant integer representing the size of the
7748   object, or -1 if it is variable sized.  The second argument is a pointer to
7749   the object.</p>
7750
7751<h5>Semantics:</h5>
7752<p>This intrinsic indicates that after this point in the code, the value of the
7753   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
7754   never be used and has an undefined value.  Any stores into the memory object
7755   following this intrinsic may be removed as dead.
7756
7757</div>
7758
7759<!-- _______________________________________________________________________ -->
7760<h4>
7761  <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7762</h4>
7763
7764<div>
7765
7766<h5>Syntax:</h5>
7767<pre>
7768  declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7769</pre>
7770
7771<h5>Overview:</h5>
7772<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7773   a memory object will not change.</p>
7774
7775<h5>Arguments:</h5>
7776<p>The first argument is a constant integer representing the size of the
7777   object, or -1 if it is variable sized.  The second argument is a pointer to
7778   the object.</p>
7779
7780<h5>Semantics:</h5>
7781<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7782   the return value, the referenced memory location is constant and
7783   unchanging.</p>
7784
7785</div>
7786
7787<!-- _______________________________________________________________________ -->
7788<h4>
7789  <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7790</h4>
7791
7792<div>
7793
7794<h5>Syntax:</h5>
7795<pre>
7796  declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7797</pre>
7798
7799<h5>Overview:</h5>
7800<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7801   a memory object are mutable.</p>
7802
7803<h5>Arguments:</h5>
7804<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
7805   The second argument is a constant integer representing the size of the
7806   object, or -1 if it is variable sized and the third argument is a pointer
7807   to the object.</p>
7808
7809<h5>Semantics:</h5>
7810<p>This intrinsic indicates that the memory is mutable again.</p>
7811
7812</div>
7813
7814</div>
7815
7816<!-- ======================================================================= -->
7817<h3>
7818  <a name="int_general">General Intrinsics</a>
7819</h3>
7820
7821<div>
7822
7823<p>This class of intrinsics is designed to be generic and has no specific
7824   purpose.</p>
7825
7826<!-- _______________________________________________________________________ -->
7827<h4>
7828  <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7829</h4>
7830
7831<div>
7832
7833<h5>Syntax:</h5>
7834<pre>
7835  declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
7836</pre>
7837
7838<h5>Overview:</h5>
7839<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
7840
7841<h5>Arguments:</h5>
7842<p>The first argument is a pointer to a value, the second is a pointer to a
7843   global string, the third is a pointer to a global string which is the source
7844   file name, and the last argument is the line number.</p>
7845
7846<h5>Semantics:</h5>
7847<p>This intrinsic allows annotation of local variables with arbitrary strings.
7848   This can be useful for special purpose optimizations that want to look for
7849   these annotations.  These have no other defined use, they are ignored by code
7850   generation and optimization.</p>
7851
7852</div>
7853
7854<!-- _______________________________________________________________________ -->
7855<h4>
7856  <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
7857</h4>
7858
7859<div>
7860
7861<h5>Syntax:</h5>
7862<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7863   any integer bit width.</p>
7864
7865<pre>
7866  declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
7867  declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
7868  declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
7869  declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
7870  declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
7871</pre>
7872
7873<h5>Overview:</h5>
7874<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
7875
7876<h5>Arguments:</h5>
7877<p>The first argument is an integer value (result of some expression), the
7878   second is a pointer to a global string, the third is a pointer to a global
7879   string which is the source file name, and the last argument is the line
7880   number.  It returns the value of the first argument.</p>
7881
7882<h5>Semantics:</h5>
7883<p>This intrinsic allows annotations to be put on arbitrary expressions with
7884   arbitrary strings.  This can be useful for special purpose optimizations that
7885   want to look for these annotations.  These have no other defined use, they
7886   are ignored by code generation and optimization.</p>
7887
7888</div>
7889
7890<!-- _______________________________________________________________________ -->
7891<h4>
7892  <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7893</h4>
7894
7895<div>
7896
7897<h5>Syntax:</h5>
7898<pre>
7899  declare void @llvm.trap()
7900</pre>
7901
7902<h5>Overview:</h5>
7903<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
7904
7905<h5>Arguments:</h5>
7906<p>None.</p>
7907
7908<h5>Semantics:</h5>
7909<p>This intrinsics is lowered to the target dependent trap instruction. If the
7910   target does not have a trap instruction, this intrinsic will be lowered to
7911   the call of the <tt>abort()</tt> function.</p>
7912
7913</div>
7914
7915<!-- _______________________________________________________________________ -->
7916<h4>
7917  <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
7918</h4>
7919
7920<div>
7921
7922<h5>Syntax:</h5>
7923<pre>
7924  declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
7925</pre>
7926
7927<h5>Overview:</h5>
7928<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7929   stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7930   ensure that it is placed on the stack before local variables.</p>
7931
7932<h5>Arguments:</h5>
7933<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7934   arguments. The first argument is the value loaded from the stack
7935   guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7936   that has enough space to hold the value of the guard.</p>
7937
7938<h5>Semantics:</h5>
7939<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7940   the <tt>AllocaInst</tt> stack slot to be before local variables on the
7941   stack. This is to ensure that if a local variable on the stack is
7942   overwritten, it will destroy the value of the guard. When the function exits,
7943   the guard on the stack is checked against the original guard. If they are
7944   different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7945   function.</p>
7946
7947</div>
7948
7949<!-- _______________________________________________________________________ -->
7950<h4>
7951  <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7952</h4>
7953
7954<div>
7955
7956<h5>Syntax:</h5>
7957<pre>
7958  declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7959  declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
7960</pre>
7961
7962<h5>Overview:</h5>
7963<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7964   the optimizers to determine at compile time whether a) an operation (like
7965   memcpy) will overflow a buffer that corresponds to an object, or b) that a
7966   runtime check for overflow isn't necessary. An object in this context means
7967   an allocation of a specific class, structure, array, or other object.</p>
7968
7969<h5>Arguments:</h5>
7970<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
7971   argument is a pointer to or into the <tt>object</tt>. The second argument
7972   is a boolean 0 or 1. This argument determines whether you want the
7973   maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7974   1, variables are not allowed.</p>
7975
7976<h5>Semantics:</h5>
7977<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
7978   representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7979   depending on the <tt>type</tt> argument, if the size cannot be determined at
7980   compile time.</p>
7981
7982</div>
7983
7984</div>
7985
7986</div>
7987
7988<!-- *********************************************************************** -->
7989<hr>
7990<address>
7991  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
7992  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
7993  <a href="http://validator.w3.org/check/referer"><img
7994  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
7995
7996  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
7997  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
7998  Last modified: $Date$
7999</address>
8000
8001</body>
8002</html>
8003