• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6  <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
7  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8  <meta name="author" content="Chris Lattner">
9  <link rel="stylesheet" href="../llvm.css" type="text/css">
10</head>
11
12<body>
13
14<h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
15
16<ul>
17<li><a href="index.html">Up to Tutorial Index</a></li>
18<li>Chapter 4
19  <ol>
20    <li><a href="#intro">Chapter 4 Introduction</a></li>
21    <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
22    <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
23    <li><a href="#jit">Adding a JIT Compiler</a></li>
24    <li><a href="#code">Full Code Listing</a></li>
25  </ol>
26</li>
27<li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control
28Flow</li>
29</ul>
30
31<div class="doc_author">
32  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
33</div>
34
35<!-- *********************************************************************** -->
36<h2><a name="intro">Chapter 4 Introduction</a></h2>
37<!-- *********************************************************************** -->
38
39<div>
40
41<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
42with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
43language and added support for generating LLVM IR.  This chapter describes
44two new techniques: adding optimizer support to your language, and adding JIT
45compiler support.  These additions will demonstrate how to get nice, efficient code
46for the Kaleidoscope language.</p>
47
48</div>
49
50<!-- *********************************************************************** -->
51<h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
52<!-- *********************************************************************** -->
53
54<div>
55
56<p>
57Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
58it does not produce wonderful code.  The IRBuilder, however, does give us
59obvious optimizations when compiling simple code:</p>
60
61<div class="doc_code">
62<pre>
63ready&gt; <b>def test(x) 1+2+x;</b>
64Read function definition:
65define double @test(double %x) {
66entry:
67        %addtmp = fadd double 3.000000e+00, %x
68        ret double %addtmp
69}
70</pre>
71</div>
72
73<p>This code is not a literal transcription of the AST built by parsing the
74input. That would be:
75
76<div class="doc_code">
77<pre>
78ready&gt; <b>def test(x) 1+2+x;</b>
79Read function definition:
80define double @test(double %x) {
81entry:
82        %addtmp = fadd double 2.000000e+00, 1.000000e+00
83        %addtmp1 = fadd double %addtmp, %x
84        ret double %addtmp1
85}
86</pre>
87</div>
88
89<p>Constant folding, as seen above, in particular, is a very common and very
90important optimization: so much so that many language implementors implement
91constant folding support in their AST representation.</p>
92
93<p>With LLVM, you don't need this support in the AST.  Since all calls to build
94LLVM IR go through the LLVM IR builder, the builder itself checked to see if
95there was a constant folding opportunity when you call it.  If so, it just does
96the constant fold and return the constant instead of creating an instruction.
97
98<p>Well, that was easy :).  In practice, we recommend always using
99<tt>IRBuilder</tt> when generating code like this.  It has no
100"syntactic overhead" for its use (you don't have to uglify your compiler with
101constant checks everywhere) and it can dramatically reduce the amount of
102LLVM IR that is generated in some cases (particular for languages with a macro
103preprocessor or that use a lot of constants).</p>
104
105<p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
106that it does all of its analysis inline with the code as it is built.  If you
107take a slightly more complex example:</p>
108
109<div class="doc_code">
110<pre>
111ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
112ready> Read function definition:
113define double @test(double %x) {
114entry:
115        %addtmp = fadd double 3.000000e+00, %x
116        %addtmp1 = fadd double %x, 3.000000e+00
117        %multmp = fmul double %addtmp, %addtmp1
118        ret double %multmp
119}
120</pre>
121</div>
122
123<p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
124really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
125of computing "<tt>x+3</tt>" twice.</p>
126
127<p>Unfortunately, no amount of local analysis will be able to detect and correct
128this.  This requires two transformations: reassociation of expressions (to
129make the add's lexically identical) and Common Subexpression Elimination (CSE)
130to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
131range of optimizations that you can use, in the form of "passes".</p>
132
133</div>
134
135<!-- *********************************************************************** -->
136<h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
137<!-- *********************************************************************** -->
138
139<div>
140
141<p>LLVM provides many optimization passes, which do many different sorts of
142things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
143to the mistaken notion that one set of optimizations is right for all languages
144and for all situations.  LLVM allows a compiler implementor to make complete
145decisions about what optimizations to use, in which order, and in what
146situation.</p>
147
148<p>As a concrete example, LLVM supports both "whole module" passes, which look
149across as large of body of code as they can (often a whole file, but if run
150at link time, this can be a substantial portion of the whole program).  It also
151supports and includes "per-function" passes which just operate on a single
152function at a time, without looking at other functions.  For more information
153on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
154to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
155Passes</a>.</p>
156
157<p>For Kaleidoscope, we are currently generating functions on the fly, one at
158a time, as the user types them in.  We aren't shooting for the ultimate
159optimization experience in this setting, but we also want to catch the easy and
160quick stuff where possible.  As such, we will choose to run a few per-function
161optimizations as the user types the function in.  If we wanted to make a "static
162Kaleidoscope compiler", we would use exactly the code we have now, except that
163we would defer running the optimizer until the entire file has been parsed.</p>
164
165<p>In order to get per-function optimizations going, we need to set up a
166<a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
167organize the LLVM optimizations that we want to run.  Once we have that, we can
168add a set of optimizations to run.  The code looks like this:</p>
169
170<div class="doc_code">
171<pre>
172  FunctionPassManager OurFPM(TheModule);
173
174  // Set up the optimizer pipeline.  Start with registering info about how the
175  // target lays out data structures.
176  OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
177  // Provide basic AliasAnalysis support for GVN.
178  OurFPM.add(createBasicAliasAnalysisPass());
179  // Do simple "peephole" optimizations and bit-twiddling optzns.
180  OurFPM.add(createInstructionCombiningPass());
181  // Reassociate expressions.
182  OurFPM.add(createReassociatePass());
183  // Eliminate Common SubExpressions.
184  OurFPM.add(createGVNPass());
185  // Simplify the control flow graph (deleting unreachable blocks, etc).
186  OurFPM.add(createCFGSimplificationPass());
187
188  OurFPM.doInitialization();
189
190  // Set the global so the code gen can use this.
191  TheFPM = &amp;OurFPM;
192
193  // Run the main "interpreter loop" now.
194  MainLoop();
195</pre>
196</div>
197
198<p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>".  It
199requires a pointer to the <tt>Module</tt> to construct itself.  Once it is set
200up, we use a series of "add" calls to add a bunch of LLVM passes.  The first
201pass is basically boilerplate, it adds a pass so that later optimizations know
202how the data structures in the program are laid out.  The
203"<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get
204to in the next section.</p>
205
206<p>In this case, we choose to add 4 optimization passes.  The passes we chose
207here are a pretty standard set of "cleanup" optimizations that are useful for
208a wide variety of code.  I won't delve into what they do but, believe me,
209they are a good starting place :).</p>
210
211<p>Once the PassManager is set up, we need to make use of it.  We do this by
212running it after our newly created function is constructed (in
213<tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
214
215<div class="doc_code">
216<pre>
217  if (Value *RetVal = Body->Codegen()) {
218    // Finish off the function.
219    Builder.CreateRet(RetVal);
220
221    // Validate the generated code, checking for consistency.
222    verifyFunction(*TheFunction);
223
224    <b>// Optimize the function.
225    TheFPM-&gt;run(*TheFunction);</b>
226
227    return TheFunction;
228  }
229</pre>
230</div>
231
232<p>As you can see, this is pretty straightforward.  The
233<tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
234improving (hopefully) its body.  With this in place, we can try our test above
235again:</p>
236
237<div class="doc_code">
238<pre>
239ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
240ready> Read function definition:
241define double @test(double %x) {
242entry:
243        %addtmp = fadd double %x, 3.000000e+00
244        %multmp = fmul double %addtmp, %addtmp
245        ret double %multmp
246}
247</pre>
248</div>
249
250<p>As expected, we now get our nicely optimized code, saving a floating point
251add instruction from every execution of this function.</p>
252
253<p>LLVM provides a wide variety of optimizations that can be used in certain
254circumstances.  Some <a href="../Passes.html">documentation about the various
255passes</a> is available, but it isn't very complete.  Another good source of
256ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
257<tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to
258experiment with passes from the command line, so you can see if they do
259anything.</p>
260
261<p>Now that we have reasonable code coming out of our front-end, lets talk about
262executing it!</p>
263
264</div>
265
266<!-- *********************************************************************** -->
267<h2><a name="jit">Adding a JIT Compiler</a></h2>
268<!-- *********************************************************************** -->
269
270<div>
271
272<p>Code that is available in LLVM IR can have a wide variety of tools
273applied to it.  For example, you can run optimizations on it (as we did above),
274you can dump it out in textual or binary forms, you can compile the code to an
275assembly file (.s) for some target, or you can JIT compile it.  The nice thing
276about the LLVM IR representation is that it is the "common currency" between
277many different parts of the compiler.
278</p>
279
280<p>In this section, we'll add JIT compiler support to our interpreter.  The
281basic idea that we want for Kaleidoscope is to have the user enter function
282bodies as they do now, but immediately evaluate the top-level expressions they
283type in.  For example, if they type in "1 + 2;", we should evaluate and print
284out 3.  If they define a function, they should be able to call it from the
285command line.</p>
286
287<p>In order to do this, we first declare and initialize the JIT.  This is done
288by adding a global variable and a call in <tt>main</tt>:</p>
289
290<div class="doc_code">
291<pre>
292<b>static ExecutionEngine *TheExecutionEngine;</b>
293...
294int main() {
295  ..
296  <b>// Create the JIT.  This takes ownership of the module.
297  TheExecutionEngine = EngineBuilder(TheModule).create();</b>
298  ..
299}
300</pre>
301</div>
302
303<p>This creates an abstract "Execution Engine" which can be either a JIT
304compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
305for you if one is available for your platform, otherwise it will fall back to
306the interpreter.</p>
307
308<p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
309There are a variety of APIs that are useful, but the simplest one is the
310"<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the
311specified LLVM Function and returns a function pointer to the generated machine
312code.  In our case, this means that we can change the code that parses a
313top-level expression to look like this:</p>
314
315<div class="doc_code">
316<pre>
317static void HandleTopLevelExpression() {
318  // Evaluate a top-level expression into an anonymous function.
319  if (FunctionAST *F = ParseTopLevelExpr()) {
320    if (Function *LF = F-&gt;Codegen()) {
321      LF->dump();  // Dump the function for exposition purposes.
322
323      <b>// JIT the function, returning a function pointer.
324      void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
325
326      // Cast it to the right type (takes no arguments, returns a double) so we
327      // can call it as a native function.
328      double (*FP)() = (double (*)())(intptr_t)FPtr;
329      fprintf(stderr, "Evaluated to %f\n", FP());</b>
330    }
331</pre>
332</div>
333
334<p>Recall that we compile top-level expressions into a self-contained LLVM
335function that takes no arguments and returns the computed double.  Because the
336LLVM JIT compiler matches the native platform ABI, this means that you can just
337cast the result pointer to a function pointer of that type and call it directly.
338This means, there is no difference between JIT compiled code and native machine
339code that is statically linked into your application.</p>
340
341<p>With just these two changes, lets see how Kaleidoscope works now!</p>
342
343<div class="doc_code">
344<pre>
345ready&gt; <b>4+5;</b>
346define double @""() {
347entry:
348        ret double 9.000000e+00
349}
350
351<em>Evaluated to 9.000000</em>
352</pre>
353</div>
354
355<p>Well this looks like it is basically working.  The dump of the function
356shows the "no argument function that always returns double" that we synthesize
357for each top-level expression that is typed in.  This demonstrates very basic
358functionality, but can we do more?</p>
359
360<div class="doc_code">
361<pre>
362ready&gt; <b>def testfunc(x y) x + y*2; </b>
363Read function definition:
364define double @testfunc(double %x, double %y) {
365entry:
366        %multmp = fmul double %y, 2.000000e+00
367        %addtmp = fadd double %multmp, %x
368        ret double %addtmp
369}
370
371ready&gt; <b>testfunc(4, 10);</b>
372define double @""() {
373entry:
374        %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
375        ret double %calltmp
376}
377
378<em>Evaluated to 24.000000</em>
379</pre>
380</div>
381
382<p>This illustrates that we can now call user code, but there is something a bit
383subtle going on here.  Note that we only invoke the JIT on the anonymous
384functions that <em>call testfunc</em>, but we never invoked it
385on <em>testfunc</em> itself.  What actually happened here is that the JIT
386scanned for all non-JIT'd functions transitively called from the anonymous
387function and compiled all of them before returning
388from <tt>getPointerToFunction()</tt>.</p>
389
390<p>The JIT provides a number of other more advanced interfaces for things like
391freeing allocated machine code, rejit'ing functions to update them, etc.
392However, even with this simple code, we get some surprisingly powerful
393capabilities - check this out (I removed the dump of the anonymous functions,
394you should get the idea by now :) :</p>
395
396<div class="doc_code">
397<pre>
398ready&gt; <b>extern sin(x);</b>
399Read extern:
400declare double @sin(double)
401
402ready&gt; <b>extern cos(x);</b>
403Read extern:
404declare double @cos(double)
405
406ready&gt; <b>sin(1.0);</b>
407<em>Evaluated to 0.841471</em>
408
409ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
410Read function definition:
411define double @foo(double %x) {
412entry:
413        %calltmp = call double @sin(double %x)
414        %multmp = fmul double %calltmp, %calltmp
415        %calltmp2 = call double @cos(double %x)
416        %multmp4 = fmul double %calltmp2, %calltmp2
417        %addtmp = fadd double %multmp, %multmp4
418        ret double %addtmp
419}
420
421ready&gt; <b>foo(4.0);</b>
422<em>Evaluated to 1.000000</em>
423</pre>
424</div>
425
426<p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
427simple: in this
428example, the JIT started execution of a function and got to a function call.  It
429realized that the function was not yet JIT compiled and invoked the standard set
430of routines to resolve the function.  In this case, there is no body defined
431for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
432Kaleidoscope process itself.
433Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
434patches up calls in the module to call the libm version of <tt>sin</tt>
435directly.</p>
436
437<p>The LLVM JIT provides a number of interfaces (look in the
438<tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
439resolved.  It allows you to establish explicit mappings between IR objects and
440addresses (useful for LLVM global variables that you want to map to static
441tables, for example), allows you to dynamically decide on the fly based on the
442function name, and even allows you to have the JIT compile functions lazily the
443first time they're called.</p>
444
445<p>One interesting application of this is that we can now extend the language
446by writing arbitrary C++ code to implement operations.  For example, if we add:
447</p>
448
449<div class="doc_code">
450<pre>
451/// putchard - putchar that takes a double and returns 0.
452extern "C"
453double putchard(double X) {
454  putchar((char)X);
455  return 0;
456}
457</pre>
458</div>
459
460<p>Now we can produce simple output to the console by using things like:
461"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
462the console (120 is the ASCII code for 'x').  Similar code could be used to
463implement file I/O, console input, and many other capabilities in
464Kaleidoscope.</p>
465
466<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
467this point, we can compile a non-Turing-complete programming language, optimize
468and JIT compile it in a user-driven way.  Next up we'll look into <a
469href="LangImpl5.html">extending the language with control flow constructs</a>,
470tackling some interesting LLVM IR issues along the way.</p>
471
472</div>
473
474<!-- *********************************************************************** -->
475<h2><a name="code">Full Code Listing</a></h2>
476<!-- *********************************************************************** -->
477
478<div>
479
480<p>
481Here is the complete code listing for our running example, enhanced with the
482LLVM JIT and optimizer.  To build this example, use:
483</p>
484
485<div class="doc_code">
486<pre>
487   # Compile
488   g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
489   # Run
490   ./toy
491</pre>
492</div>
493
494<p>
495If you are compiling this on Linux, make sure to add the "-rdynamic" option
496as well.  This makes sure that the external functions are resolved properly
497at runtime.</p>
498
499<p>Here is the code:</p>
500
501<div class="doc_code">
502<pre>
503#include "llvm/DerivedTypes.h"
504#include "llvm/ExecutionEngine/ExecutionEngine.h"
505#include "llvm/ExecutionEngine/JIT.h"
506#include "llvm/LLVMContext.h"
507#include "llvm/Module.h"
508#include "llvm/PassManager.h"
509#include "llvm/Analysis/Verifier.h"
510#include "llvm/Analysis/Passes.h"
511#include "llvm/Target/TargetData.h"
512#include "llvm/Target/TargetSelect.h"
513#include "llvm/Transforms/Scalar.h"
514#include "llvm/Support/IRBuilder.h"
515#include &lt;cstdio&gt;
516#include &lt;string&gt;
517#include &lt;map&gt;
518#include &lt;vector&gt;
519using namespace llvm;
520
521//===----------------------------------------------------------------------===//
522// Lexer
523//===----------------------------------------------------------------------===//
524
525// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
526// of these for known things.
527enum Token {
528  tok_eof = -1,
529
530  // commands
531  tok_def = -2, tok_extern = -3,
532
533  // primary
534  tok_identifier = -4, tok_number = -5
535};
536
537static std::string IdentifierStr;  // Filled in if tok_identifier
538static double NumVal;              // Filled in if tok_number
539
540/// gettok - Return the next token from standard input.
541static int gettok() {
542  static int LastChar = ' ';
543
544  // Skip any whitespace.
545  while (isspace(LastChar))
546    LastChar = getchar();
547
548  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
549    IdentifierStr = LastChar;
550    while (isalnum((LastChar = getchar())))
551      IdentifierStr += LastChar;
552
553    if (IdentifierStr == "def") return tok_def;
554    if (IdentifierStr == "extern") return tok_extern;
555    return tok_identifier;
556  }
557
558  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
559    std::string NumStr;
560    do {
561      NumStr += LastChar;
562      LastChar = getchar();
563    } while (isdigit(LastChar) || LastChar == '.');
564
565    NumVal = strtod(NumStr.c_str(), 0);
566    return tok_number;
567  }
568
569  if (LastChar == '#') {
570    // Comment until end of line.
571    do LastChar = getchar();
572    while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
573
574    if (LastChar != EOF)
575      return gettok();
576  }
577
578  // Check for end of file.  Don't eat the EOF.
579  if (LastChar == EOF)
580    return tok_eof;
581
582  // Otherwise, just return the character as its ascii value.
583  int ThisChar = LastChar;
584  LastChar = getchar();
585  return ThisChar;
586}
587
588//===----------------------------------------------------------------------===//
589// Abstract Syntax Tree (aka Parse Tree)
590//===----------------------------------------------------------------------===//
591
592/// ExprAST - Base class for all expression nodes.
593class ExprAST {
594public:
595  virtual ~ExprAST() {}
596  virtual Value *Codegen() = 0;
597};
598
599/// NumberExprAST - Expression class for numeric literals like "1.0".
600class NumberExprAST : public ExprAST {
601  double Val;
602public:
603  NumberExprAST(double val) : Val(val) {}
604  virtual Value *Codegen();
605};
606
607/// VariableExprAST - Expression class for referencing a variable, like "a".
608class VariableExprAST : public ExprAST {
609  std::string Name;
610public:
611  VariableExprAST(const std::string &amp;name) : Name(name) {}
612  virtual Value *Codegen();
613};
614
615/// BinaryExprAST - Expression class for a binary operator.
616class BinaryExprAST : public ExprAST {
617  char Op;
618  ExprAST *LHS, *RHS;
619public:
620  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
621    : Op(op), LHS(lhs), RHS(rhs) {}
622  virtual Value *Codegen();
623};
624
625/// CallExprAST - Expression class for function calls.
626class CallExprAST : public ExprAST {
627  std::string Callee;
628  std::vector&lt;ExprAST*&gt; Args;
629public:
630  CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
631    : Callee(callee), Args(args) {}
632  virtual Value *Codegen();
633};
634
635/// PrototypeAST - This class represents the "prototype" for a function,
636/// which captures its name, and its argument names (thus implicitly the number
637/// of arguments the function takes).
638class PrototypeAST {
639  std::string Name;
640  std::vector&lt;std::string&gt; Args;
641public:
642  PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
643    : Name(name), Args(args) {}
644
645  Function *Codegen();
646};
647
648/// FunctionAST - This class represents a function definition itself.
649class FunctionAST {
650  PrototypeAST *Proto;
651  ExprAST *Body;
652public:
653  FunctionAST(PrototypeAST *proto, ExprAST *body)
654    : Proto(proto), Body(body) {}
655
656  Function *Codegen();
657};
658
659//===----------------------------------------------------------------------===//
660// Parser
661//===----------------------------------------------------------------------===//
662
663/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
664/// token the parser is looking at.  getNextToken reads another token from the
665/// lexer and updates CurTok with its results.
666static int CurTok;
667static int getNextToken() {
668  return CurTok = gettok();
669}
670
671/// BinopPrecedence - This holds the precedence for each binary operator that is
672/// defined.
673static std::map&lt;char, int&gt; BinopPrecedence;
674
675/// GetTokPrecedence - Get the precedence of the pending binary operator token.
676static int GetTokPrecedence() {
677  if (!isascii(CurTok))
678    return -1;
679
680  // Make sure it's a declared binop.
681  int TokPrec = BinopPrecedence[CurTok];
682  if (TokPrec &lt;= 0) return -1;
683  return TokPrec;
684}
685
686/// Error* - These are little helper functions for error handling.
687ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
688PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
689FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
690
691static ExprAST *ParseExpression();
692
693/// identifierexpr
694///   ::= identifier
695///   ::= identifier '(' expression* ')'
696static ExprAST *ParseIdentifierExpr() {
697  std::string IdName = IdentifierStr;
698
699  getNextToken();  // eat identifier.
700
701  if (CurTok != '(') // Simple variable ref.
702    return new VariableExprAST(IdName);
703
704  // Call.
705  getNextToken();  // eat (
706  std::vector&lt;ExprAST*&gt; Args;
707  if (CurTok != ')') {
708    while (1) {
709      ExprAST *Arg = ParseExpression();
710      if (!Arg) return 0;
711      Args.push_back(Arg);
712
713      if (CurTok == ')') break;
714
715      if (CurTok != ',')
716        return Error("Expected ')' or ',' in argument list");
717      getNextToken();
718    }
719  }
720
721  // Eat the ')'.
722  getNextToken();
723
724  return new CallExprAST(IdName, Args);
725}
726
727/// numberexpr ::= number
728static ExprAST *ParseNumberExpr() {
729  ExprAST *Result = new NumberExprAST(NumVal);
730  getNextToken(); // consume the number
731  return Result;
732}
733
734/// parenexpr ::= '(' expression ')'
735static ExprAST *ParseParenExpr() {
736  getNextToken();  // eat (.
737  ExprAST *V = ParseExpression();
738  if (!V) return 0;
739
740  if (CurTok != ')')
741    return Error("expected ')'");
742  getNextToken();  // eat ).
743  return V;
744}
745
746/// primary
747///   ::= identifierexpr
748///   ::= numberexpr
749///   ::= parenexpr
750static ExprAST *ParsePrimary() {
751  switch (CurTok) {
752  default: return Error("unknown token when expecting an expression");
753  case tok_identifier: return ParseIdentifierExpr();
754  case tok_number:     return ParseNumberExpr();
755  case '(':            return ParseParenExpr();
756  }
757}
758
759/// binoprhs
760///   ::= ('+' primary)*
761static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
762  // If this is a binop, find its precedence.
763  while (1) {
764    int TokPrec = GetTokPrecedence();
765
766    // If this is a binop that binds at least as tightly as the current binop,
767    // consume it, otherwise we are done.
768    if (TokPrec &lt; ExprPrec)
769      return LHS;
770
771    // Okay, we know this is a binop.
772    int BinOp = CurTok;
773    getNextToken();  // eat binop
774
775    // Parse the primary expression after the binary operator.
776    ExprAST *RHS = ParsePrimary();
777    if (!RHS) return 0;
778
779    // If BinOp binds less tightly with RHS than the operator after RHS, let
780    // the pending operator take RHS as its LHS.
781    int NextPrec = GetTokPrecedence();
782    if (TokPrec &lt; NextPrec) {
783      RHS = ParseBinOpRHS(TokPrec+1, RHS);
784      if (RHS == 0) return 0;
785    }
786
787    // Merge LHS/RHS.
788    LHS = new BinaryExprAST(BinOp, LHS, RHS);
789  }
790}
791
792/// expression
793///   ::= primary binoprhs
794///
795static ExprAST *ParseExpression() {
796  ExprAST *LHS = ParsePrimary();
797  if (!LHS) return 0;
798
799  return ParseBinOpRHS(0, LHS);
800}
801
802/// prototype
803///   ::= id '(' id* ')'
804static PrototypeAST *ParsePrototype() {
805  if (CurTok != tok_identifier)
806    return ErrorP("Expected function name in prototype");
807
808  std::string FnName = IdentifierStr;
809  getNextToken();
810
811  if (CurTok != '(')
812    return ErrorP("Expected '(' in prototype");
813
814  std::vector&lt;std::string&gt; ArgNames;
815  while (getNextToken() == tok_identifier)
816    ArgNames.push_back(IdentifierStr);
817  if (CurTok != ')')
818    return ErrorP("Expected ')' in prototype");
819
820  // success.
821  getNextToken();  // eat ')'.
822
823  return new PrototypeAST(FnName, ArgNames);
824}
825
826/// definition ::= 'def' prototype expression
827static FunctionAST *ParseDefinition() {
828  getNextToken();  // eat def.
829  PrototypeAST *Proto = ParsePrototype();
830  if (Proto == 0) return 0;
831
832  if (ExprAST *E = ParseExpression())
833    return new FunctionAST(Proto, E);
834  return 0;
835}
836
837/// toplevelexpr ::= expression
838static FunctionAST *ParseTopLevelExpr() {
839  if (ExprAST *E = ParseExpression()) {
840    // Make an anonymous proto.
841    PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
842    return new FunctionAST(Proto, E);
843  }
844  return 0;
845}
846
847/// external ::= 'extern' prototype
848static PrototypeAST *ParseExtern() {
849  getNextToken();  // eat extern.
850  return ParsePrototype();
851}
852
853//===----------------------------------------------------------------------===//
854// Code Generation
855//===----------------------------------------------------------------------===//
856
857static Module *TheModule;
858static IRBuilder&lt;&gt; Builder(getGlobalContext());
859static std::map&lt;std::string, Value*&gt; NamedValues;
860static FunctionPassManager *TheFPM;
861
862Value *ErrorV(const char *Str) { Error(Str); return 0; }
863
864Value *NumberExprAST::Codegen() {
865  return ConstantFP::get(getGlobalContext(), APFloat(Val));
866}
867
868Value *VariableExprAST::Codegen() {
869  // Look this variable up in the function.
870  Value *V = NamedValues[Name];
871  return V ? V : ErrorV("Unknown variable name");
872}
873
874Value *BinaryExprAST::Codegen() {
875  Value *L = LHS-&gt;Codegen();
876  Value *R = RHS-&gt;Codegen();
877  if (L == 0 || R == 0) return 0;
878
879  switch (Op) {
880  case '+': return Builder.CreateFAdd(L, R, "addtmp");
881  case '-': return Builder.CreateFSub(L, R, "subtmp");
882  case '*': return Builder.CreateFMul(L, R, "multmp");
883  case '&lt;':
884    L = Builder.CreateFCmpULT(L, R, "cmptmp");
885    // Convert bool 0/1 to double 0.0 or 1.0
886    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
887                                "booltmp");
888  default: return ErrorV("invalid binary operator");
889  }
890}
891
892Value *CallExprAST::Codegen() {
893  // Look up the name in the global module table.
894  Function *CalleeF = TheModule-&gt;getFunction(Callee);
895  if (CalleeF == 0)
896    return ErrorV("Unknown function referenced");
897
898  // If argument mismatch error.
899  if (CalleeF-&gt;arg_size() != Args.size())
900    return ErrorV("Incorrect # arguments passed");
901
902  std::vector&lt;Value*&gt; ArgsV;
903  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
904    ArgsV.push_back(Args[i]-&gt;Codegen());
905    if (ArgsV.back() == 0) return 0;
906  }
907
908  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
909}
910
911Function *PrototypeAST::Codegen() {
912  // Make the function type:  double(double,double) etc.
913  std::vector&lt;const Type*&gt; Doubles(Args.size(),
914                                   Type::getDoubleTy(getGlobalContext()));
915  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
916                                       Doubles, false);
917
918  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
919
920  // If F conflicted, there was already something named 'Name'.  If it has a
921  // body, don't allow redefinition or reextern.
922  if (F-&gt;getName() != Name) {
923    // Delete the one we just made and get the existing one.
924    F-&gt;eraseFromParent();
925    F = TheModule-&gt;getFunction(Name);
926
927    // If F already has a body, reject this.
928    if (!F-&gt;empty()) {
929      ErrorF("redefinition of function");
930      return 0;
931    }
932
933    // If F took a different number of args, reject.
934    if (F-&gt;arg_size() != Args.size()) {
935      ErrorF("redefinition of function with different # args");
936      return 0;
937    }
938  }
939
940  // Set names for all arguments.
941  unsigned Idx = 0;
942  for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
943       ++AI, ++Idx) {
944    AI-&gt;setName(Args[Idx]);
945
946    // Add arguments to variable symbol table.
947    NamedValues[Args[Idx]] = AI;
948  }
949
950  return F;
951}
952
953Function *FunctionAST::Codegen() {
954  NamedValues.clear();
955
956  Function *TheFunction = Proto-&gt;Codegen();
957  if (TheFunction == 0)
958    return 0;
959
960  // Create a new basic block to start insertion into.
961  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
962  Builder.SetInsertPoint(BB);
963
964  if (Value *RetVal = Body-&gt;Codegen()) {
965    // Finish off the function.
966    Builder.CreateRet(RetVal);
967
968    // Validate the generated code, checking for consistency.
969    verifyFunction(*TheFunction);
970
971    // Optimize the function.
972    TheFPM-&gt;run(*TheFunction);
973
974    return TheFunction;
975  }
976
977  // Error reading body, remove function.
978  TheFunction-&gt;eraseFromParent();
979  return 0;
980}
981
982//===----------------------------------------------------------------------===//
983// Top-Level parsing and JIT Driver
984//===----------------------------------------------------------------------===//
985
986static ExecutionEngine *TheExecutionEngine;
987
988static void HandleDefinition() {
989  if (FunctionAST *F = ParseDefinition()) {
990    if (Function *LF = F-&gt;Codegen()) {
991      fprintf(stderr, "Read function definition:");
992      LF-&gt;dump();
993    }
994  } else {
995    // Skip token for error recovery.
996    getNextToken();
997  }
998}
999
1000static void HandleExtern() {
1001  if (PrototypeAST *P = ParseExtern()) {
1002    if (Function *F = P-&gt;Codegen()) {
1003      fprintf(stderr, "Read extern: ");
1004      F-&gt;dump();
1005    }
1006  } else {
1007    // Skip token for error recovery.
1008    getNextToken();
1009  }
1010}
1011
1012static void HandleTopLevelExpression() {
1013  // Evaluate a top-level expression into an anonymous function.
1014  if (FunctionAST *F = ParseTopLevelExpr()) {
1015    if (Function *LF = F-&gt;Codegen()) {
1016      // JIT the function, returning a function pointer.
1017      void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
1018
1019      // Cast it to the right type (takes no arguments, returns a double) so we
1020      // can call it as a native function.
1021      double (*FP)() = (double (*)())(intptr_t)FPtr;
1022      fprintf(stderr, "Evaluated to %f\n", FP());
1023    }
1024  } else {
1025    // Skip token for error recovery.
1026    getNextToken();
1027  }
1028}
1029
1030/// top ::= definition | external | expression | ';'
1031static void MainLoop() {
1032  while (1) {
1033    fprintf(stderr, "ready&gt; ");
1034    switch (CurTok) {
1035    case tok_eof:    return;
1036    case ';':        getNextToken(); break;  // ignore top-level semicolons.
1037    case tok_def:    HandleDefinition(); break;
1038    case tok_extern: HandleExtern(); break;
1039    default:         HandleTopLevelExpression(); break;
1040    }
1041  }
1042}
1043
1044//===----------------------------------------------------------------------===//
1045// "Library" functions that can be "extern'd" from user code.
1046//===----------------------------------------------------------------------===//
1047
1048/// putchard - putchar that takes a double and returns 0.
1049extern "C"
1050double putchard(double X) {
1051  putchar((char)X);
1052  return 0;
1053}
1054
1055//===----------------------------------------------------------------------===//
1056// Main driver code.
1057//===----------------------------------------------------------------------===//
1058
1059int main() {
1060  InitializeNativeTarget();
1061  LLVMContext &amp;Context = getGlobalContext();
1062
1063  // Install standard binary operators.
1064  // 1 is lowest precedence.
1065  BinopPrecedence['&lt;'] = 10;
1066  BinopPrecedence['+'] = 20;
1067  BinopPrecedence['-'] = 20;
1068  BinopPrecedence['*'] = 40;  // highest.
1069
1070  // Prime the first token.
1071  fprintf(stderr, "ready&gt; ");
1072  getNextToken();
1073
1074  // Make the module, which holds all the code.
1075  TheModule = new Module("my cool jit", Context);
1076
1077  // Create the JIT.  This takes ownership of the module.
1078  std::string ErrStr;
1079TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
1080  if (!TheExecutionEngine) {
1081    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1082    exit(1);
1083  }
1084
1085  FunctionPassManager OurFPM(TheModule);
1086
1087  // Set up the optimizer pipeline.  Start with registering info about how the
1088  // target lays out data structures.
1089  OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
1090  // Provide basic AliasAnalysis support for GVN.
1091  OurFPM.add(createBasicAliasAnalysisPass());
1092  // Do simple "peephole" optimizations and bit-twiddling optzns.
1093  OurFPM.add(createInstructionCombiningPass());
1094  // Reassociate expressions.
1095  OurFPM.add(createReassociatePass());
1096  // Eliminate Common SubExpressions.
1097  OurFPM.add(createGVNPass());
1098  // Simplify the control flow graph (deleting unreachable blocks, etc).
1099  OurFPM.add(createCFGSimplificationPass());
1100
1101  OurFPM.doInitialization();
1102
1103  // Set the global so the code gen can use this.
1104  TheFPM = &amp;OurFPM;
1105
1106  // Run the main "interpreter loop" now.
1107  MainLoop();
1108
1109  TheFPM = 0;
1110
1111  // Print out all of the generated code.
1112  TheModule-&gt;dump();
1113
1114  return 0;
1115}
1116</pre>
1117</div>
1118
1119<a href="LangImpl5.html">Next: Extending the language: control flow</a>
1120</div>
1121
1122<!-- *********************************************************************** -->
1123<hr>
1124<address>
1125  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1126  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1127  <a href="http://validator.w3.org/check/referer"><img
1128  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1129
1130  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1131  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1132  Last modified: $Date$
1133</address>
1134</body>
1135</html>
1136