• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Link Time Optimization: Design and Implementation</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7</head>
8
9<h1>
10  LLVM Link Time Optimization: Design and Implementation
11</h1>
12
13<ul>
14  <li><a href="#desc">Description</a></li>
15  <li><a href="#design">Design Philosophy</a>
16  <ul>
17    <li><a href="#example1">Example of link time optimization</a></li>
18    <li><a href="#alternative_approaches">Alternative Approaches</a></li>
19  </ul></li>
20  <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
21  <ul>
22    <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
23    <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
24    <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
25    <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
26  </ul></li>
27  <li><a href="#lto">libLTO</a>
28  <ul>
29    <li><a href="#lto_module_t">lto_module_t</a></li>
30    <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
31  </ul>
32</ul>
33
34<div class="doc_author">
35<p>Written by Devang Patel and Nick Kledzik</p>
36</div>
37
38<!-- *********************************************************************** -->
39<h2>
40<a name="desc">Description</a>
41</h2>
42<!-- *********************************************************************** -->
43
44<div>
45<p>
46LLVM features powerful intermodular optimizations which can be used at link
47time.  Link Time Optimization (LTO) is another name for intermodular optimization
48when performed during the link stage. This document describes the interface
49and design between the LTO optimizer and the linker.</p>
50</div>
51
52<!-- *********************************************************************** -->
53<h2>
54<a name="design">Design Philosophy</a>
55</h2>
56<!-- *********************************************************************** -->
57
58<div>
59<p>
60The LLVM Link Time Optimizer provides complete transparency, while doing
61intermodular optimization, in the compiler tool chain. Its main goal is to let
62the developer take advantage of intermodular optimizations without making any
63significant changes to the developer's makefiles or build system. This is
64achieved through tight integration with the linker. In this model, the linker
65treates LLVM bitcode files like native object files and allows mixing and
66matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
67object, to handle LLVM bitcode files. This tight integration between
68the linker and LLVM optimizer helps to do optimizations that are not possible
69in other models. The linker input allows the optimizer to avoid relying on
70conservative escape analysis.
71</p>
72
73<!-- ======================================================================= -->
74<h3>
75  <a name="example1">Example of link time optimization</a>
76</h3>
77
78<div>
79  <p>The following example illustrates the advantages of LTO's integrated
80  approach and clean interface. This example requires a system linker which
81  supports LTO through the interface described in this document.  Here,
82  llvm-gcc transparently invokes system linker. </p>
83  <ul>
84    <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
85    <li> Input source file <tt>main.c</tt> is compiled into native object code.
86  </ul>
87<pre class="doc_code">
88--- a.h ---
89extern int foo1(void);
90extern void foo2(void);
91extern void foo4(void);
92--- a.c ---
93#include "a.h"
94
95static signed int i = 0;
96
97void foo2(void) {
98 i = -1;
99}
100
101static int foo3() {
102foo4();
103return 10;
104}
105
106int foo1(void) {
107int data = 0;
108
109if (i &lt; 0) { data = foo3(); }
110
111data = data + 42;
112return data;
113}
114
115--- main.c ---
116#include &lt;stdio.h&gt;
117#include "a.h"
118
119void foo4(void) {
120 printf ("Hi\n");
121}
122
123int main() {
124 return foo1();
125}
126
127--- command lines ---
128$ llvm-gcc --emit-llvm -c a.c -o a.o  # &lt;-- a.o is LLVM bitcode file
129$ llvm-gcc -c main.c -o main.o # &lt;-- main.o is native object file
130$ llvm-gcc a.o main.o -o main # &lt;-- standard link command without any modifications
131</pre>
132  <p>In this example, the linker recognizes that <tt>foo2()</tt> is an
133  externally visible symbol defined in LLVM bitcode file. The linker completes
134  its usual symbol resolution
135  pass and finds that <tt>foo2()</tt> is not used anywhere. This information
136  is used by the LLVM optimizer and it removes <tt>foo2()</tt>. As soon as
137  <tt>foo2()</tt> is removed, the optimizer recognizes that condition
138  <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never
139  used. Hence, the optimizer removes <tt>foo3()</tt>, also.  And this in turn,
140  enables linker to remove <tt>foo4()</tt>.  This example illustrates the
141  advantage of tight integration with the linker. Here, the optimizer can not
142  remove <tt>foo3()</tt> without the linker's input.
143  </p>
144</div>
145
146<!-- ======================================================================= -->
147<h3>
148  <a name="alternative_approaches">Alternative Approaches</a>
149</h3>
150
151<div>
152  <dl>
153    <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
154    <dd>In this model the link time optimizer is not able to take advantage of
155    information collected during the linker's normal symbol resolution phase.
156    In the above example, the optimizer can not remove <tt>foo2()</tt> without
157    the linker's input because it is externally visible. This in turn prohibits
158    the optimizer from removing <tt>foo3()</tt>.</dd>
159    <dt><b>Use separate tool to collect symbol information from all object
160    files.</b></dt>
161    <dd>In this model, a new, separate, tool or library replicates the linker's
162    capability to collect information for link time optimization. Not only is
163    this code duplication difficult to justify, but it also has several other
164    disadvantages.  For example, the linking semantics and the features
165    provided by the linker on various platform are not unique. This means,
166    this new tool needs to support all such features and platforms in one
167    super tool or a separate tool per platform is required. This increases
168    maintenance cost for link time optimizer significantly, which is not
169    necessary. This approach also requires staying synchronized with linker
170    developements on various platforms, which is not the main focus of the link
171    time optimizer. Finally, this approach increases end user's build time due
172    to the duplication of work done by this separate tool and the linker itself.
173    </dd>
174  </dl>
175</div>
176
177</div>
178
179<!-- *********************************************************************** -->
180<h2>
181  <a name="multiphase">Multi-phase communication between libLTO and linker</a>
182</h2>
183
184<div>
185  <p>The linker collects information about symbol defininitions and uses in
186  various link objects which is more accurate than any information collected
187  by other tools during typical build cycles.  The linker collects this
188  information by looking at the definitions and uses of symbols in native .o
189  files and using symbol visibility information. The linker also uses
190  user-supplied information, such as a list of exported symbols. LLVM
191  optimizer collects control flow information, data flow information and knows
192  much more about program structure from the optimizer's point of view.
193  Our goal is to take advantage of tight integration between the linker and
194  the optimizer by sharing this information during various linking phases.
195</p>
196
197<!-- ======================================================================= -->
198<h3>
199  <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
200</h3>
201
202<div>
203  <p>The linker first reads all object files in natural order and collects
204  symbol information. This includes native object files as well as LLVM bitcode
205  files.  To minimize the cost to the linker in the case that all .o files
206  are native object files, the linker only calls <tt>lto_module_create()</tt>
207  when a supplied object file is found to not be a native object file.  If
208  <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file,
209  the linker
210  then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
211  <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and
212  referenced.
213  This information is added to the linker's global symbol table.
214</p>
215  <p>The lto* functions are all implemented in a shared object libLTO.  This
216  allows the LLVM LTO code to be updated independently of the linker tool.
217  On platforms that support it, the shared object is lazily loaded.
218</p>
219</div>
220
221<!-- ======================================================================= -->
222<h3>
223  <a name="phase2">Phase 2 : Symbol Resolution</a>
224</h3>
225
226<div>
227  <p>In this stage, the linker resolves symbols using global symbol table.
228  It may report undefined symbol errors, read archive members, replace
229  weak symbols, etc.  The linker is able to do this seamlessly even though it
230  does not know the exact content of input LLVM bitcode files.  If dead code
231  stripping is enabled then the linker collects the list of live symbols.
232  </p>
233</div>
234
235<!-- ======================================================================= -->
236<h3>
237  <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
238</h3>
239<div>
240  <p>After symbol resolution, the linker tells the LTO shared object which
241  symbols are needed by native object files.  In the example above, the linker
242  reports that only <tt>foo1()</tt> is used by native object files using
243  <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
244  the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
245  which returns a native object file creating by merging the LLVM bitcode files
246  and applying various optimization passes.
247</p>
248</div>
249
250<!-- ======================================================================= -->
251<h3>
252  <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
253</h3>
254
255<div>
256  <p>In this phase, the linker reads optimized a native object file and
257  updates the internal global symbol table to reflect any changes. The linker
258  also collects information about any changes in use of external symbols by
259  LLVM bitcode files. In the example above, the linker notes that
260  <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then
261  the linker refreshes the live symbol information appropriately and performs
262  dead code stripping.</p>
263  <p>After this phase, the linker continues linking as if it never saw LLVM
264  bitcode files.</p>
265</div>
266
267</div>
268
269<!-- *********************************************************************** -->
270<h2>
271<a name="lto">libLTO</a>
272</h2>
273
274<div>
275  <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and
276  is intended for use by a linker. <tt>libLTO</tt> provides an abstract C
277  interface to use the LLVM interprocedural optimizer without exposing details
278  of LLVM's internals. The intention is to keep the interface as stable as
279  possible even when the LLVM optimizer continues to evolve. It should even
280  be possible for a completely different compilation technology to provide
281  a different libLTO that works with their object files and the standard
282  linker tool.</p>
283
284<!-- ======================================================================= -->
285<h3>
286  <a name="lto_module_t">lto_module_t</a>
287</h3>
288
289<div>
290
291<p>A non-native object file is handled via an <tt>lto_module_t</tt>.
292The following functions allow the linker to check if a file (on disk
293or in a memory buffer) is a file which libLTO can process:</p>
294
295<pre class="doc_code">
296lto_module_is_object_file(const char*)
297lto_module_is_object_file_for_target(const char*, const char*)
298lto_module_is_object_file_in_memory(const void*, size_t)
299lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
300</pre>
301
302<p>If the object file can be processed by libLTO, the linker creates a
303<tt>lto_module_t</tt> by using one of</p>
304
305<pre class="doc_code">
306lto_module_create(const char*)
307lto_module_create_from_memory(const void*, size_t)
308</pre>
309
310<p>and when done, the handle is released via</p>
311
312<pre class="doc_code">
313lto_module_dispose(lto_module_t)
314</pre>
315
316<p>The linker can introspect the non-native object file by getting the number of
317symbols and getting the name and attributes of each symbol via:</p>
318
319<pre class="doc_code">
320lto_module_get_num_symbols(lto_module_t)
321lto_module_get_symbol_name(lto_module_t, unsigned int)
322lto_module_get_symbol_attribute(lto_module_t, unsigned int)
323</pre>
324
325<p>The attributes of a symbol include the alignment, visibility, and kind.</p>
326</div>
327
328<!-- ======================================================================= -->
329<h3>
330  <a name="lto_code_gen_t">lto_code_gen_t</a>
331</h3>
332
333<div>
334
335<p>Once the linker has loaded each non-native object files into an
336<tt>lto_module_t</tt>, it can request libLTO to process them all and
337generate a native object file.  This is done in a couple of steps.
338First, a code generator is created with:</p>
339
340<pre class="doc_code">lto_codegen_create()</pre>
341
342<p>Then, each non-native object file is added to the code generator with:</p>
343
344<pre class="doc_code">
345lto_codegen_add_module(lto_code_gen_t, lto_module_t)
346</pre>
347
348<p>The linker then has the option of setting some codegen options.  Whether or
349not to generate DWARF debug info is set with:</p>
350
351<pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
352
353<p>Which kind of position independence is set with:</p>
354
355<pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
356
357<p>And each symbol that is referenced by a native object file or otherwise must
358not be optimized away is set with:</p>
359
360<pre class="doc_code">
361lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
362</pre>
363
364<p>After all these settings are done, the linker requests that a native object
365file be created from the modules with the settings using:</p>
366
367<pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
368
369<p>which returns a pointer to a buffer containing the generated native
370object file.  The linker then parses that and links it with the rest
371of the native object files.</p>
372
373</div>
374
375</div>
376
377<!-- *********************************************************************** -->
378
379<hr>
380<address>
381  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
382  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
383  <a href="http://validator.w3.org/check/referer"><img
384  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
385
386  Devang Patel and Nick Kledzik<br>
387  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
388  Last modified: $Date$
389</address>
390
391</body>
392</html>
393
394