• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
6  <title>LLVM Programmer's Manual</title>
7  <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<h1>
12  LLVM Programmer's Manual
13</h1>
14
15<ol>
16  <li><a href="#introduction">Introduction</a></li>
17  <li><a href="#general">General Information</a>
18    <ul>
19      <li><a href="#stl">The C++ Standard Template Library</a></li>
20<!--
21      <li>The <tt>-time-passes</tt> option</li>
22      <li>How to use the LLVM Makefile system</li>
23      <li>How to write a regression test</li>
24
25-->
26    </ul>
27  </li>
28  <li><a href="#apis">Important and useful LLVM APIs</a>
29    <ul>
30      <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
32      <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
33and <tt>Twine</tt> classes)</a>
34        <ul>
35          <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36          <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37        </ul>
38      </li>
39      <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40option</a>
41        <ul>
42          <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43and the <tt>-debug-only</tt> option</a> </li>
44        </ul>
45      </li>
46      <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47option</a></li>
48<!--
49      <li>The <tt>InstVisitor</tt> template
50      <li>The general graph API
51-->
52      <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53    </ul>
54  </li>
55  <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56    <ul>
57    <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58    <ul>
59      <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
60      <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
61      <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
62      <li><a href="#dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a></li>
63      <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
64      <li><a href="#dss_vector">&lt;vector&gt;</a></li>
65      <li><a href="#dss_deque">&lt;deque&gt;</a></li>
66      <li><a href="#dss_list">&lt;list&gt;</a></li>
67      <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
68      <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
69      <li><a href="#dss_other">Other Sequential Container Options</a></li>
70    </ul></li>
71    <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
72    <ul>
73      <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
74      <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
75      <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
76      <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
77      <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
78      <li><a href="#dss_set">&lt;set&gt;</a></li>
79      <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
80      <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
81      <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
82    </ul></li>
83    <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
84    <ul>
85      <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
86      <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
87      <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
88      <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
89      <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
90      <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
91      <li><a href="#dss_map">&lt;map&gt;</a></li>
92      <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
93      <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
94    </ul></li>
95    <li><a href="#ds_string">String-like containers</a>
96    <!--<ul>
97       todo
98    </ul>--></li>
99    <li><a href="#ds_bit">BitVector-like containers</a>
100    <ul>
101      <li><a href="#dss_bitvector">A dense bitvector</a></li>
102      <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
103      <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
104    </ul></li>
105  </ul>
106  </li>
107  <li><a href="#common">Helpful Hints for Common Operations</a>
108    <ul>
109      <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
110        <ul>
111          <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
112in a <tt>Function</tt></a> </li>
113          <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
114in a <tt>BasicBlock</tt></a> </li>
115          <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
116in a <tt>Function</tt></a> </li>
117          <li><a href="#iterate_convert">Turning an iterator into a
118class pointer</a> </li>
119          <li><a href="#iterate_complex">Finding call sites: a more
120complex example</a> </li>
121          <li><a href="#calls_and_invokes">Treating calls and invokes
122the same way</a> </li>
123          <li><a href="#iterate_chains">Iterating over def-use &amp;
124use-def chains</a> </li>
125          <li><a href="#iterate_preds">Iterating over predecessors &amp;
126successors of blocks</a></li>
127        </ul>
128      </li>
129      <li><a href="#simplechanges">Making simple changes</a>
130        <ul>
131          <li><a href="#schanges_creating">Creating and inserting new
132		 <tt>Instruction</tt>s</a> </li>
133          <li><a href="#schanges_deleting">Deleting 		 <tt>Instruction</tt>s</a> </li>
134          <li><a href="#schanges_replacing">Replacing an 		 <tt>Instruction</tt>
135with another <tt>Value</tt></a> </li>
136          <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
137        </ul>
138      </li>
139      <li><a href="#create_types">How to Create Types</a></li>
140<!--
141    <li>Working with the Control Flow Graph
142    <ul>
143      <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
144      <li>
145      <li>
146    </ul>
147-->
148    </ul>
149  </li>
150
151  <li><a href="#threading">Threads and LLVM</a>
152  <ul>
153    <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
154        </a></li>
155    <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
156    <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
157    <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
158    <li><a href="#jitthreading">Threads and the JIT</a></li>
159  </ul>
160  </li>
161
162  <li><a href="#advanced">Advanced Topics</a>
163  <ul>
164
165  <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> class</a></li>
166  <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
167  </ul></li>
168
169  <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
170    <ul>
171      <li><a href="#Type">The <tt>Type</tt> class</a> </li>
172      <li><a href="#Module">The <tt>Module</tt> class</a></li>
173      <li><a href="#Value">The <tt>Value</tt> class</a>
174      <ul>
175        <li><a href="#User">The <tt>User</tt> class</a>
176        <ul>
177          <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
178          <li><a href="#Constant">The <tt>Constant</tt> class</a>
179          <ul>
180            <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
181            <ul>
182              <li><a href="#Function">The <tt>Function</tt> class</a></li>
183              <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
184            </ul>
185            </li>
186          </ul>
187          </li>
188        </ul>
189        </li>
190        <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
191        <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
192      </ul>
193      </li>
194    </ul>
195  </li>
196</ol>
197
198<div class="doc_author">
199  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
200                <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
201                <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
202                <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
203                <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
204                <a href="mailto:owen@apple.com">Owen Anderson</a></p>
205</div>
206
207<!-- *********************************************************************** -->
208<h2>
209  <a name="introduction">Introduction </a>
210</h2>
211<!-- *********************************************************************** -->
212
213<div>
214
215<p>This document is meant to highlight some of the important classes and
216interfaces available in the LLVM source-base.  This manual is not
217intended to explain what LLVM is, how it works, and what LLVM code looks
218like.  It assumes that you know the basics of LLVM and are interested
219in writing transformations or otherwise analyzing or manipulating the
220code.</p>
221
222<p>This document should get you oriented so that you can find your
223way in the continuously growing source code that makes up the LLVM
224infrastructure. Note that this manual is not intended to serve as a
225replacement for reading the source code, so if you think there should be
226a method in one of these classes to do something, but it's not listed,
227check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
228are provided to make this as easy as possible.</p>
229
230<p>The first section of this document describes general information that is
231useful to know when working in the LLVM infrastructure, and the second describes
232the Core LLVM classes.  In the future this manual will be extended with
233information describing how to use extension libraries, such as dominator
234information, CFG traversal routines, and useful utilities like the <tt><a
235href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
236
237</div>
238
239<!-- *********************************************************************** -->
240<h2>
241  <a name="general">General Information</a>
242</h2>
243<!-- *********************************************************************** -->
244
245<div>
246
247<p>This section contains general information that is useful if you are working
248in the LLVM source-base, but that isn't specific to any particular API.</p>
249
250<!-- ======================================================================= -->
251<h3>
252  <a name="stl">The C++ Standard Template Library</a>
253</h3>
254
255<div>
256
257<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
258perhaps much more than you are used to, or have seen before.  Because of
259this, you might want to do a little background reading in the
260techniques used and capabilities of the library.  There are many good
261pages that discuss the STL, and several books on the subject that you
262can get, so it will not be discussed in this document.</p>
263
264<p>Here are some useful links:</p>
265
266<ol>
267
268<li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
269C++ Library reference</a> - an excellent reference for the STL and other parts
270of the standard C++ library.</li>
271
272<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
273O'Reilly book in the making.  It has a decent Standard Library
274Reference that rivals Dinkumware's, and is unfortunately no longer free since the
275book has been published.</li>
276
277<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
278Questions</a></li>
279
280<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
281Contains a useful <a
282href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
283STL</a>.</li>
284
285<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
286Page</a></li>
287
288<li><a href="http://64.78.49.204/">
289Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
290the book).</a></li>
291
292</ol>
293
294<p>You are also encouraged to take a look at the <a
295href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
296to write maintainable code more than where to put your curly braces.</p>
297
298</div>
299
300<!-- ======================================================================= -->
301<h3>
302  <a name="stl">Other useful references</a>
303</h3>
304
305<div>
306
307<ol>
308<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
309static and shared libraries across platforms</a></li>
310</ol>
311
312</div>
313
314</div>
315
316<!-- *********************************************************************** -->
317<h2>
318  <a name="apis">Important and useful LLVM APIs</a>
319</h2>
320<!-- *********************************************************************** -->
321
322<div>
323
324<p>Here we highlight some LLVM APIs that are generally useful and good to
325know about when writing transformations.</p>
326
327<!-- ======================================================================= -->
328<h3>
329  <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
330  <tt>dyn_cast&lt;&gt;</tt> templates</a>
331</h3>
332
333<div>
334
335<p>The LLVM source-base makes extensive use of a custom form of RTTI.
336These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
337operator, but they don't have some drawbacks (primarily stemming from
338the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
339have a v-table). Because they are used so often, you must know what they
340do and how they work. All of these templates are defined in the <a
341 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
342file (note that you very rarely have to include this file directly).</p>
343
344<dl>
345  <dt><tt>isa&lt;&gt;</tt>: </dt>
346
347  <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
348  "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
349  a reference or pointer points to an instance of the specified class.  This can
350  be very useful for constraint checking of various sorts (example below).</p>
351  </dd>
352
353  <dt><tt>cast&lt;&gt;</tt>: </dt>
354
355  <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
356  converts a pointer or reference from a base class to a derived class, causing
357  an assertion failure if it is not really an instance of the right type.  This
358  should be used in cases where you have some information that makes you believe
359  that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
360  and <tt>cast&lt;&gt;</tt> template is:</p>
361
362<div class="doc_code">
363<pre>
364static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
365  if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
366    return true;
367
368  // <i>Otherwise, it must be an instruction...</i>
369  return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
370}
371</pre>
372</div>
373
374  <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
375  by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
376  operator.</p>
377
378  </dd>
379
380  <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
381
382  <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
383  It checks to see if the operand is of the specified type, and if so, returns a
384  pointer to it (this operator does not work with references). If the operand is
385  not of the correct type, a null pointer is returned.  Thus, this works very
386  much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
387  used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
388  operator is used in an <tt>if</tt> statement or some other flow control
389  statement like this:</p>
390
391<div class="doc_code">
392<pre>
393if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
394  // <i>...</i>
395}
396</pre>
397</div>
398
399  <p>This form of the <tt>if</tt> statement effectively combines together a call
400  to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
401  statement, which is very convenient.</p>
402
403  <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
404  <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
405  abused.  In particular, you should not use big chained <tt>if/then/else</tt>
406  blocks to check for lots of different variants of classes.  If you find
407  yourself wanting to do this, it is much cleaner and more efficient to use the
408  <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
409
410  </dd>
411
412  <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
413
414  <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
415  <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
416  argument (which it then propagates).  This can sometimes be useful, allowing
417  you to combine several null checks into one.</p></dd>
418
419  <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
420
421  <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
422  <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
423  as an argument (which it then propagates).  This can sometimes be useful,
424  allowing you to combine several null checks into one.</p></dd>
425
426</dl>
427
428<p>These five templates can be used with any classes, whether they have a
429v-table or not.  To add support for these templates, you simply need to add
430<tt>classof</tt> static methods to the class you are interested casting
431to. Describing this is currently outside the scope of this document, but there
432are lots of examples in the LLVM source base.</p>
433
434</div>
435
436
437<!-- ======================================================================= -->
438<h3>
439  <a name="string_apis">Passing strings (the <tt>StringRef</tt>
440and <tt>Twine</tt> classes)</a>
441</h3>
442
443<div>
444
445<p>Although LLVM generally does not do much string manipulation, we do have
446several important APIs which take strings.  Two important examples are the
447Value class -- which has names for instructions, functions, etc. -- and the
448StringMap class which is used extensively in LLVM and Clang.</p>
449
450<p>These are generic classes, and they need to be able to accept strings which
451may have embedded null characters.  Therefore, they cannot simply take
452a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
453clients to perform a heap allocation which is usually unnecessary.  Instead,
454many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
455passing strings efficiently.</p>
456
457<!-- _______________________________________________________________________ -->
458<h4>
459  <a name="StringRef">The <tt>StringRef</tt> class</a>
460</h4>
461
462<div>
463
464<p>The <tt>StringRef</tt> data type represents a reference to a constant string
465(a character array and a length) and supports the common operations available
466on <tt>std:string</tt>, but does not require heap allocation.</p>
467
468<p>It can be implicitly constructed using a C style null-terminated string,
469an <tt>std::string</tt>, or explicitly with a character pointer and length.
470For example, the <tt>StringRef</tt> find function is declared as:</p>
471
472<pre class="doc_code">
473  iterator find(StringRef Key);
474</pre>
475
476<p>and clients can call it using any one of:</p>
477
478<pre class="doc_code">
479  Map.find("foo");                 <i>// Lookup "foo"</i>
480  Map.find(std::string("bar"));    <i>// Lookup "bar"</i>
481  Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
482</pre>
483
484<p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
485instance, which can be used directly or converted to an <tt>std::string</tt>
486using the <tt>str</tt> member function.  See
487"<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
488for more information.</p>
489
490<p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
491pointers to external memory it is not generally safe to store an instance of the
492class (unless you know that the external storage will not be freed). StringRef is
493small and pervasive enough in LLVM that it should always be passed by value.</p>
494
495</div>
496
497<!-- _______________________________________________________________________ -->
498<h4>
499  <a name="Twine">The <tt>Twine</tt> class</a>
500</h4>
501
502<div>
503
504<p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
505strings.  For example, a common LLVM paradigm is to name one instruction based on
506the name of another instruction with a suffix, for example:</p>
507
508<div class="doc_code">
509<pre>
510    New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
511</pre>
512</div>
513
514<p>The <tt>Twine</tt> class is effectively a
515lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
516which points to temporary (stack allocated) objects.  Twines can be implicitly
517constructed as the result of the plus operator applied to strings (i.e., a C
518strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>).  The twine delays the
519actual concatenation of strings until it is actually required, at which point
520it can be efficiently rendered directly into a character array.  This avoids
521unnecessary heap allocation involved in constructing the temporary results of
522string concatenation. See
523"<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
524for more information.</p>
525
526<p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
527and should almost never be stored or mentioned directly.  They are intended
528solely for use when defining a function which should be able to efficiently
529accept concatenated strings.</p>
530
531</div>
532
533</div>
534
535<!-- ======================================================================= -->
536<h3>
537  <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
538</h3>
539
540<div>
541
542<p>Often when working on your pass you will put a bunch of debugging printouts
543and other code into your pass.  After you get it working, you want to remove
544it, but you may need it again in the future (to work out new bugs that you run
545across).</p>
546
547<p> Naturally, because of this, you don't want to delete the debug printouts,
548but you don't want them to always be noisy.  A standard compromise is to comment
549them out, allowing you to enable them if you need them in the future.</p>
550
551<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
552file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
553this problem.  Basically, you can put arbitrary code into the argument of the
554<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
555tool) is run with the '<tt>-debug</tt>' command line argument:</p>
556
557<div class="doc_code">
558<pre>
559DEBUG(errs() &lt;&lt; "I am here!\n");
560</pre>
561</div>
562
563<p>Then you can run your pass like this:</p>
564
565<div class="doc_code">
566<pre>
567$ opt &lt; a.bc &gt; /dev/null -mypass
568<i>&lt;no output&gt;</i>
569$ opt &lt; a.bc &gt; /dev/null -mypass -debug
570I am here!
571</pre>
572</div>
573
574<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
575to not have to create "yet another" command line option for the debug output for
576your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
577so they do not cause a performance impact at all (for the same reason, they
578should also not contain side-effects!).</p>
579
580<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
581enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
582"<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
583program hasn't been started yet, you can always just run it with
584<tt>-debug</tt>.</p>
585
586<!-- _______________________________________________________________________ -->
587<h4>
588  <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
589  the <tt>-debug-only</tt> option</a>
590</h4>
591
592<div>
593
594<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
595just turns on <b>too much</b> information (such as when working on the code
596generator).  If you want to enable debug information with more fine-grained
597control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
598option as follows:</p>
599
600<div class="doc_code">
601<pre>
602#undef  DEBUG_TYPE
603DEBUG(errs() &lt;&lt; "No debug type\n");
604#define DEBUG_TYPE "foo"
605DEBUG(errs() &lt;&lt; "'foo' debug type\n");
606#undef  DEBUG_TYPE
607#define DEBUG_TYPE "bar"
608DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
609#undef  DEBUG_TYPE
610#define DEBUG_TYPE ""
611DEBUG(errs() &lt;&lt; "No debug type (2)\n");
612</pre>
613</div>
614
615<p>Then you can run your pass like this:</p>
616
617<div class="doc_code">
618<pre>
619$ opt &lt; a.bc &gt; /dev/null -mypass
620<i>&lt;no output&gt;</i>
621$ opt &lt; a.bc &gt; /dev/null -mypass -debug
622No debug type
623'foo' debug type
624'bar' debug type
625No debug type (2)
626$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
627'foo' debug type
628$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
629'bar' debug type
630</pre>
631</div>
632
633<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
634a file, to specify the debug type for the entire module (if you do this before
635you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
636<tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
637"bar", because there is no system in place to ensure that names do not
638conflict. If two different modules use the same string, they will all be turned
639on when the name is specified. This allows, for example, all debug information
640for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
641even if the source lives in multiple files.</p>
642
643<p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
644would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
645statement. It takes an additional first parameter, which is the type to use. For
646example, the preceding example could be written as:</p>
647
648
649<div class="doc_code">
650<pre>
651DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
652DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
653DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
654DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
655</pre>
656</div>
657
658</div>
659
660</div>
661
662<!-- ======================================================================= -->
663<h3>
664  <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
665  option</a>
666</h3>
667
668<div>
669
670<p>The "<tt><a
671href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
672provides a class named <tt>Statistic</tt> that is used as a unified way to
673keep track of what the LLVM compiler is doing and how effective various
674optimizations are.  It is useful to see what optimizations are contributing to
675making a particular program run faster.</p>
676
677<p>Often you may run your pass on some big program, and you're interested to see
678how many times it makes a certain transformation.  Although you can do this with
679hand inspection, or some ad-hoc method, this is a real pain and not very useful
680for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
681keep track of this information, and the calculated information is presented in a
682uniform manner with the rest of the passes being executed.</p>
683
684<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
685it are as follows:</p>
686
687<ol>
688    <li><p>Define your statistic like this:</p>
689
690<div class="doc_code">
691<pre>
692#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
693STATISTIC(NumXForms, "The # of times I did stuff");
694</pre>
695</div>
696
697  <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
698    specified by the first argument.  The pass name is taken from the DEBUG_TYPE
699    macro, and the description is taken from the second argument.  The variable
700    defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
701
702    <li><p>Whenever you make a transformation, bump the counter:</p>
703
704<div class="doc_code">
705<pre>
706++NumXForms;   // <i>I did stuff!</i>
707</pre>
708</div>
709
710    </li>
711  </ol>
712
713  <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
714  statistics gathered, use the '<tt>-stats</tt>' option:</p>
715
716<div class="doc_code">
717<pre>
718$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
719<i>... statistics output ...</i>
720</pre>
721</div>
722
723  <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
724suite, it gives a report that looks like this:</p>
725
726<div class="doc_code">
727<pre>
728   7646 bitcodewriter   - Number of normal instructions
729    725 bitcodewriter   - Number of oversized instructions
730 129996 bitcodewriter   - Number of bitcode bytes written
731   2817 raise           - Number of insts DCEd or constprop'd
732   3213 raise           - Number of cast-of-self removed
733   5046 raise           - Number of expression trees converted
734     75 raise           - Number of other getelementptr's formed
735    138 raise           - Number of load/store peepholes
736     42 deadtypeelim    - Number of unused typenames removed from symtab
737    392 funcresolve     - Number of varargs functions resolved
738     27 globaldce       - Number of global variables removed
739      2 adce            - Number of basic blocks removed
740    134 cee             - Number of branches revectored
741     49 cee             - Number of setcc instruction eliminated
742    532 gcse            - Number of loads removed
743   2919 gcse            - Number of instructions removed
744     86 indvars         - Number of canonical indvars added
745     87 indvars         - Number of aux indvars removed
746     25 instcombine     - Number of dead inst eliminate
747    434 instcombine     - Number of insts combined
748    248 licm            - Number of load insts hoisted
749   1298 licm            - Number of insts hoisted to a loop pre-header
750      3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
751     75 mem2reg         - Number of alloca's promoted
752   1444 cfgsimplify     - Number of blocks simplified
753</pre>
754</div>
755
756<p>Obviously, with so many optimizations, having a unified framework for this
757stuff is very nice.  Making your pass fit well into the framework makes it more
758maintainable and useful.</p>
759
760</div>
761
762<!-- ======================================================================= -->
763<h3>
764  <a name="ViewGraph">Viewing graphs while debugging code</a>
765</h3>
766
767<div>
768
769<p>Several of the important data structures in LLVM are graphs: for example
770CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
771LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
772<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
773DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
774nice to instantly visualize these graphs.</p>
775
776<p>LLVM provides several callbacks that are available in a debug build to do
777exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
778the current LLVM tool will pop up a window containing the CFG for the function
779where each basic block is a node in the graph, and each node contains the
780instructions in the block.  Similarly, there also exists
781<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
782<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
783and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
784you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
785up a window.  Alternatively, you can sprinkle calls to these functions in your
786code in places you want to debug.</p>
787
788<p>Getting this to work requires a small amount of configuration.  On Unix
789systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
790toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
791Mac OS/X, download and install the Mac OS/X <a
792href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
793<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
794it) to your path.  Once in your system and path are set up, rerun the LLVM
795configure script and rebuild LLVM to enable this functionality.</p>
796
797<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
798<i>interesting</i> nodes in large complex graphs.  From gdb, if you
799<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
800next <tt>call DAG.viewGraph()</tt> would highlight the node in the
801specified color (choices of colors can be found at <a
802href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
803complex node attributes can be provided with <tt>call
804DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
805found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
806Attributes</a>.)  If you want to restart and clear all the current graph
807attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
808
809<p>Note that graph visualization features are compiled out of Release builds
810to reduce file size.  This means that you need a Debug+Asserts or
811Release+Asserts build to use these features.</p>
812
813</div>
814
815</div>
816
817<!-- *********************************************************************** -->
818<h2>
819  <a name="datastructure">Picking the Right Data Structure for a Task</a>
820</h2>
821<!-- *********************************************************************** -->
822
823<div>
824
825<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
826 and we commonly use STL data structures.  This section describes the trade-offs
827 you should consider when you pick one.</p>
828
829<p>
830The first step is a choose your own adventure: do you want a sequential
831container, a set-like container, or a map-like container?  The most important
832thing when choosing a container is the algorithmic properties of how you plan to
833access the container.  Based on that, you should use:</p>
834
835<ul>
836<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
837    of an value based on another value.  Map-like containers also support
838    efficient queries for containment (whether a key is in the map).  Map-like
839    containers generally do not support efficient reverse mapping (values to
840    keys).  If you need that, use two maps.  Some map-like containers also
841    support efficient iteration through the keys in sorted order.  Map-like
842    containers are the most expensive sort, only use them if you need one of
843    these capabilities.</li>
844
845<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
846    stuff into a container that automatically eliminates duplicates.  Some
847    set-like containers support efficient iteration through the elements in
848    sorted order.  Set-like containers are more expensive than sequential
849    containers.
850</li>
851
852<li>a <a href="#ds_sequential">sequential</a> container provides
853    the most efficient way to add elements and keeps track of the order they are
854    added to the collection.  They permit duplicates and support efficient
855    iteration, but do not support efficient look-up based on a key.
856</li>
857
858<li>a <a href="#ds_string">string</a> container is a specialized sequential
859    container or reference structure that is used for character or byte
860    arrays.</li>
861
862<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
863    perform set operations on sets of numeric id's, while automatically
864    eliminating duplicates.  Bit containers require a maximum of 1 bit for each
865    identifier you want to store.
866</li>
867</ul>
868
869<p>
870Once the proper category of container is determined, you can fine tune the
871memory use, constant factors, and cache behaviors of access by intelligently
872picking a member of the category.  Note that constant factors and cache behavior
873can be a big deal.  If you have a vector that usually only contains a few
874elements (but could contain many), for example, it's much better to use
875<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
876.  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
877cost of adding the elements to the container. </p>
878
879<!-- ======================================================================= -->
880<h3>
881  <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
882</h3>
883
884<div>
885There are a variety of sequential containers available for you, based on your
886needs.  Pick the first in this section that will do what you want.
887
888<!-- _______________________________________________________________________ -->
889<h4>
890  <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
891</h4>
892
893<div>
894<p>The llvm::ArrayRef class is the preferred class to use in an interface that
895   accepts a sequential list of elements in memory and just reads from them.  By
896   taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
897   an llvm::SmallVector and anything else that is contiguous in memory.
898</p>
899</div>
900
901
902
903<!-- _______________________________________________________________________ -->
904<h4>
905  <a name="dss_fixedarrays">Fixed Size Arrays</a>
906</h4>
907
908<div>
909<p>Fixed size arrays are very simple and very fast.  They are good if you know
910exactly how many elements you have, or you have a (low) upper bound on how many
911you have.</p>
912</div>
913
914<!-- _______________________________________________________________________ -->
915<h4>
916  <a name="dss_heaparrays">Heap Allocated Arrays</a>
917</h4>
918
919<div>
920<p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
921the number of elements is variable, if you know how many elements you will need
922before the array is allocated, and if the array is usually large (if not,
923consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
924allocated array is the cost of the new/delete (aka malloc/free).  Also note that
925if you are allocating an array of a type with a constructor, the constructor and
926destructors will be run for every element in the array (re-sizable vectors only
927construct those elements actually used).</p>
928</div>
929
930<!-- _______________________________________________________________________ -->
931<h4>
932  <a name="dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a>
933</h4>
934
935
936<div>
937<p><tt>TinyPtrVector&lt;Type&gt;</tt> is a highly specialized collection class
938that is optimized to avoid allocation in the case when a vector has zero or one
939elements.  It has two major restrictions: 1) it can only hold values of pointer
940type, and 2) it cannot hold a null pointer.</p>
941
942<p>Since this container is highly specialized, it is rarely used.</p>
943
944</div>
945
946<div>
947
948<!-- _______________________________________________________________________ -->
949<h4>
950  <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
951</h4>
952
953<div>
954<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
955just like <tt>vector&lt;Type&gt;</tt>:
956it supports efficient iteration, lays out elements in memory order (so you can
957do pointer arithmetic between elements), supports efficient push_back/pop_back
958operations, supports efficient random access to its elements, etc.</p>
959
960<p>The advantage of SmallVector is that it allocates space for
961some number of elements (N) <b>in the object itself</b>.  Because of this, if
962the SmallVector is dynamically smaller than N, no malloc is performed.  This can
963be a big win in cases where the malloc/free call is far more expensive than the
964code that fiddles around with the elements.</p>
965
966<p>This is good for vectors that are "usually small" (e.g. the number of
967predecessors/successors of a block is usually less than 8).  On the other hand,
968this makes the size of the SmallVector itself large, so you don't want to
969allocate lots of them (doing so will waste a lot of space).  As such,
970SmallVectors are most useful when on the stack.</p>
971
972<p>SmallVector also provides a nice portable and efficient replacement for
973<tt>alloca</tt>.</p>
974
975</div>
976
977<!-- _______________________________________________________________________ -->
978<h4>
979  <a name="dss_vector">&lt;vector&gt;</a>
980</h4>
981
982<div>
983<p>
984std::vector is well loved and respected.  It is useful when SmallVector isn't:
985when the size of the vector is often large (thus the small optimization will
986rarely be a benefit) or if you will be allocating many instances of the vector
987itself (which would waste space for elements that aren't in the container).
988vector is also useful when interfacing with code that expects vectors :).
989</p>
990
991<p>One worthwhile note about std::vector: avoid code like this:</p>
992
993<div class="doc_code">
994<pre>
995for ( ... ) {
996   std::vector&lt;foo&gt; V;
997   use V;
998}
999</pre>
1000</div>
1001
1002<p>Instead, write this as:</p>
1003
1004<div class="doc_code">
1005<pre>
1006std::vector&lt;foo&gt; V;
1007for ( ... ) {
1008   use V;
1009   V.clear();
1010}
1011</pre>
1012</div>
1013
1014<p>Doing so will save (at least) one heap allocation and free per iteration of
1015the loop.</p>
1016
1017</div>
1018
1019<!-- _______________________________________________________________________ -->
1020<h4>
1021  <a name="dss_deque">&lt;deque&gt;</a>
1022</h4>
1023
1024<div>
1025<p>std::deque is, in some senses, a generalized version of std::vector.  Like
1026std::vector, it provides constant time random access and other similar
1027properties, but it also provides efficient access to the front of the list.  It
1028does not guarantee continuity of elements within memory.</p>
1029
1030<p>In exchange for this extra flexibility, std::deque has significantly higher
1031constant factor costs than std::vector.  If possible, use std::vector or
1032something cheaper.</p>
1033</div>
1034
1035<!-- _______________________________________________________________________ -->
1036<h4>
1037  <a name="dss_list">&lt;list&gt;</a>
1038</h4>
1039
1040<div>
1041<p>std::list is an extremely inefficient class that is rarely useful.
1042It performs a heap allocation for every element inserted into it, thus having an
1043extremely high constant factor, particularly for small data types.  std::list
1044also only supports bidirectional iteration, not random access iteration.</p>
1045
1046<p>In exchange for this high cost, std::list supports efficient access to both
1047ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
1048addition, the iterator invalidation characteristics of std::list are stronger
1049than that of a vector class: inserting or removing an element into the list does
1050not invalidate iterator or pointers to other elements in the list.</p>
1051</div>
1052
1053<!-- _______________________________________________________________________ -->
1054<h4>
1055  <a name="dss_ilist">llvm/ADT/ilist.h</a>
1056</h4>
1057
1058<div>
1059<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
1060intrusive, because it requires the element to store and provide access to the
1061prev/next pointers for the list.</p>
1062
1063<p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1064requires an <tt>ilist_traits</tt> implementation for the element type, but it
1065provides some novel characteristics.  In particular, it can efficiently store
1066polymorphic objects, the traits class is informed when an element is inserted or
1067removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1068constant-time splice operation.</p>
1069
1070<p>These properties are exactly what we want for things like
1071<tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1072<tt>ilist</tt>s.</p>
1073
1074Related classes of interest are explained in the following subsections:
1075    <ul>
1076      <li><a href="#dss_ilist_traits">ilist_traits</a></li>
1077      <li><a href="#dss_iplist">iplist</a></li>
1078      <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
1079      <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
1080    </ul>
1081</div>
1082
1083<!-- _______________________________________________________________________ -->
1084<h4>
1085  <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
1086</h4>
1087
1088<div>
1089<p>
1090Useful for storing a vector of values using only a few number of bits for each
1091value. Apart from the standard operations of a vector-like container, it can
1092also perform an 'or' set operation.
1093</p>
1094
1095<p>For example:</p>
1096
1097<div class="doc_code">
1098<pre>
1099enum State {
1100    None = 0x0,
1101    FirstCondition = 0x1,
1102    SecondCondition = 0x2,
1103    Both = 0x3
1104};
1105
1106State get() {
1107    PackedVector&lt;State, 2&gt; Vec1;
1108    Vec1.push_back(FirstCondition);
1109
1110    PackedVector&lt;State, 2&gt; Vec2;
1111    Vec2.push_back(SecondCondition);
1112
1113    Vec1 |= Vec2;
1114    return Vec1[0]; // returns 'Both'.
1115}
1116</pre>
1117</div>
1118
1119</div>
1120
1121<!-- _______________________________________________________________________ -->
1122<h4>
1123  <a name="dss_ilist_traits">ilist_traits</a>
1124</h4>
1125
1126<div>
1127<p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1128mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1129publicly derive from this traits class.</p>
1130</div>
1131
1132<!-- _______________________________________________________________________ -->
1133<h4>
1134  <a name="dss_iplist">iplist</a>
1135</h4>
1136
1137<div>
1138<p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
1139supports a slightly narrower interface. Notably, inserters from
1140<tt>T&amp;</tt> are absent.</p>
1141
1142<p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1143used for a wide variety of customizations.</p>
1144</div>
1145
1146<!-- _______________________________________________________________________ -->
1147<h4>
1148  <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1149</h4>
1150
1151<div>
1152<p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1153that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1154in the default manner.</p>
1155
1156<p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
1157<tt>T</tt>, usually <tt>T</tt> publicly derives from
1158<tt>ilist_node&lt;T&gt;</tt>.</p>
1159</div>
1160
1161<!-- _______________________________________________________________________ -->
1162<h4>
1163  <a name="dss_ilist_sentinel">Sentinels</a>
1164</h4>
1165
1166<div>
1167<p><tt>ilist</tt>s have another specialty that must be considered. To be a good
1168citizen in the C++ ecosystem, it needs to support the standard container
1169operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1170<tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1171case of non-empty <tt>ilist</tt>s.</p>
1172
1173<p>The only sensible solution to this problem is to allocate a so-called
1174<i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1175iterator, providing the back-link to the last element. However conforming to the
1176C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1177also must not be dereferenced.</p>
1178
1179<p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1180how to allocate and store the sentinel. The corresponding policy is dictated
1181by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1182whenever the need for a sentinel arises.</p>
1183
1184<p>While the default policy is sufficient in most cases, it may break down when
1185<tt>T</tt> does not provide a default constructor. Also, in the case of many
1186instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1187is wasted. To alleviate the situation with numerous and voluminous
1188<tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1189sentinels</i>.</p>
1190
1191<p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1192which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1193arithmetic is used to obtain the sentinel, which is relative to the
1194<tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1195extra pointer, which serves as the back-link of the sentinel. This is the only
1196field in the ghostly sentinel which can be legally accessed.</p>
1197</div>
1198
1199<!-- _______________________________________________________________________ -->
1200<h4>
1201  <a name="dss_other">Other Sequential Container options</a>
1202</h4>
1203
1204<div>
1205<p>Other STL containers are available, such as std::string.</p>
1206
1207<p>There are also various STL adapter classes such as std::queue,
1208std::priority_queue, std::stack, etc.  These provide simplified access to an
1209underlying container but don't affect the cost of the container itself.</p>
1210
1211</div>
1212
1213</div>
1214
1215<!-- ======================================================================= -->
1216<h3>
1217  <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1218</h3>
1219
1220<div>
1221
1222<p>Set-like containers are useful when you need to canonicalize multiple values
1223into a single representation.  There are several different choices for how to do
1224this, providing various trade-offs.</p>
1225
1226<!-- _______________________________________________________________________ -->
1227<h4>
1228  <a name="dss_sortedvectorset">A sorted 'vector'</a>
1229</h4>
1230
1231<div>
1232
1233<p>If you intend to insert a lot of elements, then do a lot of queries, a
1234great approach is to use a vector (or other sequential container) with
1235std::sort+std::unique to remove duplicates.  This approach works really well if
1236your usage pattern has these two distinct phases (insert then query), and can be
1237coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1238</p>
1239
1240<p>
1241This combination provides the several nice properties: the result data is
1242contiguous in memory (good for cache locality), has few allocations, is easy to
1243address (iterators in the final vector are just indices or pointers), and can be
1244efficiently queried with a standard binary or radix search.</p>
1245
1246</div>
1247
1248<!-- _______________________________________________________________________ -->
1249<h4>
1250  <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1251</h4>
1252
1253<div>
1254
1255<p>If you have a set-like data structure that is usually small and whose elements
1256are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
1257has space for N elements in place (thus, if the set is dynamically smaller than
1258N, no malloc traffic is required) and accesses them with a simple linear search.
1259When the set grows beyond 'N' elements, it allocates a more expensive representation that
1260guarantees efficient access (for most types, it falls back to std::set, but for
1261pointers it uses something far better, <a
1262href="#dss_smallptrset">SmallPtrSet</a>).</p>
1263
1264<p>The magic of this class is that it handles small sets extremely efficiently,
1265but gracefully handles extremely large sets without loss of efficiency.  The
1266drawback is that the interface is quite small: it supports insertion, queries
1267and erasing, but does not support iteration.</p>
1268
1269</div>
1270
1271<!-- _______________________________________________________________________ -->
1272<h4>
1273  <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1274</h4>
1275
1276<div>
1277
1278<p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is
1279transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators.  If
1280more than 'N' insertions are performed, a single quadratically
1281probed hash table is allocated and grows as needed, providing extremely
1282efficient access (constant time insertion/deleting/queries with low constant
1283factors) and is very stingy with malloc traffic.</p>
1284
1285<p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
1286whenever an insertion occurs.  Also, the values visited by the iterators are not
1287visited in sorted order.</p>
1288
1289</div>
1290
1291<!-- _______________________________________________________________________ -->
1292<h4>
1293  <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1294</h4>
1295
1296<div>
1297
1298<p>
1299DenseSet is a simple quadratically probed hash table.  It excels at supporting
1300small values: it uses a single allocation to hold all of the pairs that
1301are currently inserted in the set.  DenseSet is a great way to unique small
1302values that are not simple pointers (use <a
1303href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
1304the same requirements for the value type that <a
1305href="#dss_densemap">DenseMap</a> has.
1306</p>
1307
1308</div>
1309
1310<!-- _______________________________________________________________________ -->
1311<h4>
1312  <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1313</h4>
1314
1315<div>
1316
1317<p>
1318FoldingSet is an aggregate class that is really good at uniquing
1319expensive-to-create or polymorphic objects.  It is a combination of a chained
1320hash table with intrusive links (uniqued objects are required to inherit from
1321FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1322its ID process.</p>
1323
1324<p>Consider a case where you want to implement a "getOrCreateFoo" method for
1325a complex object (for example, a node in the code generator).  The client has a
1326description of *what* it wants to generate (it knows the opcode and all the
1327operands), but we don't want to 'new' a node, then try inserting it into a set
1328only to find out it already exists, at which point we would have to delete it
1329and return the node that already exists.
1330</p>
1331
1332<p>To support this style of client, FoldingSet perform a query with a
1333FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1334element that we want to query for.  The query either returns the element
1335matching the ID or it returns an opaque ID that indicates where insertion should
1336take place.  Construction of the ID usually does not require heap traffic.</p>
1337
1338<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1339in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1340Because the elements are individually allocated, pointers to the elements are
1341stable: inserting or removing elements does not invalidate any pointers to other
1342elements.
1343</p>
1344
1345</div>
1346
1347<!-- _______________________________________________________________________ -->
1348<h4>
1349  <a name="dss_set">&lt;set&gt;</a>
1350</h4>
1351
1352<div>
1353
1354<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1355many things but great at nothing.  std::set allocates memory for each element
1356inserted (thus it is very malloc intensive) and typically stores three pointers
1357per element in the set (thus adding a large amount of per-element space
1358overhead).  It offers guaranteed log(n) performance, which is not particularly
1359fast from a complexity standpoint (particularly if the elements of the set are
1360expensive to compare, like strings), and has extremely high constant factors for
1361lookup, insertion and removal.</p>
1362
1363<p>The advantages of std::set are that its iterators are stable (deleting or
1364inserting an element from the set does not affect iterators or pointers to other
1365elements) and that iteration over the set is guaranteed to be in sorted order.
1366If the elements in the set are large, then the relative overhead of the pointers
1367and malloc traffic is not a big deal, but if the elements of the set are small,
1368std::set is almost never a good choice.</p>
1369
1370</div>
1371
1372<!-- _______________________________________________________________________ -->
1373<h4>
1374  <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1375</h4>
1376
1377<div>
1378<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1379a set-like container along with a <a href="#ds_sequential">Sequential
1380Container</a>.  The important property
1381that this provides is efficient insertion with uniquing (duplicate elements are
1382ignored) with iteration support.  It implements this by inserting elements into
1383both a set-like container and the sequential container, using the set-like
1384container for uniquing and the sequential container for iteration.
1385</p>
1386
1387<p>The difference between SetVector and other sets is that the order of
1388iteration is guaranteed to match the order of insertion into the SetVector.
1389This property is really important for things like sets of pointers.  Because
1390pointer values are non-deterministic (e.g. vary across runs of the program on
1391different machines), iterating over the pointers in the set will
1392not be in a well-defined order.</p>
1393
1394<p>
1395The drawback of SetVector is that it requires twice as much space as a normal
1396set and has the sum of constant factors from the set-like container and the
1397sequential container that it uses.  Use it *only* if you need to iterate over
1398the elements in a deterministic order.  SetVector is also expensive to delete
1399elements out of (linear time), unless you use it's "pop_back" method, which is
1400faster.
1401</p>
1402
1403<p>SetVector is an adapter class that defaults to using std::vector and std::set
1404for the underlying containers, so it is quite expensive.  However,
1405<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1406defaults to using a SmallVector and SmallSet of a specified size.  If you use
1407this, and if your sets are dynamically smaller than N, you will save a lot of
1408heap traffic.</p>
1409
1410</div>
1411
1412<!-- _______________________________________________________________________ -->
1413<h4>
1414  <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1415</h4>
1416
1417<div>
1418
1419<p>
1420UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1421retains a unique ID for each element inserted into the set.  It internally
1422contains a map and a vector, and it assigns a unique ID for each value inserted
1423into the set.</p>
1424
1425<p>UniqueVector is very expensive: its cost is the sum of the cost of
1426maintaining both the map and vector, it has high complexity, high constant
1427factors, and produces a lot of malloc traffic.  It should be avoided.</p>
1428
1429</div>
1430
1431
1432<!-- _______________________________________________________________________ -->
1433<h4>
1434  <a name="dss_otherset">Other Set-Like Container Options</a>
1435</h4>
1436
1437<div>
1438
1439<p>
1440The STL provides several other options, such as std::multiset and the various
1441"hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1442never use hash_set and unordered_set because they are generally very expensive
1443(each insertion requires a malloc) and very non-portable.
1444</p>
1445
1446<p>std::multiset is useful if you're not interested in elimination of
1447duplicates, but has all the drawbacks of std::set.  A sorted vector (where you
1448don't delete duplicate entries) or some other approach is almost always
1449better.</p>
1450
1451</div>
1452
1453</div>
1454
1455<!-- ======================================================================= -->
1456<h3>
1457  <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1458</h3>
1459
1460<div>
1461Map-like containers are useful when you want to associate data to a key.  As
1462usual, there are a lot of different ways to do this. :)
1463
1464<!-- _______________________________________________________________________ -->
1465<h4>
1466  <a name="dss_sortedvectormap">A sorted 'vector'</a>
1467</h4>
1468
1469<div>
1470
1471<p>
1472If your usage pattern follows a strict insert-then-query approach, you can
1473trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1474for set-like containers</a>.  The only difference is that your query function
1475(which uses std::lower_bound to get efficient log(n) lookup) should only compare
1476the key, not both the key and value.  This yields the same advantages as sorted
1477vectors for sets.
1478</p>
1479</div>
1480
1481<!-- _______________________________________________________________________ -->
1482<h4>
1483  <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1484</h4>
1485
1486<div>
1487
1488<p>
1489Strings are commonly used as keys in maps, and they are difficult to support
1490efficiently: they are variable length, inefficient to hash and compare when
1491long, expensive to copy, etc.  StringMap is a specialized container designed to
1492cope with these issues.  It supports mapping an arbitrary range of bytes to an
1493arbitrary other object.</p>
1494
1495<p>The StringMap implementation uses a quadratically-probed hash table, where
1496the buckets store a pointer to the heap allocated entries (and some other
1497stuff).  The entries in the map must be heap allocated because the strings are
1498variable length.  The string data (key) and the element object (value) are
1499stored in the same allocation with the string data immediately after the element
1500object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1501to the key string for a value.</p>
1502
1503<p>The StringMap is very fast for several reasons: quadratic probing is very
1504cache efficient for lookups, the hash value of strings in buckets is not
1505recomputed when looking up an element, StringMap rarely has to touch the
1506memory for unrelated objects when looking up a value (even when hash collisions
1507happen), hash table growth does not recompute the hash values for strings
1508already in the table, and each pair in the map is store in a single allocation
1509(the string data is stored in the same allocation as the Value of a pair).</p>
1510
1511<p>StringMap also provides query methods that take byte ranges, so it only ever
1512copies a string if a value is inserted into the table.</p>
1513</div>
1514
1515<!-- _______________________________________________________________________ -->
1516<h4>
1517  <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1518</h4>
1519
1520<div>
1521<p>
1522IndexedMap is a specialized container for mapping small dense integers (or
1523values that can be mapped to small dense integers) to some other type.  It is
1524internally implemented as a vector with a mapping function that maps the keys to
1525the dense integer range.
1526</p>
1527
1528<p>
1529This is useful for cases like virtual registers in the LLVM code generator: they
1530have a dense mapping that is offset by a compile-time constant (the first
1531virtual register ID).</p>
1532
1533</div>
1534
1535<!-- _______________________________________________________________________ -->
1536<h4>
1537  <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1538</h4>
1539
1540<div>
1541
1542<p>
1543DenseMap is a simple quadratically probed hash table.  It excels at supporting
1544small keys and values: it uses a single allocation to hold all of the pairs that
1545are currently inserted in the map.  DenseMap is a great way to map pointers to
1546pointers, or map other small types to each other.
1547</p>
1548
1549<p>
1550There are several aspects of DenseMap that you should be aware of, however.  The
1551iterators in a densemap are invalidated whenever an insertion occurs, unlike
1552map.  Also, because DenseMap allocates space for a large number of key/value
1553pairs (it starts with 64 by default), it will waste a lot of space if your keys
1554or values are large.  Finally, you must implement a partial specialization of
1555DenseMapInfo for the key that you want, if it isn't already supported.  This
1556is required to tell DenseMap about two special marker values (which can never be
1557inserted into the map) that it needs internally.</p>
1558
1559</div>
1560
1561<!-- _______________________________________________________________________ -->
1562<h4>
1563  <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1564</h4>
1565
1566<div>
1567
1568<p>
1569ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1570Value*s (or subclasses) to another type.  When a Value is deleted or RAUW'ed,
1571ValueMap will update itself so the new version of the key is mapped to the same
1572value, just as if the key were a WeakVH.  You can configure exactly how this
1573happens, and what else happens on these two events, by passing
1574a <code>Config</code> parameter to the ValueMap template.</p>
1575
1576</div>
1577
1578<!-- _______________________________________________________________________ -->
1579<h4>
1580  <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
1581</h4>
1582
1583<div>
1584
1585<p> IntervalMap is a compact map for small keys and values. It maps key
1586intervals instead of single keys, and it will automatically coalesce adjacent
1587intervals. When then map only contains a few intervals, they are stored in the
1588map object itself to avoid allocations.</p>
1589
1590<p> The IntervalMap iterators are quite big, so they should not be passed around
1591as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
1592
1593</div>
1594
1595<!-- _______________________________________________________________________ -->
1596<h4>
1597  <a name="dss_map">&lt;map&gt;</a>
1598</h4>
1599
1600<div>
1601
1602<p>
1603std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1604a single allocation per pair inserted into the map, it offers log(n) lookup with
1605an extremely large constant factor, imposes a space penalty of 3 pointers per
1606pair in the map, etc.</p>
1607
1608<p>std::map is most useful when your keys or values are very large, if you need
1609to iterate over the collection in sorted order, or if you need stable iterators
1610into the map (i.e. they don't get invalidated if an insertion or deletion of
1611another element takes place).</p>
1612
1613</div>
1614
1615<!-- _______________________________________________________________________ -->
1616<h4>
1617  <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
1618</h4>
1619
1620<div>
1621
1622<p>IntEqClasses provides a compact representation of equivalence classes of
1623small integers. Initially, each integer in the range 0..n-1 has its own
1624equivalence class. Classes can be joined by passing two class representatives to
1625the join(a, b) method. Two integers are in the same class when findLeader()
1626returns the same representative.</p>
1627
1628<p>Once all equivalence classes are formed, the map can be compressed so each
1629integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
1630is the total number of equivalence classes. The map must be uncompressed before
1631it can be edited again.</p>
1632
1633</div>
1634
1635<!-- _______________________________________________________________________ -->
1636<h4>
1637  <a name="dss_othermap">Other Map-Like Container Options</a>
1638</h4>
1639
1640<div>
1641
1642<p>
1643The STL provides several other options, such as std::multimap and the various
1644"hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1645never use hash_set and unordered_set because they are generally very expensive
1646(each insertion requires a malloc) and very non-portable.</p>
1647
1648<p>std::multimap is useful if you want to map a key to multiple values, but has
1649all the drawbacks of std::map.  A sorted vector or some other approach is almost
1650always better.</p>
1651
1652</div>
1653
1654</div>
1655
1656<!-- ======================================================================= -->
1657<h3>
1658  <a name="ds_string">String-like containers</a>
1659</h3>
1660
1661<div>
1662
1663<p>
1664TODO: const char* vs stringref vs smallstring vs std::string.  Describe twine,
1665xref to #string_apis.
1666</p>
1667
1668</div>
1669
1670<!-- ======================================================================= -->
1671<h3>
1672  <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1673</h3>
1674
1675<div>
1676<p>Unlike the other containers, there are only two bit storage containers, and
1677choosing when to use each is relatively straightforward.</p>
1678
1679<p>One additional option is
1680<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1681implementation in many common compilers (e.g. commonly available versions of
1682GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1683deprecate this container and/or change it significantly somehow.  In any case,
1684please don't use it.</p>
1685
1686<!-- _______________________________________________________________________ -->
1687<h4>
1688  <a name="dss_bitvector">BitVector</a>
1689</h4>
1690
1691<div>
1692<p> The BitVector container provides a dynamic size set of bits for manipulation.
1693It supports individual bit setting/testing, as well as set operations.  The set
1694operations take time O(size of bitvector), but operations are performed one word
1695at a time, instead of one bit at a time.  This makes the BitVector very fast for
1696set operations compared to other containers.  Use the BitVector when you expect
1697the number of set bits to be high (IE a dense set).
1698</p>
1699</div>
1700
1701<!-- _______________________________________________________________________ -->
1702<h4>
1703  <a name="dss_smallbitvector">SmallBitVector</a>
1704</h4>
1705
1706<div>
1707<p> The SmallBitVector container provides the same interface as BitVector, but
1708it is optimized for the case where only a small number of bits, less than
170925 or so, are needed. It also transparently supports larger bit counts, but
1710slightly less efficiently than a plain BitVector, so SmallBitVector should
1711only be used when larger counts are rare.
1712</p>
1713
1714<p>
1715At this time, SmallBitVector does not support set operations (and, or, xor),
1716and its operator[] does not provide an assignable lvalue.
1717</p>
1718</div>
1719
1720<!-- _______________________________________________________________________ -->
1721<h4>
1722  <a name="dss_sparsebitvector">SparseBitVector</a>
1723</h4>
1724
1725<div>
1726<p> The SparseBitVector container is much like BitVector, with one major
1727difference: Only the bits that are set, are stored.  This makes the
1728SparseBitVector much more space efficient than BitVector when the set is sparse,
1729as well as making set operations O(number of set bits) instead of O(size of
1730universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1731(either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1732</p>
1733</div>
1734
1735</div>
1736
1737</div>
1738
1739<!-- *********************************************************************** -->
1740<h2>
1741  <a name="common">Helpful Hints for Common Operations</a>
1742</h2>
1743<!-- *********************************************************************** -->
1744
1745<div>
1746
1747<p>This section describes how to perform some very simple transformations of
1748LLVM code.  This is meant to give examples of common idioms used, showing the
1749practical side of LLVM transformations.  <p> Because this is a "how-to" section,
1750you should also read about the main classes that you will be working with.  The
1751<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1752and descriptions of the main classes that you should know about.</p>
1753
1754<!-- NOTE: this section should be heavy on example code -->
1755<!-- ======================================================================= -->
1756<h3>
1757  <a name="inspection">Basic Inspection and Traversal Routines</a>
1758</h3>
1759
1760<div>
1761
1762<p>The LLVM compiler infrastructure have many different data structures that may
1763be traversed.  Following the example of the C++ standard template library, the
1764techniques used to traverse these various data structures are all basically the
1765same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1766method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1767function returns an iterator pointing to one past the last valid element of the
1768sequence, and there is some <tt>XXXiterator</tt> data type that is common
1769between the two operations.</p>
1770
1771<p>Because the pattern for iteration is common across many different aspects of
1772the program representation, the standard template library algorithms may be used
1773on them, and it is easier to remember how to iterate. First we show a few common
1774examples of the data structures that need to be traversed.  Other data
1775structures are traversed in very similar ways.</p>
1776
1777<!-- _______________________________________________________________________ -->
1778<h4>
1779  <a name="iterate_function">Iterating over the </a><a
1780  href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1781  href="#Function"><tt>Function</tt></a>
1782</h4>
1783
1784<div>
1785
1786<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1787transform in some way; in particular, you'd like to manipulate its
1788<tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
1789the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1790an example that prints the name of a <tt>BasicBlock</tt> and the number of
1791<tt>Instruction</tt>s it contains:</p>
1792
1793<div class="doc_code">
1794<pre>
1795// <i>func is a pointer to a Function instance</i>
1796for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1797  // <i>Print out the name of the basic block if it has one, and then the</i>
1798  // <i>number of instructions that it contains</i>
1799  errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1800             &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1801</pre>
1802</div>
1803
1804<p>Note that i can be used as if it were a pointer for the purposes of
1805invoking member functions of the <tt>Instruction</tt> class.  This is
1806because the indirection operator is overloaded for the iterator
1807classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
1808exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1809
1810</div>
1811
1812<!-- _______________________________________________________________________ -->
1813<h4>
1814  <a name="iterate_basicblock">Iterating over the </a><a
1815  href="#Instruction"><tt>Instruction</tt></a>s in a <a
1816  href="#BasicBlock"><tt>BasicBlock</tt></a>
1817</h4>
1818
1819<div>
1820
1821<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1822easy to iterate over the individual instructions that make up
1823<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1824a <tt>BasicBlock</tt>:</p>
1825
1826<div class="doc_code">
1827<pre>
1828// <i>blk is a pointer to a BasicBlock instance</i>
1829for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1830   // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1831   // <i>is overloaded for Instruction&amp;</i>
1832   errs() &lt;&lt; *i &lt;&lt; "\n";
1833</pre>
1834</div>
1835
1836<p>However, this isn't really the best way to print out the contents of a
1837<tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
1838anything you'll care about, you could have just invoked the print routine on the
1839basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1840
1841</div>
1842
1843<!-- _______________________________________________________________________ -->
1844<h4>
1845  <a name="iterate_institer">Iterating over the </a><a
1846  href="#Instruction"><tt>Instruction</tt></a>s in a <a
1847  href="#Function"><tt>Function</tt></a>
1848</h4>
1849
1850<div>
1851
1852<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1853<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1854<tt>InstIterator</tt> should be used instead. You'll need to include <a
1855href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1856and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
1857small example that shows how to dump all instructions in a function to the standard error stream:<p>
1858
1859<div class="doc_code">
1860<pre>
1861#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1862
1863// <i>F is a pointer to a Function instance</i>
1864for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1865  errs() &lt;&lt; *I &lt;&lt; "\n";
1866</pre>
1867</div>
1868
1869<p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
1870work list with its initial contents.  For example, if you wanted to
1871initialize a work list to contain all instructions in a <tt>Function</tt>
1872F, all you would need to do is something like:</p>
1873
1874<div class="doc_code">
1875<pre>
1876std::set&lt;Instruction*&gt; worklist;
1877// or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1878
1879for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1880   worklist.insert(&amp;*I);
1881</pre>
1882</div>
1883
1884<p>The STL set <tt>worklist</tt> would now contain all instructions in the
1885<tt>Function</tt> pointed to by F.</p>
1886
1887</div>
1888
1889<!-- _______________________________________________________________________ -->
1890<h4>
1891  <a name="iterate_convert">Turning an iterator into a class pointer (and
1892  vice-versa)</a>
1893</h4>
1894
1895<div>
1896
1897<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1898instance when all you've got at hand is an iterator.  Well, extracting
1899a reference or a pointer from an iterator is very straight-forward.
1900Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1901is a <tt>BasicBlock::const_iterator</tt>:</p>
1902
1903<div class="doc_code">
1904<pre>
1905Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
1906Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1907const Instruction&amp; inst = *j;
1908</pre>
1909</div>
1910
1911<p>However, the iterators you'll be working with in the LLVM framework are
1912special: they will automatically convert to a ptr-to-instance type whenever they
1913need to.  Instead of dereferencing the iterator and then taking the address of
1914the result, you can simply assign the iterator to the proper pointer type and
1915you get the dereference and address-of operation as a result of the assignment
1916(behind the scenes, this is a result of overloading casting mechanisms).  Thus
1917the last line of the last example,</p>
1918
1919<div class="doc_code">
1920<pre>
1921Instruction *pinst = &amp;*i;
1922</pre>
1923</div>
1924
1925<p>is semantically equivalent to</p>
1926
1927<div class="doc_code">
1928<pre>
1929Instruction *pinst = i;
1930</pre>
1931</div>
1932
1933<p>It's also possible to turn a class pointer into the corresponding iterator,
1934and this is a constant time operation (very efficient).  The following code
1935snippet illustrates use of the conversion constructors provided by LLVM
1936iterators.  By using these, you can explicitly grab the iterator of something
1937without actually obtaining it via iteration over some structure:</p>
1938
1939<div class="doc_code">
1940<pre>
1941void printNextInstruction(Instruction* inst) {
1942  BasicBlock::iterator it(inst);
1943  ++it; // <i>After this line, it refers to the instruction after *inst</i>
1944  if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
1945}
1946</pre>
1947</div>
1948
1949<p>Unfortunately, these implicit conversions come at a cost; they prevent
1950these iterators from conforming to standard iterator conventions, and thus
1951from being usable with standard algorithms and containers. For example, they
1952prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
1953from compiling:</p>
1954
1955<div class="doc_code">
1956<pre>
1957  llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
1958</pre>
1959</div>
1960
1961<p>Because of this, these implicit conversions may be removed some day,
1962and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
1963
1964</div>
1965
1966<!--_______________________________________________________________________-->
1967<h4>
1968  <a name="iterate_complex">Finding call sites: a slightly more complex
1969  example</a>
1970</h4>
1971
1972<div>
1973
1974<p>Say that you're writing a FunctionPass and would like to count all the
1975locations in the entire module (that is, across every <tt>Function</tt>) where a
1976certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
1977learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1978much more straight-forward manner, but this example will allow us to explore how
1979you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1980is what we want to do:</p>
1981
1982<div class="doc_code">
1983<pre>
1984initialize callCounter to zero
1985for each Function f in the Module
1986  for each BasicBlock b in f
1987    for each Instruction i in b
1988      if (i is a CallInst and calls the given function)
1989        increment callCounter
1990</pre>
1991</div>
1992
1993<p>And the actual code is (remember, because we're writing a
1994<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1995override the <tt>runOnFunction</tt> method):</p>
1996
1997<div class="doc_code">
1998<pre>
1999Function* targetFunc = ...;
2000
2001class OurFunctionPass : public FunctionPass {
2002  public:
2003    OurFunctionPass(): callCounter(0) { }
2004
2005    virtual runOnFunction(Function&amp; F) {
2006      for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
2007        for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
2008          if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
2009 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
2010            // <i>We know we've encountered a call instruction, so we</i>
2011            // <i>need to determine if it's a call to the</i>
2012            // <i>function pointed to by m_func or not.</i>
2013            if (callInst-&gt;getCalledFunction() == targetFunc)
2014              ++callCounter;
2015          }
2016        }
2017      }
2018    }
2019
2020  private:
2021    unsigned callCounter;
2022};
2023</pre>
2024</div>
2025
2026</div>
2027
2028<!--_______________________________________________________________________-->
2029<h4>
2030  <a name="calls_and_invokes">Treating calls and invokes the same way</a>
2031</h4>
2032
2033<div>
2034
2035<p>You may have noticed that the previous example was a bit oversimplified in
2036that it did not deal with call sites generated by 'invoke' instructions. In
2037this, and in other situations, you may find that you want to treat
2038<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
2039most-specific common base class is <tt>Instruction</tt>, which includes lots of
2040less closely-related things. For these cases, LLVM provides a handy wrapper
2041class called <a
2042href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
2043It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
2044methods that provide functionality common to <tt>CallInst</tt>s and
2045<tt>InvokeInst</tt>s.</p>
2046
2047<p>This class has "value semantics": it should be passed by value, not by
2048reference and it should not be dynamically allocated or deallocated using
2049<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
2050assignable and constructable, with costs equivalents to that of a bare pointer.
2051If you look at its definition, it has only a single pointer member.</p>
2052
2053</div>
2054
2055<!--_______________________________________________________________________-->
2056<h4>
2057  <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
2058</h4>
2059
2060<div>
2061
2062<p>Frequently, we might have an instance of the <a
2063href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
2064determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
2065<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
2066For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
2067particular function <tt>foo</tt>. Finding all of the instructions that
2068<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
2069of <tt>F</tt>:</p>
2070
2071<div class="doc_code">
2072<pre>
2073Function *F = ...;
2074
2075for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
2076  if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
2077    errs() &lt;&lt; "F is used in instruction:\n";
2078    errs() &lt;&lt; *Inst &lt;&lt; "\n";
2079  }
2080</pre>
2081</div>
2082
2083<p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
2084operation. Instead of performing <tt>*i</tt> above several times, consider
2085doing it only once in the loop body and reusing its result.</p>
2086
2087<p>Alternatively, it's common to have an instance of the <a
2088href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
2089<tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
2090<tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
2091<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
2092all of the values that a particular instruction uses (that is, the operands of
2093the particular <tt>Instruction</tt>):</p>
2094
2095<div class="doc_code">
2096<pre>
2097Instruction *pi = ...;
2098
2099for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
2100  Value *v = *i;
2101  // <i>...</i>
2102}
2103</pre>
2104</div>
2105
2106<p>Declaring objects as <tt>const</tt> is an important tool of enforcing
2107mutation free algorithms (such as analyses, etc.). For this purpose above
2108iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2109and <tt>Value::const_op_iterator</tt>.  They automatically arise when
2110calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2111<tt>const User*</tt>s respectively.  Upon dereferencing, they return
2112<tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
2113
2114</div>
2115
2116<!--_______________________________________________________________________-->
2117<h4>
2118  <a name="iterate_preds">Iterating over predecessors &amp;
2119successors of blocks</a>
2120</h4>
2121
2122<div>
2123
2124<p>Iterating over the predecessors and successors of a block is quite easy
2125with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
2126this to iterate over all predecessors of BB:</p>
2127
2128<div class="doc_code">
2129<pre>
2130#include "llvm/Support/CFG.h"
2131BasicBlock *BB = ...;
2132
2133for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2134  BasicBlock *Pred = *PI;
2135  // <i>...</i>
2136}
2137</pre>
2138</div>
2139
2140<p>Similarly, to iterate over successors use
2141succ_iterator/succ_begin/succ_end.</p>
2142
2143</div>
2144
2145</div>
2146
2147<!-- ======================================================================= -->
2148<h3>
2149  <a name="simplechanges">Making simple changes</a>
2150</h3>
2151
2152<div>
2153
2154<p>There are some primitive transformation operations present in the LLVM
2155infrastructure that are worth knowing about.  When performing
2156transformations, it's fairly common to manipulate the contents of basic
2157blocks. This section describes some of the common methods for doing so
2158and gives example code.</p>
2159
2160<!--_______________________________________________________________________-->
2161<h4>
2162  <a name="schanges_creating">Creating and inserting new
2163  <tt>Instruction</tt>s</a>
2164</h4>
2165
2166<div>
2167
2168<p><i>Instantiating Instructions</i></p>
2169
2170<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2171constructor for the kind of instruction to instantiate and provide the necessary
2172parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2173(const-ptr-to) <tt>Type</tt>. Thus:</p>
2174
2175<div class="doc_code">
2176<pre>
2177AllocaInst* ai = new AllocaInst(Type::Int32Ty);
2178</pre>
2179</div>
2180
2181<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2182one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2183subclass is likely to have varying default parameters which change the semantics
2184of the instruction, so refer to the <a
2185href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2186Instruction</a> that you're interested in instantiating.</p>
2187
2188<p><i>Naming values</i></p>
2189
2190<p>It is very useful to name the values of instructions when you're able to, as
2191this facilitates the debugging of your transformations.  If you end up looking
2192at generated LLVM machine code, you definitely want to have logical names
2193associated with the results of instructions!  By supplying a value for the
2194<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2195associate a logical name with the result of the instruction's execution at
2196run time.  For example, say that I'm writing a transformation that dynamically
2197allocates space for an integer on the stack, and that integer is going to be
2198used as some kind of index by some other code.  To accomplish this, I place an
2199<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2200<tt>Function</tt>, and I'm intending to use it within the same
2201<tt>Function</tt>. I might do:</p>
2202
2203<div class="doc_code">
2204<pre>
2205AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
2206</pre>
2207</div>
2208
2209<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2210execution value, which is a pointer to an integer on the run time stack.</p>
2211
2212<p><i>Inserting instructions</i></p>
2213
2214<p>There are essentially two ways to insert an <tt>Instruction</tt>
2215into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2216
2217<ul>
2218  <li>Insertion into an explicit instruction list
2219
2220    <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2221    <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2222    before <tt>*pi</tt>, we do the following: </p>
2223
2224<div class="doc_code">
2225<pre>
2226BasicBlock *pb = ...;
2227Instruction *pi = ...;
2228Instruction *newInst = new Instruction(...);
2229
2230pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2231</pre>
2232</div>
2233
2234    <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2235    the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2236    classes provide constructors which take a pointer to a
2237    <tt>BasicBlock</tt> to be appended to. For example code that
2238    looked like: </p>
2239
2240<div class="doc_code">
2241<pre>
2242BasicBlock *pb = ...;
2243Instruction *newInst = new Instruction(...);
2244
2245pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2246</pre>
2247</div>
2248
2249    <p>becomes: </p>
2250
2251<div class="doc_code">
2252<pre>
2253BasicBlock *pb = ...;
2254Instruction *newInst = new Instruction(..., pb);
2255</pre>
2256</div>
2257
2258    <p>which is much cleaner, especially if you are creating
2259    long instruction streams.</p></li>
2260
2261  <li>Insertion into an implicit instruction list
2262
2263    <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2264    are implicitly associated with an existing instruction list: the instruction
2265    list of the enclosing basic block. Thus, we could have accomplished the same
2266    thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2267    </p>
2268
2269<div class="doc_code">
2270<pre>
2271Instruction *pi = ...;
2272Instruction *newInst = new Instruction(...);
2273
2274pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2275</pre>
2276</div>
2277
2278    <p>In fact, this sequence of steps occurs so frequently that the
2279    <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2280    constructors which take (as a default parameter) a pointer to an
2281    <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2282    precede.  That is, <tt>Instruction</tt> constructors are capable of
2283    inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2284    provided instruction, immediately before that instruction.  Using an
2285    <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2286    parameter, the above code becomes:</p>
2287
2288<div class="doc_code">
2289<pre>
2290Instruction* pi = ...;
2291Instruction* newInst = new Instruction(..., pi);
2292</pre>
2293</div>
2294
2295    <p>which is much cleaner, especially if you're creating a lot of
2296    instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2297</ul>
2298
2299</div>
2300
2301<!--_______________________________________________________________________-->
2302<h4>
2303  <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2304</h4>
2305
2306<div>
2307
2308<p>Deleting an instruction from an existing sequence of instructions that form a
2309<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
2310call the instruction's eraseFromParent() method.  For example:</p>
2311
2312<div class="doc_code">
2313<pre>
2314<a href="#Instruction">Instruction</a> *I = .. ;
2315I-&gt;eraseFromParent();
2316</pre>
2317</div>
2318
2319<p>This unlinks the instruction from its containing basic block and deletes
2320it.  If you'd just like to unlink the instruction from its containing basic
2321block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
2322
2323</div>
2324
2325<!--_______________________________________________________________________-->
2326<h4>
2327  <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2328  <tt>Value</tt></a>
2329</h4>
2330
2331<div>
2332
2333<p><i>Replacing individual instructions</i></p>
2334
2335<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2336permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2337and <tt>ReplaceInstWithInst</tt>.</p>
2338
2339<h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
2340
2341<ul>
2342  <li><tt>ReplaceInstWithValue</tt>
2343
2344    <p>This function replaces all uses of a given instruction with a value,
2345    and then removes the original instruction. The following example
2346    illustrates the replacement of the result of a particular
2347    <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2348    pointer to an integer.</p>
2349
2350<div class="doc_code">
2351<pre>
2352AllocaInst* instToReplace = ...;
2353BasicBlock::iterator ii(instToReplace);
2354
2355ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2356                     Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
2357</pre></div></li>
2358
2359  <li><tt>ReplaceInstWithInst</tt>
2360
2361    <p>This function replaces a particular instruction with another
2362    instruction, inserting the new instruction into the basic block at the
2363    location where the old instruction was, and replacing any uses of the old
2364    instruction with the new instruction. The following example illustrates
2365    the replacement of one <tt>AllocaInst</tt> with another.</p>
2366
2367<div class="doc_code">
2368<pre>
2369AllocaInst* instToReplace = ...;
2370BasicBlock::iterator ii(instToReplace);
2371
2372ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2373                    new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
2374</pre></div></li>
2375</ul>
2376
2377<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2378
2379<p>You can use <tt>Value::replaceAllUsesWith</tt> and
2380<tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
2381doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2382and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2383information.</p>
2384
2385<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2386include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2387ReplaceInstWithValue, ReplaceInstWithInst -->
2388
2389</div>
2390
2391<!--_______________________________________________________________________-->
2392<h4>
2393  <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2394</h4>
2395
2396<div>
2397
2398<p>Deleting a global variable from a module is just as easy as deleting an
2399Instruction. First, you must have a pointer to the global variable that you wish
2400 to delete.  You use this pointer to erase it from its parent, the module.
2401 For example:</p>
2402
2403<div class="doc_code">
2404<pre>
2405<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2406
2407GV-&gt;eraseFromParent();
2408</pre>
2409</div>
2410
2411</div>
2412
2413</div>
2414
2415<!-- ======================================================================= -->
2416<h3>
2417  <a name="create_types">How to Create Types</a>
2418</h3>
2419
2420<div>
2421
2422<p>In generating IR, you may need some complex types.  If you know these types
2423statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
2424in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them.  <tt>TypeBuilder</tt>
2425has two forms depending on whether you're building types for cross-compilation
2426or native library use.  <tt>TypeBuilder&lt;T, true&gt;</tt> requires
2427that <tt>T</tt> be independent of the host environment, meaning that it's built
2428out of types from
2429the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2430namespace and pointers, functions, arrays, etc. built of
2431those.  <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
2432whose size may depend on the host compiler.  For example,</p>
2433
2434<div class="doc_code">
2435<pre>
2436FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
2437</pre>
2438</div>
2439
2440<p>is easier to read and write than the equivalent</p>
2441
2442<div class="doc_code">
2443<pre>
2444std::vector&lt;const Type*&gt; params;
2445params.push_back(PointerType::getUnqual(Type::Int32Ty));
2446FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2447</pre>
2448</div>
2449
2450<p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2451comment</a> for more details.</p>
2452
2453</div>
2454
2455</div>
2456
2457<!-- *********************************************************************** -->
2458<h2>
2459  <a name="threading">Threads and LLVM</a>
2460</h2>
2461<!-- *********************************************************************** -->
2462
2463<div>
2464<p>
2465This section describes the interaction of the LLVM APIs with multithreading,
2466both on the part of client applications, and in the JIT, in the hosted
2467application.
2468</p>
2469
2470<p>
2471Note that LLVM's support for multithreading is still relatively young.  Up
2472through version 2.5, the execution of threaded hosted applications was
2473supported, but not threaded client access to the APIs.  While this use case is
2474now supported, clients <em>must</em> adhere to the guidelines specified below to
2475ensure proper operation in multithreaded mode.
2476</p>
2477
2478<p>
2479Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2480intrinsics in order to support threaded operation.  If you need a
2481multhreading-capable LLVM on a platform without a suitably modern system
2482compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
2483using the resultant compiler to build a copy of LLVM with multithreading
2484support.
2485</p>
2486
2487<!-- ======================================================================= -->
2488<h3>
2489  <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
2490</h3>
2491
2492<div>
2493
2494<p>
2495In order to properly protect its internal data structures while avoiding
2496excessive locking overhead in the single-threaded case, the LLVM must intialize
2497certain data structures necessary to provide guards around its internals.  To do
2498so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2499making any concurrent LLVM API calls.  To subsequently tear down these
2500structures, use the <tt>llvm_stop_multithreaded()</tt> call.  You can also use
2501the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2502mode.
2503</p>
2504
2505<p>
2506Note that both of these calls must be made <em>in isolation</em>.  That is to
2507say that no other LLVM API calls may be executing at any time during the
2508execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2509</tt>.  It's is the client's responsibility to enforce this isolation.
2510</p>
2511
2512<p>
2513The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2514failure of the initialization.  Failure typically indicates that your copy of
2515LLVM was built without multithreading support, typically because GCC atomic
2516intrinsics were not found in your system compiler.  In this case, the LLVM API
2517will not be safe for concurrent calls.  However, it <em>will</em> be safe for
2518hosting threaded applications in the JIT, though <a href="#jitthreading">care
2519must be taken</a> to ensure that side exits and the like do not accidentally
2520result in concurrent LLVM API calls.
2521</p>
2522</div>
2523
2524<!-- ======================================================================= -->
2525<h3>
2526  <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2527</h3>
2528
2529<div>
2530<p>
2531When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
2532to deallocate memory used for internal structures.  This will also invoke
2533<tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2534As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2535<tt>llvm_stop_multithreaded()</tt>.
2536</p>
2537
2538<p>
2539Note that, if you use scope-based shutdown, you can use the
2540<tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2541destructor.
2542</div>
2543
2544<!-- ======================================================================= -->
2545<h3>
2546  <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2547</h3>
2548
2549<div>
2550<p>
2551<tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2552initialization of static resources, such as the global type tables.  Before the
2553invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy
2554initialization scheme.  Once <tt>llvm_start_multithreaded()</tt> returns,
2555however, it uses double-checked locking to implement thread-safe lazy
2556initialization.
2557</p>
2558
2559<p>
2560Note that, because no other threads are allowed to issue LLVM API calls before
2561<tt>llvm_start_multithreaded()</tt> returns, it is possible to have
2562<tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2563</p>
2564
2565<p>
2566The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt>
2567APIs provide access to the global lock used to implement the double-checked
2568locking for lazy initialization.  These should only be used internally to LLVM,
2569and only if you know what you're doing!
2570</p>
2571</div>
2572
2573<!-- ======================================================================= -->
2574<h3>
2575  <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2576</h3>
2577
2578<div>
2579<p>
2580<tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2581to operate multiple, isolated instances of LLVM concurrently within the same
2582address space.  For instance, in a hypothetical compile-server, the compilation
2583of an individual translation unit is conceptually independent from all the
2584others, and it would be desirable to be able to compile incoming translation
2585units concurrently on independent server threads.  Fortunately,
2586<tt>LLVMContext</tt> exists to enable just this kind of scenario!
2587</p>
2588
2589<p>
2590Conceptually, <tt>LLVMContext</tt> provides isolation.  Every LLVM entity
2591(<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
2592in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>.  Entities in
2593different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2594different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2595to <tt>Module</tt>s in different contexts, etc.  What this means is that is is
2596safe to compile on multiple threads simultaneously, as long as no two threads
2597operate on entities within the same context.
2598</p>
2599
2600<p>
2601In practice, very few places in the API require the explicit specification of a
2602<tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2603Because every <tt>Type</tt> carries a reference to its owning context, most
2604other entities can determine what context they belong to by looking at their
2605own <tt>Type</tt>.  If you are adding new entities to LLVM IR, please try to
2606maintain this interface design.
2607</p>
2608
2609<p>
2610For clients that do <em>not</em> require the benefits of isolation, LLVM
2611provides a convenience API <tt>getGlobalContext()</tt>.  This returns a global,
2612lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2613isolation is not a concern.
2614</p>
2615</div>
2616
2617<!-- ======================================================================= -->
2618<h3>
2619  <a name="jitthreading">Threads and the JIT</a>
2620</h3>
2621
2622<div>
2623<p>
2624LLVM's "eager" JIT compiler is safe to use in threaded programs.  Multiple
2625threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2626<tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2627run code output by the JIT concurrently.  The user must still ensure that only
2628one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2629might be modifying it.  One way to do that is to always hold the JIT lock while
2630accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2631<tt>CallbackVH</tt>s).  Another way is to only
2632call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2633</p>
2634
2635<p>When the JIT is configured to compile lazily (using
2636<tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2637<a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2638updating call sites after a function is lazily-jitted.  It's still possible to
2639use the lazy JIT in a threaded program if you ensure that only one thread at a
2640time can call any particular lazy stub and that the JIT lock guards any IR
2641access, but we suggest using only the eager JIT in threaded programs.
2642</p>
2643</div>
2644
2645</div>
2646
2647<!-- *********************************************************************** -->
2648<h2>
2649  <a name="advanced">Advanced Topics</a>
2650</h2>
2651<!-- *********************************************************************** -->
2652
2653<div>
2654<p>
2655This section describes some of the advanced or obscure API's that most clients
2656do not need to be aware of.  These API's tend manage the inner workings of the
2657LLVM system, and only need to be accessed in unusual circumstances.
2658</p>
2659
2660
2661<!-- ======================================================================= -->
2662<h3>
2663  <a name="SymbolTable">The <tt>ValueSymbolTable</tt> class</a>
2664</h3>
2665
2666<div>
2667<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2668ValueSymbolTable</a></tt> class provides a symbol table that the <a
2669href="#Function"><tt>Function</tt></a> and <a href="#Module">
2670<tt>Module</tt></a> classes use for naming value definitions. The symbol table
2671can provide a name for any <a href="#Value"><tt>Value</tt></a>.
2672</p>
2673
2674<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2675by most clients.  It should only be used when iteration over the symbol table
2676names themselves are required, which is very special purpose.  Note that not
2677all LLVM
2678<tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
2679an empty name) do not exist in the symbol table.
2680</p>
2681
2682<p>Symbol tables support iteration over the values in the symbol
2683table with <tt>begin/end/iterator</tt> and supports querying to see if a
2684specific name is in the symbol table (with <tt>lookup</tt>).  The
2685<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2686simply call <tt>setName</tt> on a value, which will autoinsert it into the
2687appropriate symbol table.</p>
2688
2689</div>
2690
2691
2692
2693<!-- ======================================================================= -->
2694<h3>
2695  <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2696</h3>
2697
2698<div>
2699<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2700User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
2701towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2702Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
2703Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
2704addition and removal.</p>
2705
2706<!-- ______________________________________________________________________ -->
2707<h4>
2708  <a name="Use2User">
2709    Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
2710  </a>
2711</h4>
2712
2713<div>
2714<p>
2715A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
2716or refer to them out-of-line by means of a pointer. A mixed variant
2717(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2718that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2719</p>
2720
2721<p>
2722We have 2 different layouts in the <tt>User</tt> (sub)classes:
2723<ul>
2724<li><p>Layout a)
2725The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2726object and there are a fixed number of them.</p>
2727
2728<li><p>Layout b)
2729The <tt>Use</tt> object(s) are referenced by a pointer to an
2730array from the <tt>User</tt> object and there may be a variable
2731number of them.</p>
2732</ul>
2733<p>
2734As of v2.4 each layout still possesses a direct pointer to the
2735start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
2736we stick to this redundancy for the sake of simplicity.
2737The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
2738has. (Theoretically this information can also be calculated
2739given the scheme presented below.)</p>
2740<p>
2741Special forms of allocation operators (<tt>operator new</tt>)
2742enforce the following memory layouts:</p>
2743
2744<ul>
2745<li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
2746
2747<pre>
2748...---.---.---.---.-------...
2749  | P | P | P | P | User
2750'''---'---'---'---'-------'''
2751</pre>
2752
2753<li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
2754<pre>
2755.-------...
2756| User
2757'-------'''
2758    |
2759    v
2760    .---.---.---.---...
2761    | P | P | P | P |
2762    '---'---'---'---'''
2763</pre>
2764</ul>
2765<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2766    is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
2767
2768</div>
2769
2770<!-- ______________________________________________________________________ -->
2771<h4>
2772  <a name="Waymarking">The waymarking algorithm</a>
2773</h4>
2774
2775<div>
2776<p>
2777Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
2778their <tt>User</tt> objects, there must be a fast and exact method to
2779recover it. This is accomplished by the following scheme:</p>
2780
2781A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
2782start of the <tt>User</tt> object:
2783<ul>
2784<li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2785<li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2786<li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2787<li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2788</ul>
2789<p>
2790Given a <tt>Use*</tt>, all we have to do is to walk till we get
2791a stop and we either have a <tt>User</tt> immediately behind or
2792we have to walk to the next stop picking up digits
2793and calculating the offset:</p>
2794<pre>
2795.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2796| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2797'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2798    |+15                |+10            |+6         |+3     |+1
2799    |                   |               |           |       |__>
2800    |                   |               |           |__________>
2801    |                   |               |______________________>
2802    |                   |______________________________________>
2803    |__________________________________________________________>
2804</pre>
2805<p>
2806Only the significant number of bits need to be stored between the
2807stops, so that the <i>worst case is 20 memory accesses</i> when there are
28081000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
2809
2810</div>
2811
2812<!-- ______________________________________________________________________ -->
2813<h4>
2814  <a name="ReferenceImpl">Reference implementation</a>
2815</h4>
2816
2817<div>
2818<p>
2819The following literate Haskell fragment demonstrates the concept:</p>
2820
2821<div class="doc_code">
2822<pre>
2823> import Test.QuickCheck
2824>
2825> digits :: Int -> [Char] -> [Char]
2826> digits 0 acc = '0' : acc
2827> digits 1 acc = '1' : acc
2828> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2829>
2830> dist :: Int -> [Char] -> [Char]
2831> dist 0 [] = ['S']
2832> dist 0 acc = acc
2833> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2834> dist n acc = dist (n - 1) $ dist 1 acc
2835>
2836> takeLast n ss = reverse $ take n $ reverse ss
2837>
2838> test = takeLast 40 $ dist 20 []
2839>
2840</pre>
2841</div>
2842<p>
2843Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2844<p>
2845The reverse algorithm computes the length of the string just by examining
2846a certain prefix:</p>
2847
2848<div class="doc_code">
2849<pre>
2850> pref :: [Char] -> Int
2851> pref "S" = 1
2852> pref ('s':'1':rest) = decode 2 1 rest
2853> pref (_:rest) = 1 + pref rest
2854>
2855> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2856> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2857> decode walk acc _ = walk + acc
2858>
2859</pre>
2860</div>
2861<p>
2862Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2863<p>
2864We can <i>quickCheck</i> this with following property:</p>
2865
2866<div class="doc_code">
2867<pre>
2868> testcase = dist 2000 []
2869> testcaseLength = length testcase
2870>
2871> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2872>     where arr = takeLast n testcase
2873>
2874</pre>
2875</div>
2876<p>
2877As expected &lt;quickCheck identityProp&gt; gives:</p>
2878
2879<pre>
2880*Main> quickCheck identityProp
2881OK, passed 100 tests.
2882</pre>
2883<p>
2884Let's be a bit more exhaustive:</p>
2885
2886<div class="doc_code">
2887<pre>
2888>
2889> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2890>
2891</pre>
2892</div>
2893<p>
2894And here is the result of &lt;deepCheck identityProp&gt;:</p>
2895
2896<pre>
2897*Main> deepCheck identityProp
2898OK, passed 500 tests.
2899</pre>
2900
2901</div>
2902
2903<!-- ______________________________________________________________________ -->
2904<h4>
2905  <a name="Tagging">Tagging considerations</a>
2906</h4>
2907
2908<div>
2909
2910<p>
2911To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2912never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2913new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2914tag bits.</p>
2915<p>
2916For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2917Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2918that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
2919the LSBit set. (Portability is relying on the fact that all known compilers place the
2920<tt>vptr</tt> in the first word of the instances.)</p>
2921
2922</div>
2923
2924</div>
2925
2926</div>
2927
2928<!-- *********************************************************************** -->
2929<h2>
2930  <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2931</h2>
2932<!-- *********************************************************************** -->
2933
2934<div>
2935<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2936<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2937
2938<p>The Core LLVM classes are the primary means of representing the program
2939being inspected or transformed.  The core LLVM classes are defined in
2940header files in the <tt>include/llvm/</tt> directory, and implemented in
2941the <tt>lib/VMCore</tt> directory.</p>
2942
2943<!-- ======================================================================= -->
2944<h3>
2945  <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2946</h3>
2947
2948<div>
2949
2950  <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2951  a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2952  through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2953  <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
2954  subclasses. They are hidden because they offer no useful functionality beyond
2955  what the <tt>Type</tt> class offers except to distinguish themselves from
2956  other subclasses of <tt>Type</tt>.</p>
2957  <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be
2958  named, but this is not a requirement. There exists exactly
2959  one instance of a given shape at any one time.  This allows type equality to
2960  be performed with address equality of the Type Instance. That is, given two
2961  <tt>Type*</tt> values, the types are identical if the pointers are identical.
2962  </p>
2963
2964<!-- _______________________________________________________________________ -->
2965<h4>
2966  <a name="m_Type">Important Public Methods</a>
2967</h4>
2968
2969<div>
2970
2971<ul>
2972  <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
2973
2974  <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
2975  floating point types.</li>
2976
2977  <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2978  that don't have a size are abstract types, labels and void.</li>
2979
2980</ul>
2981</div>
2982
2983<!-- _______________________________________________________________________ -->
2984<h4>
2985  <a name="derivedtypes">Important Derived Types</a>
2986</h4>
2987<div>
2988<dl>
2989  <dt><tt>IntegerType</tt></dt>
2990  <dd>Subclass of DerivedType that represents integer types of any bit width.
2991  Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
2992  <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2993  <ul>
2994    <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2995    type of a specific bit width.</li>
2996    <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
2997    type.</li>
2998  </ul>
2999  </dd>
3000  <dt><tt>SequentialType</tt></dt>
3001  <dd>This is subclassed by ArrayType, PointerType and VectorType.
3002    <ul>
3003      <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3004      of the elements in the sequential type. </li>
3005    </ul>
3006  </dd>
3007  <dt><tt>ArrayType</tt></dt>
3008  <dd>This is a subclass of SequentialType and defines the interface for array
3009  types.
3010    <ul>
3011      <li><tt>unsigned getNumElements() const</tt>: Returns the number of
3012      elements in the array. </li>
3013    </ul>
3014  </dd>
3015  <dt><tt>PointerType</tt></dt>
3016  <dd>Subclass of SequentialType for pointer types.</dd>
3017  <dt><tt>VectorType</tt></dt>
3018  <dd>Subclass of SequentialType for vector types. A
3019  vector type is similar to an ArrayType but is distinguished because it is
3020  a first class type whereas ArrayType is not. Vector types are used for
3021  vector operations and are usually small vectors of of an integer or floating
3022  point type.</dd>
3023  <dt><tt>StructType</tt></dt>
3024  <dd>Subclass of DerivedTypes for struct types.</dd>
3025  <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3026  <dd>Subclass of DerivedTypes for function types.
3027    <ul>
3028      <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
3029      function</li>
3030      <li><tt> const Type * getReturnType() const</tt>: Returns the
3031      return type of the function.</li>
3032      <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3033      the type of the ith parameter.</li>
3034      <li><tt> const unsigned getNumParams() const</tt>: Returns the
3035      number of formal parameters.</li>
3036    </ul>
3037  </dd>
3038</dl>
3039</div>
3040
3041</div>
3042
3043<!-- ======================================================================= -->
3044<h3>
3045  <a name="Module">The <tt>Module</tt> class</a>
3046</h3>
3047
3048<div>
3049
3050<p><tt>#include "<a
3051href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3052<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3053
3054<p>The <tt>Module</tt> class represents the top level structure present in LLVM
3055programs.  An LLVM module is effectively either a translation unit of the
3056original program or a combination of several translation units merged by the
3057linker.  The <tt>Module</tt> class keeps track of a list of <a
3058href="#Function"><tt>Function</tt></a>s, a list of <a
3059href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3060href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
3061helpful member functions that try to make common operations easy.</p>
3062
3063<!-- _______________________________________________________________________ -->
3064<h4>
3065  <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3066</h4>
3067
3068<div>
3069
3070<ul>
3071  <li><tt>Module::Module(std::string name = "")</tt></li>
3072</ul>
3073
3074<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3075provide a name for it (probably based on the name of the translation unit).</p>
3076
3077<ul>
3078  <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3079    <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3080
3081    <tt>begin()</tt>, <tt>end()</tt>
3082    <tt>size()</tt>, <tt>empty()</tt>
3083
3084    <p>These are forwarding methods that make it easy to access the contents of
3085    a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3086    list.</p></li>
3087
3088  <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3089
3090    <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
3091    necessary to use when you need to update the list or perform a complex
3092    action that doesn't have a forwarding method.</p>
3093
3094    <p><!--  Global Variable --></p></li>
3095</ul>
3096
3097<hr>
3098
3099<ul>
3100  <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3101
3102    <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3103
3104    <tt>global_begin()</tt>, <tt>global_end()</tt>
3105    <tt>global_size()</tt>, <tt>global_empty()</tt>
3106
3107    <p> These are forwarding methods that make it easy to access the contents of
3108    a <tt>Module</tt> object's <a
3109    href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3110
3111  <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3112
3113    <p>Returns the list of <a
3114    href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
3115    use when you need to update the list or perform a complex action that
3116    doesn't have a forwarding method.</p>
3117
3118    <p><!--  Symbol table stuff --> </p></li>
3119</ul>
3120
3121<hr>
3122
3123<ul>
3124  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3125
3126    <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3127    for this <tt>Module</tt>.</p>
3128
3129    <p><!--  Convenience methods --></p></li>
3130</ul>
3131
3132<hr>
3133
3134<ul>
3135  <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3136  &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3137
3138    <p>Look up the specified function in the <tt>Module</tt> <a
3139    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3140    <tt>null</tt>.</p></li>
3141
3142  <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3143  std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3144
3145    <p>Look up the specified function in the <tt>Module</tt> <a
3146    href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3147    external declaration for the function and return it.</p></li>
3148
3149  <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3150
3151    <p>If there is at least one entry in the <a
3152    href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3153    href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
3154    string.</p></li>
3155
3156  <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3157  href="#Type">Type</a> *Ty)</tt>
3158
3159    <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3160    mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3161    name, true is returned and the <a
3162    href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3163</ul>
3164
3165</div>
3166
3167</div>
3168
3169<!-- ======================================================================= -->
3170<h3>
3171  <a name="Value">The <tt>Value</tt> class</a>
3172</h3>
3173
3174<div>
3175
3176<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3177<br>
3178doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3179
3180<p>The <tt>Value</tt> class is the most important class in the LLVM Source
3181base.  It represents a typed value that may be used (among other things) as an
3182operand to an instruction.  There are many different types of <tt>Value</tt>s,
3183such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3184href="#Argument"><tt>Argument</tt></a>s. Even <a
3185href="#Instruction"><tt>Instruction</tt></a>s and <a
3186href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3187
3188<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3189for a program.  For example, an incoming argument to a function (represented
3190with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3191every instruction in the function that references the argument.  To keep track
3192of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3193href="#User"><tt>User</tt></a>s that is using it (the <a
3194href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3195graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
3196def-use information in the program, and is accessible through the <tt>use_</tt>*
3197methods, shown below.</p>
3198
3199<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3200and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3201method. In addition, all LLVM values can be named.  The "name" of the
3202<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3203
3204<div class="doc_code">
3205<pre>
3206%<b>foo</b> = add i32 1, 2
3207</pre>
3208</div>
3209
3210<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3211that the name of any value may be missing (an empty string), so names should
3212<b>ONLY</b> be used for debugging (making the source code easier to read,
3213debugging printouts), they should not be used to keep track of values or map
3214between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
3215<tt>Value</tt> itself instead.</p>
3216
3217<p>One important aspect of LLVM is that there is no distinction between an SSA
3218variable and the operation that produces it.  Because of this, any reference to
3219the value produced by an instruction (or the value available as an incoming
3220argument, for example) is represented as a direct pointer to the instance of
3221the class that
3222represents this value.  Although this may take some getting used to, it
3223simplifies the representation and makes it easier to manipulate.</p>
3224
3225<!-- _______________________________________________________________________ -->
3226<h4>
3227  <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3228</h4>
3229
3230<div>
3231
3232<ul>
3233  <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3234use-list<br>
3235    <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
3236the use-list<br>
3237    <tt>unsigned use_size()</tt> - Returns the number of users of the
3238value.<br>
3239    <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3240    <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3241the use-list.<br>
3242    <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3243use-list.<br>
3244    <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3245element in the list.
3246    <p> These methods are the interface to access the def-use
3247information in LLVM.  As with all other iterators in LLVM, the naming
3248conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3249  </li>
3250  <li><tt><a href="#Type">Type</a> *getType() const</tt>
3251    <p>This method returns the Type of the Value.</p>
3252  </li>
3253  <li><tt>bool hasName() const</tt><br>
3254    <tt>std::string getName() const</tt><br>
3255    <tt>void setName(const std::string &amp;Name)</tt>
3256    <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3257be aware of the <a href="#nameWarning">precaution above</a>.</p>
3258  </li>
3259  <li><tt>void replaceAllUsesWith(Value *V)</tt>
3260
3261    <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3262    href="#User"><tt>User</tt>s</a> of the current value to refer to
3263    "<tt>V</tt>" instead.  For example, if you detect that an instruction always
3264    produces a constant value (for example through constant folding), you can
3265    replace all uses of the instruction with the constant like this:</p>
3266
3267<div class="doc_code">
3268<pre>
3269Inst-&gt;replaceAllUsesWith(ConstVal);
3270</pre>
3271</div>
3272
3273</ul>
3274
3275</div>
3276
3277</div>
3278
3279<!-- ======================================================================= -->
3280<h3>
3281  <a name="User">The <tt>User</tt> class</a>
3282</h3>
3283
3284<div>
3285
3286<p>
3287<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3288doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3289Superclass: <a href="#Value"><tt>Value</tt></a></p>
3290
3291<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3292refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
3293that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3294referring to.  The <tt>User</tt> class itself is a subclass of
3295<tt>Value</tt>.</p>
3296
3297<p>The operands of a <tt>User</tt> point directly to the LLVM <a
3298href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
3299Single Assignment (SSA) form, there can only be one definition referred to,
3300allowing this direct connection.  This connection provides the use-def
3301information in LLVM.</p>
3302
3303<!-- _______________________________________________________________________ -->
3304<h4>
3305  <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3306</h4>
3307
3308<div>
3309
3310<p>The <tt>User</tt> class exposes the operand list in two ways: through
3311an index access interface and through an iterator based interface.</p>
3312
3313<ul>
3314  <li><tt>Value *getOperand(unsigned i)</tt><br>
3315    <tt>unsigned getNumOperands()</tt>
3316    <p> These two methods expose the operands of the <tt>User</tt> in a
3317convenient form for direct access.</p></li>
3318
3319  <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3320list<br>
3321    <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
3322the operand list.<br>
3323    <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3324operand list.
3325    <p> Together, these methods make up the iterator based interface to
3326the operands of a <tt>User</tt>.</p></li>
3327</ul>
3328
3329</div>
3330
3331</div>
3332
3333<!-- ======================================================================= -->
3334<h3>
3335  <a name="Instruction">The <tt>Instruction</tt> class</a>
3336</h3>
3337
3338<div>
3339
3340<p><tt>#include "</tt><tt><a
3341href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3342doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3343Superclasses: <a href="#User"><tt>User</tt></a>, <a
3344href="#Value"><tt>Value</tt></a></p>
3345
3346<p>The <tt>Instruction</tt> class is the common base class for all LLVM
3347instructions.  It provides only a few methods, but is a very commonly used
3348class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
3349opcode (instruction type) and the parent <a
3350href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3351into.  To represent a specific type of instruction, one of many subclasses of
3352<tt>Instruction</tt> are used.</p>
3353
3354<p> Because the <tt>Instruction</tt> class subclasses the <a
3355href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3356way as for other <a href="#User"><tt>User</tt></a>s (with the
3357<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3358<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3359the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3360file contains some meta-data about the various different types of instructions
3361in LLVM.  It describes the enum values that are used as opcodes (for example
3362<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3363concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3364example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3365href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
3366this file confuses doxygen, so these enum values don't show up correctly in the
3367<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3368
3369<!-- _______________________________________________________________________ -->
3370<h4>
3371  <a name="s_Instruction">
3372    Important Subclasses of the <tt>Instruction</tt> class
3373  </a>
3374</h4>
3375<div>
3376  <ul>
3377    <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3378    <p>This subclasses represents all two operand instructions whose operands
3379    must be the same type, except for the comparison instructions.</p></li>
3380    <li><tt><a name="CastInst">CastInst</a></tt>
3381    <p>This subclass is the parent of the 12 casting instructions. It provides
3382    common operations on cast instructions.</p>
3383    <li><tt><a name="CmpInst">CmpInst</a></tt>
3384    <p>This subclass respresents the two comparison instructions,
3385    <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3386    <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3387    <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3388    <p>This subclass is the parent of all terminator instructions (those which
3389    can terminate a block).</p>
3390  </ul>
3391  </div>
3392
3393<!-- _______________________________________________________________________ -->
3394<h4>
3395  <a name="m_Instruction">
3396    Important Public Members of the <tt>Instruction</tt> class
3397  </a>
3398</h4>
3399
3400<div>
3401
3402<ul>
3403  <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3404    <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3405this  <tt>Instruction</tt> is embedded into.</p></li>
3406  <li><tt>bool mayWriteToMemory()</tt>
3407    <p>Returns true if the instruction writes to memory, i.e. it is a
3408      <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3409  <li><tt>unsigned getOpcode()</tt>
3410    <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3411  <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3412    <p>Returns another instance of the specified instruction, identical
3413in all ways to the original except that the instruction has no parent
3414(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3415and it has no name</p></li>
3416</ul>
3417
3418</div>
3419
3420</div>
3421
3422<!-- ======================================================================= -->
3423<h3>
3424  <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3425</h3>
3426
3427<div>
3428
3429<p>Constant represents a base class for different types of constants. It
3430is subclassed by ConstantInt, ConstantArray, etc. for representing
3431the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
3432a subclass, which represents the address of a global variable or function.
3433</p>
3434
3435<!-- _______________________________________________________________________ -->
3436<h4>Important Subclasses of Constant</h4>
3437<div>
3438<ul>
3439  <li>ConstantInt : This subclass of Constant represents an integer constant of
3440  any width.
3441    <ul>
3442      <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3443      value of this constant, an APInt value.</li>
3444      <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3445      value to an int64_t via sign extension. If the value (not the bit width)
3446      of the APInt is too large to fit in an int64_t, an assertion will result.
3447      For this reason, use of this method is discouraged.</li>
3448      <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3449      value to a uint64_t via zero extension. IF the value (not the bit width)
3450      of the APInt is too large to fit in a uint64_t, an assertion will result.
3451      For this reason, use of this method is discouraged.</li>
3452      <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3453      ConstantInt object that represents the value provided by <tt>Val</tt>.
3454      The type is implied as the IntegerType that corresponds to the bit width
3455      of <tt>Val</tt>.</li>
3456      <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
3457      Returns the ConstantInt object that represents the value provided by
3458      <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3459    </ul>
3460  </li>
3461  <li>ConstantFP : This class represents a floating point constant.
3462    <ul>
3463      <li><tt>double getValue() const</tt>: Returns the underlying value of
3464      this constant. </li>
3465    </ul>
3466  </li>
3467  <li>ConstantArray : This represents a constant array.
3468    <ul>
3469      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3470      a vector of component constants that makeup this array. </li>
3471    </ul>
3472  </li>
3473  <li>ConstantStruct : This represents a constant struct.
3474    <ul>
3475      <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3476      a vector of component constants that makeup this array. </li>
3477    </ul>
3478  </li>
3479  <li>GlobalValue : This represents either a global variable or a function. In
3480  either case, the value is a constant fixed address (after linking).
3481  </li>
3482</ul>
3483</div>
3484
3485</div>
3486
3487<!-- ======================================================================= -->
3488<h3>
3489  <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3490</h3>
3491
3492<div>
3493
3494<p><tt>#include "<a
3495href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3496doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3497Class</a><br>
3498Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3499<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3500
3501<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3502href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3503visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3504Because they are visible at global scope, they are also subject to linking with
3505other globals defined in different translation units.  To control the linking
3506process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3507<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3508defined by the <tt>LinkageTypes</tt> enumeration.</p>
3509
3510<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3511<tt>static</tt> in C), it is not visible to code outside the current translation
3512unit, and does not participate in linking.  If it has external linkage, it is
3513visible to external code, and does participate in linking.  In addition to
3514linkage information, <tt>GlobalValue</tt>s keep track of which <a
3515href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3516
3517<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3518by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3519global is always a pointer to its contents. It is important to remember this
3520when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3521be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3522subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3523i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3524the address of the first element of this array and the value of the
3525<tt>GlobalVariable</tt> are the same, they have different types. The
3526<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3527is <tt>i32.</tt> Because of this, accessing a global value requires you to
3528dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3529can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3530Language Reference Manual</a>.</p>
3531
3532<!-- _______________________________________________________________________ -->
3533<h4>
3534  <a name="m_GlobalValue">
3535    Important Public Members of the <tt>GlobalValue</tt> class
3536  </a>
3537</h4>
3538
3539<div>
3540
3541<ul>
3542  <li><tt>bool hasInternalLinkage() const</tt><br>
3543    <tt>bool hasExternalLinkage() const</tt><br>
3544    <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3545    <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3546    <p> </p>
3547  </li>
3548  <li><tt><a href="#Module">Module</a> *getParent()</tt>
3549    <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3550GlobalValue is currently embedded into.</p></li>
3551</ul>
3552
3553</div>
3554
3555</div>
3556
3557<!-- ======================================================================= -->
3558<h3>
3559  <a name="Function">The <tt>Function</tt> class</a>
3560</h3>
3561
3562<div>
3563
3564<p><tt>#include "<a
3565href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3566info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3567Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3568<a href="#Constant"><tt>Constant</tt></a>,
3569<a href="#User"><tt>User</tt></a>,
3570<a href="#Value"><tt>Value</tt></a></p>
3571
3572<p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
3573actually one of the more complex classes in the LLVM hierarchy because it must
3574keep track of a large amount of data.  The <tt>Function</tt> class keeps track
3575of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3576<a href="#Argument"><tt>Argument</tt></a>s, and a
3577<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3578
3579<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3580commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
3581ordering of the blocks in the function, which indicate how the code will be
3582laid out by the backend.  Additionally, the first <a
3583href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3584<tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
3585block.  There are no implicit exit nodes, and in fact there may be multiple exit
3586nodes from a single <tt>Function</tt>.  If the <a
3587href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3588the <tt>Function</tt> is actually a function declaration: the actual body of the
3589function hasn't been linked in yet.</p>
3590
3591<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3592<tt>Function</tt> class also keeps track of the list of formal <a
3593href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
3594container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3595nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3596the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3597
3598<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3599LLVM feature that is only used when you have to look up a value by name.  Aside
3600from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3601internally to make sure that there are not conflicts between the names of <a
3602href="#Instruction"><tt>Instruction</tt></a>s, <a
3603href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3604href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3605
3606<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3607and therefore also a <a href="#Constant">Constant</a>. The value of the function
3608is its address (after linking) which is guaranteed to be constant.</p>
3609
3610<!-- _______________________________________________________________________ -->
3611<h4>
3612  <a name="m_Function">
3613    Important Public Members of the <tt>Function</tt> class
3614  </a>
3615</h4>
3616
3617<div>
3618
3619<ul>
3620  <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3621  *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3622
3623    <p>Constructor used when you need to create new <tt>Function</tt>s to add
3624    the the program.  The constructor must specify the type of the function to
3625    create and what type of linkage the function should have. The <a
3626    href="#FunctionType"><tt>FunctionType</tt></a> argument
3627    specifies the formal arguments and return value for the function. The same
3628    <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3629    create multiple functions. The <tt>Parent</tt> argument specifies the Module
3630    in which the function is defined. If this argument is provided, the function
3631    will automatically be inserted into that module's list of
3632    functions.</p></li>
3633
3634  <li><tt>bool isDeclaration()</tt>
3635
3636    <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
3637    function is "external", it does not have a body, and thus must be resolved
3638    by linking with a function defined in a different translation unit.</p></li>
3639
3640  <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3641    <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3642
3643    <tt>begin()</tt>, <tt>end()</tt>
3644    <tt>size()</tt>, <tt>empty()</tt>
3645
3646    <p>These are forwarding methods that make it easy to access the contents of
3647    a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3648    list.</p></li>
3649
3650  <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3651
3652    <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
3653    is necessary to use when you need to update the list or perform a complex
3654    action that doesn't have a forwarding method.</p></li>
3655
3656  <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3657iterator<br>
3658    <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3659
3660    <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3661    <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3662
3663    <p>These are forwarding methods that make it easy to access the contents of
3664    a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3665    list.</p></li>
3666
3667  <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3668
3669    <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
3670    necessary to use when you need to update the list or perform a complex
3671    action that doesn't have a forwarding method.</p></li>
3672
3673  <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3674
3675    <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3676    function.  Because the entry block for the function is always the first
3677    block, this returns the first block of the <tt>Function</tt>.</p></li>
3678
3679  <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3680    <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3681
3682    <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3683    <tt>Function</tt> and returns the return type of the function, or the <a
3684    href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3685    function.</p></li>
3686
3687  <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3688
3689    <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3690    for this <tt>Function</tt>.</p></li>
3691</ul>
3692
3693</div>
3694
3695</div>
3696
3697<!-- ======================================================================= -->
3698<h3>
3699  <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3700</h3>
3701
3702<div>
3703
3704<p><tt>#include "<a
3705href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3706<br>
3707doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3708 Class</a><br>
3709Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3710<a href="#Constant"><tt>Constant</tt></a>,
3711<a href="#User"><tt>User</tt></a>,
3712<a href="#Value"><tt>Value</tt></a></p>
3713
3714<p>Global variables are represented with the (surprise surprise)
3715<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3716subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3717always referenced by their address (global values must live in memory, so their
3718"name" refers to their constant address). See
3719<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global
3720variables may have an initial value (which must be a
3721<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3722they may be marked as "constant" themselves (indicating that their contents
3723never change at runtime).</p>
3724
3725<!-- _______________________________________________________________________ -->
3726<h4>
3727  <a name="m_GlobalVariable">
3728    Important Public Members of the <tt>GlobalVariable</tt> class
3729  </a>
3730</h4>
3731
3732<div>
3733
3734<ul>
3735  <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3736  isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3737  *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3738
3739    <p>Create a new global variable of the specified type. If
3740    <tt>isConstant</tt> is true then the global variable will be marked as
3741    unchanging for the program. The Linkage parameter specifies the type of
3742    linkage (internal, external, weak, linkonce, appending) for the variable.
3743    If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3744    LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3745    global variable will have internal linkage.  AppendingLinkage concatenates
3746    together all instances (in different translation units) of the variable
3747    into a single variable but is only applicable to arrays.  &nbsp;See
3748    the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3749    further details on linkage types. Optionally an initializer, a name, and the
3750    module to put the variable into may be specified for the global variable as
3751    well.</p></li>
3752
3753  <li><tt>bool isConstant() const</tt>
3754
3755    <p>Returns true if this is a global variable that is known not to
3756    be modified at runtime.</p></li>
3757
3758  <li><tt>bool hasInitializer()</tt>
3759
3760    <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3761
3762  <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3763
3764    <p>Returns the initial value for a <tt>GlobalVariable</tt>.  It is not legal
3765    to call this method if there is no initializer.</p></li>
3766</ul>
3767
3768</div>
3769
3770</div>
3771
3772<!-- ======================================================================= -->
3773<h3>
3774  <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3775</h3>
3776
3777<div>
3778
3779<p><tt>#include "<a
3780href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3781doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
3782Class</a><br>
3783Superclass: <a href="#Value"><tt>Value</tt></a></p>
3784
3785<p>This class represents a single entry single exit section of the code,
3786commonly known as a basic block by the compiler community.  The
3787<tt>BasicBlock</tt> class maintains a list of <a
3788href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3789Matching the language definition, the last element of this list of instructions
3790is always a terminator instruction (a subclass of the <a
3791href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3792
3793<p>In addition to tracking the list of instructions that make up the block, the
3794<tt>BasicBlock</tt> class also keeps track of the <a
3795href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3796
3797<p>Note that <tt>BasicBlock</tt>s themselves are <a
3798href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3799like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3800<tt>label</tt>.</p>
3801
3802<!-- _______________________________________________________________________ -->
3803<h4>
3804  <a name="m_BasicBlock">
3805    Important Public Members of the <tt>BasicBlock</tt> class
3806  </a>
3807</h4>
3808
3809<div>
3810<ul>
3811
3812<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3813 href="#Function">Function</a> *Parent = 0)</tt>
3814
3815<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3816insertion into a function.  The constructor optionally takes a name for the new
3817block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
3818the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3819automatically inserted at the end of the specified <a
3820href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3821manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3822
3823<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3824<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3825<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3826<tt>size()</tt>, <tt>empty()</tt>
3827STL-style functions for accessing the instruction list.
3828
3829<p>These methods and typedefs are forwarding functions that have the same
3830semantics as the standard library methods of the same names.  These methods
3831expose the underlying instruction list of a basic block in a way that is easy to
3832manipulate.  To get the full complement of container operations (including
3833operations to update the list), you must use the <tt>getInstList()</tt>
3834method.</p></li>
3835
3836<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3837
3838<p>This method is used to get access to the underlying container that actually
3839holds the Instructions.  This method must be used when there isn't a forwarding
3840function in the <tt>BasicBlock</tt> class for the operation that you would like
3841to perform.  Because there are no forwarding functions for "updating"
3842operations, you need to use this if you want to update the contents of a
3843<tt>BasicBlock</tt>.</p></li>
3844
3845<li><tt><a href="#Function">Function</a> *getParent()</tt>
3846
3847<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3848embedded into, or a null pointer if it is homeless.</p></li>
3849
3850<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3851
3852<p> Returns a pointer to the terminator instruction that appears at the end of
3853the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
3854instruction in the block is not a terminator, then a null pointer is
3855returned.</p></li>
3856
3857</ul>
3858
3859</div>
3860
3861</div>
3862
3863<!-- ======================================================================= -->
3864<h3>
3865  <a name="Argument">The <tt>Argument</tt> class</a>
3866</h3>
3867
3868<div>
3869
3870<p>This subclass of Value defines the interface for incoming formal
3871arguments to a function. A Function maintains a list of its formal
3872arguments. An argument has a pointer to the parent Function.</p>
3873
3874</div>
3875
3876</div>
3877
3878<!-- *********************************************************************** -->
3879<hr>
3880<address>
3881  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
3882  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
3883  <a href="http://validator.w3.org/check/referer"><img
3884  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
3885
3886  <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3887  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3888  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
3889  Last modified: $Date$
3890</address>
3891
3892</body>
3893</html>
3894