• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "regalloc"
16 #include "AllocationOrder.h"
17 #include "InterferenceCache.h"
18 #include "LiveDebugVariables.h"
19 #include "LiveRangeEdit.h"
20 #include "RegAllocBase.h"
21 #include "Spiller.h"
22 #include "SpillPlacement.h"
23 #include "SplitKit.h"
24 #include "VirtRegMap.h"
25 #include "RegisterCoalescer.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Function.h"
29 #include "llvm/PassAnalysisSupport.h"
30 #include "llvm/CodeGen/CalcSpillWeights.h"
31 #include "llvm/CodeGen/EdgeBundles.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/RegAllocRegistry.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Support/Timer.h"
45 
46 #include <queue>
47 
48 using namespace llvm;
49 
50 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52 STATISTIC(NumEvicted,      "Number of interferences evicted");
53 
54 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
55                                        createGreedyRegisterAllocator);
56 
57 namespace {
58 class RAGreedy : public MachineFunctionPass,
59                  public RegAllocBase,
60                  private LiveRangeEdit::Delegate {
61 
62   // context
63   MachineFunction *MF;
64 
65   // analyses
66   SlotIndexes *Indexes;
67   LiveStacks *LS;
68   MachineDominatorTree *DomTree;
69   MachineLoopInfo *Loops;
70   EdgeBundles *Bundles;
71   SpillPlacement *SpillPlacer;
72   LiveDebugVariables *DebugVars;
73 
74   // state
75   std::auto_ptr<Spiller> SpillerInstance;
76   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
77   unsigned NextCascade;
78 
79   // Live ranges pass through a number of stages as we try to allocate them.
80   // Some of the stages may also create new live ranges:
81   //
82   // - Region splitting.
83   // - Per-block splitting.
84   // - Local splitting.
85   // - Spilling.
86   //
87   // Ranges produced by one of the stages skip the previous stages when they are
88   // dequeued. This improves performance because we can skip interference checks
89   // that are unlikely to give any results. It also guarantees that the live
90   // range splitting algorithm terminates, something that is otherwise hard to
91   // ensure.
92   enum LiveRangeStage {
93     RS_New,      ///< Never seen before.
94     RS_First,    ///< First time in the queue.
95     RS_Second,   ///< Second time in the queue.
96     RS_Global,   ///< Produced by global splitting.
97     RS_Local,    ///< Produced by local splitting.
98     RS_Spill     ///< Produced by spilling.
99   };
100 
101   static const char *const StageName[];
102 
103   // RegInfo - Keep additional information about each live range.
104   struct RegInfo {
105     LiveRangeStage Stage;
106 
107     // Cascade - Eviction loop prevention. See canEvictInterference().
108     unsigned Cascade;
109 
RegInfo__anon1dbc7a820111::RAGreedy::RegInfo110     RegInfo() : Stage(RS_New), Cascade(0) {}
111   };
112 
113   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
114 
getStage(const LiveInterval & VirtReg) const115   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
116     return ExtraRegInfo[VirtReg.reg].Stage;
117   }
118 
setStage(const LiveInterval & VirtReg,LiveRangeStage Stage)119   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
120     ExtraRegInfo.resize(MRI->getNumVirtRegs());
121     ExtraRegInfo[VirtReg.reg].Stage = Stage;
122   }
123 
124   template<typename Iterator>
setStage(Iterator Begin,Iterator End,LiveRangeStage NewStage)125   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
126     ExtraRegInfo.resize(MRI->getNumVirtRegs());
127     for (;Begin != End; ++Begin) {
128       unsigned Reg = (*Begin)->reg;
129       if (ExtraRegInfo[Reg].Stage == RS_New)
130         ExtraRegInfo[Reg].Stage = NewStage;
131     }
132   }
133 
134   /// Cost of evicting interference.
135   struct EvictionCost {
136     unsigned BrokenHints; ///< Total number of broken hints.
137     float MaxWeight;      ///< Maximum spill weight evicted.
138 
EvictionCost__anon1dbc7a820111::RAGreedy::EvictionCost139     EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
140 
operator <__anon1dbc7a820111::RAGreedy::EvictionCost141     bool operator<(const EvictionCost &O) const {
142       if (BrokenHints != O.BrokenHints)
143         return BrokenHints < O.BrokenHints;
144       return MaxWeight < O.MaxWeight;
145     }
146   };
147 
148   // splitting state.
149   std::auto_ptr<SplitAnalysis> SA;
150   std::auto_ptr<SplitEditor> SE;
151 
152   /// Cached per-block interference maps
153   InterferenceCache IntfCache;
154 
155   /// All basic blocks where the current register has uses.
156   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
157 
158   /// Global live range splitting candidate info.
159   struct GlobalSplitCandidate {
160     unsigned PhysReg;
161     InterferenceCache::Cursor Intf;
162     BitVector LiveBundles;
163     SmallVector<unsigned, 8> ActiveBlocks;
164 
reset__anon1dbc7a820111::RAGreedy::GlobalSplitCandidate165     void reset(InterferenceCache &Cache, unsigned Reg) {
166       PhysReg = Reg;
167       Intf.setPhysReg(Cache, Reg);
168       LiveBundles.clear();
169       ActiveBlocks.clear();
170     }
171   };
172 
173   /// Candidate info for for each PhysReg in AllocationOrder.
174   /// This vector never shrinks, but grows to the size of the largest register
175   /// class.
176   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
177 
178 public:
179   RAGreedy();
180 
181   /// Return the pass name.
getPassName() const182   virtual const char* getPassName() const {
183     return "Greedy Register Allocator";
184   }
185 
186   /// RAGreedy analysis usage.
187   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
188   virtual void releaseMemory();
spiller()189   virtual Spiller &spiller() { return *SpillerInstance; }
190   virtual void enqueue(LiveInterval *LI);
191   virtual LiveInterval *dequeue();
192   virtual unsigned selectOrSplit(LiveInterval&,
193                                  SmallVectorImpl<LiveInterval*>&);
194 
195   /// Perform register allocation.
196   virtual bool runOnMachineFunction(MachineFunction &mf);
197 
198   static char ID;
199 
200 private:
201   void LRE_WillEraseInstruction(MachineInstr*);
202   bool LRE_CanEraseVirtReg(unsigned);
203   void LRE_WillShrinkVirtReg(unsigned);
204   void LRE_DidCloneVirtReg(unsigned, unsigned);
205 
206   float calcSpillCost();
207   bool addSplitConstraints(InterferenceCache::Cursor, float&);
208   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
209   void growRegion(GlobalSplitCandidate &Cand);
210   float calcGlobalSplitCost(GlobalSplitCandidate&);
211   void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
212                          SmallVectorImpl<LiveInterval*>&);
213   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
214   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
215   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
216   void evictInterference(LiveInterval&, unsigned,
217                          SmallVectorImpl<LiveInterval*>&);
218 
219   unsigned tryAssign(LiveInterval&, AllocationOrder&,
220                      SmallVectorImpl<LiveInterval*>&);
221   unsigned tryEvict(LiveInterval&, AllocationOrder&,
222                     SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
223   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
224                           SmallVectorImpl<LiveInterval*>&);
225   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
226     SmallVectorImpl<LiveInterval*>&);
227   unsigned trySplit(LiveInterval&, AllocationOrder&,
228                     SmallVectorImpl<LiveInterval*>&);
229 };
230 } // end anonymous namespace
231 
232 char RAGreedy::ID = 0;
233 
234 #ifndef NDEBUG
235 const char *const RAGreedy::StageName[] = {
236   "RS_New",
237   "RS_First",
238   "RS_Second",
239   "RS_Global",
240   "RS_Local",
241   "RS_Spill"
242 };
243 #endif
244 
245 // Hysteresis to use when comparing floats.
246 // This helps stabilize decisions based on float comparisons.
247 const float Hysteresis = 0.98f;
248 
249 
createGreedyRegisterAllocator()250 FunctionPass* llvm::createGreedyRegisterAllocator() {
251   return new RAGreedy();
252 }
253 
RAGreedy()254 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
255   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
256   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
257   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
258   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
259   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
260   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
261   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
262   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
263   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
264   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
265   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
266   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
267   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
268 }
269 
getAnalysisUsage(AnalysisUsage & AU) const270 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
271   AU.setPreservesCFG();
272   AU.addRequired<AliasAnalysis>();
273   AU.addPreserved<AliasAnalysis>();
274   AU.addRequired<LiveIntervals>();
275   AU.addRequired<SlotIndexes>();
276   AU.addPreserved<SlotIndexes>();
277   AU.addRequired<LiveDebugVariables>();
278   AU.addPreserved<LiveDebugVariables>();
279   if (StrongPHIElim)
280     AU.addRequiredID(StrongPHIEliminationID);
281   AU.addRequiredTransitive<RegisterCoalescer>();
282   AU.addRequired<CalculateSpillWeights>();
283   AU.addRequired<LiveStacks>();
284   AU.addPreserved<LiveStacks>();
285   AU.addRequired<MachineDominatorTree>();
286   AU.addPreserved<MachineDominatorTree>();
287   AU.addRequired<MachineLoopInfo>();
288   AU.addPreserved<MachineLoopInfo>();
289   AU.addRequired<VirtRegMap>();
290   AU.addPreserved<VirtRegMap>();
291   AU.addRequired<EdgeBundles>();
292   AU.addRequired<SpillPlacement>();
293   MachineFunctionPass::getAnalysisUsage(AU);
294 }
295 
296 
297 //===----------------------------------------------------------------------===//
298 //                     LiveRangeEdit delegate methods
299 //===----------------------------------------------------------------------===//
300 
LRE_WillEraseInstruction(MachineInstr * MI)301 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
302   // LRE itself will remove from SlotIndexes and parent basic block.
303   VRM->RemoveMachineInstrFromMaps(MI);
304 }
305 
LRE_CanEraseVirtReg(unsigned VirtReg)306 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
307   if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
308     unassign(LIS->getInterval(VirtReg), PhysReg);
309     return true;
310   }
311   // Unassigned virtreg is probably in the priority queue.
312   // RegAllocBase will erase it after dequeueing.
313   return false;
314 }
315 
LRE_WillShrinkVirtReg(unsigned VirtReg)316 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
317   unsigned PhysReg = VRM->getPhys(VirtReg);
318   if (!PhysReg)
319     return;
320 
321   // Register is assigned, put it back on the queue for reassignment.
322   LiveInterval &LI = LIS->getInterval(VirtReg);
323   unassign(LI, PhysReg);
324   enqueue(&LI);
325 }
326 
LRE_DidCloneVirtReg(unsigned New,unsigned Old)327 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
328   // LRE may clone a virtual register because dead code elimination causes it to
329   // be split into connected components. Ensure that the new register gets the
330   // same stage as the parent.
331   ExtraRegInfo.grow(New);
332   ExtraRegInfo[New] = ExtraRegInfo[Old];
333 }
334 
releaseMemory()335 void RAGreedy::releaseMemory() {
336   SpillerInstance.reset(0);
337   ExtraRegInfo.clear();
338   GlobalCand.clear();
339   RegAllocBase::releaseMemory();
340 }
341 
enqueue(LiveInterval * LI)342 void RAGreedy::enqueue(LiveInterval *LI) {
343   // Prioritize live ranges by size, assigning larger ranges first.
344   // The queue holds (size, reg) pairs.
345   const unsigned Size = LI->getSize();
346   const unsigned Reg = LI->reg;
347   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
348          "Can only enqueue virtual registers");
349   unsigned Prio;
350 
351   ExtraRegInfo.grow(Reg);
352   if (ExtraRegInfo[Reg].Stage == RS_New)
353     ExtraRegInfo[Reg].Stage = RS_First;
354 
355   if (ExtraRegInfo[Reg].Stage == RS_Second)
356     // Unsplit ranges that couldn't be allocated immediately are deferred until
357     // everything else has been allocated. Long ranges are allocated last so
358     // they are split against realistic interference.
359     Prio = (1u << 31) - Size;
360   else {
361     // Everything else is allocated in long->short order. Long ranges that don't
362     // fit should be spilled ASAP so they don't create interference.
363     Prio = (1u << 31) + Size;
364 
365     // Boost ranges that have a physical register hint.
366     if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
367       Prio |= (1u << 30);
368   }
369 
370   Queue.push(std::make_pair(Prio, Reg));
371 }
372 
dequeue()373 LiveInterval *RAGreedy::dequeue() {
374   if (Queue.empty())
375     return 0;
376   LiveInterval *LI = &LIS->getInterval(Queue.top().second);
377   Queue.pop();
378   return LI;
379 }
380 
381 
382 //===----------------------------------------------------------------------===//
383 //                            Direct Assignment
384 //===----------------------------------------------------------------------===//
385 
386 /// tryAssign - Try to assign VirtReg to an available register.
tryAssign(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)387 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
388                              AllocationOrder &Order,
389                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
390   Order.rewind();
391   unsigned PhysReg;
392   while ((PhysReg = Order.next()))
393     if (!checkPhysRegInterference(VirtReg, PhysReg))
394       break;
395   if (!PhysReg || Order.isHint(PhysReg))
396     return PhysReg;
397 
398   // PhysReg is available, but there may be a better choice.
399 
400   // If we missed a simple hint, try to cheaply evict interference from the
401   // preferred register.
402   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
403     if (Order.isHint(Hint)) {
404       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
405       EvictionCost MaxCost(1);
406       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
407         evictInterference(VirtReg, Hint, NewVRegs);
408         return Hint;
409       }
410     }
411 
412   // Try to evict interference from a cheaper alternative.
413   unsigned Cost = TRI->getCostPerUse(PhysReg);
414 
415   // Most registers have 0 additional cost.
416   if (!Cost)
417     return PhysReg;
418 
419   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
420                << '\n');
421   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
422   return CheapReg ? CheapReg : PhysReg;
423 }
424 
425 
426 //===----------------------------------------------------------------------===//
427 //                         Interference eviction
428 //===----------------------------------------------------------------------===//
429 
430 /// shouldEvict - determine if A should evict the assigned live range B. The
431 /// eviction policy defined by this function together with the allocation order
432 /// defined by enqueue() decides which registers ultimately end up being split
433 /// and spilled.
434 ///
435 /// Cascade numbers are used to prevent infinite loops if this function is a
436 /// cyclic relation.
437 ///
438 /// @param A          The live range to be assigned.
439 /// @param IsHint     True when A is about to be assigned to its preferred
440 ///                   register.
441 /// @param B          The live range to be evicted.
442 /// @param BreaksHint True when B is already assigned to its preferred register.
shouldEvict(LiveInterval & A,bool IsHint,LiveInterval & B,bool BreaksHint)443 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
444                            LiveInterval &B, bool BreaksHint) {
445   bool CanSplit = getStage(B) <= RS_Second;
446 
447   // Be fairly aggressive about following hints as long as the evictee can be
448   // split.
449   if (CanSplit && IsHint && !BreaksHint)
450     return true;
451 
452   return A.weight > B.weight;
453 }
454 
455 /// canEvictInterference - Return true if all interferences between VirtReg and
456 /// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
457 ///
458 /// @param VirtReg Live range that is about to be assigned.
459 /// @param PhysReg Desired register for assignment.
460 /// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
461 /// @param MaxCost Only look for cheaper candidates and update with new cost
462 ///                when returning true.
463 /// @returns True when interference can be evicted cheaper than MaxCost.
canEvictInterference(LiveInterval & VirtReg,unsigned PhysReg,bool IsHint,EvictionCost & MaxCost)464 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
465                                     bool IsHint, EvictionCost &MaxCost) {
466   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
467   // involved in an eviction before. If a cascade number was assigned, deny
468   // evicting anything with the same or a newer cascade number. This prevents
469   // infinite eviction loops.
470   //
471   // This works out so a register without a cascade number is allowed to evict
472   // anything, and it can be evicted by anything.
473   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
474   if (!Cascade)
475     Cascade = NextCascade;
476 
477   EvictionCost Cost;
478   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
479     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
480     // If there is 10 or more interferences, chances are one is heavier.
481     if (Q.collectInterferingVRegs(10) >= 10)
482       return false;
483 
484     // Check if any interfering live range is heavier than MaxWeight.
485     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
486       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
487       if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
488         return false;
489       // Never evict spill products. They cannot split or spill.
490       if (getStage(*Intf) == RS_Spill)
491         return false;
492       // Once a live range becomes small enough, it is urgent that we find a
493       // register for it. This is indicated by an infinite spill weight. These
494       // urgent live ranges get to evict almost anything.
495       bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
496       // Only evict older cascades or live ranges without a cascade.
497       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
498       if (Cascade <= IntfCascade) {
499         if (!Urgent)
500           return false;
501         // We permit breaking cascades for urgent evictions. It should be the
502         // last resort, though, so make it really expensive.
503         Cost.BrokenHints += 10;
504       }
505       // Would this break a satisfied hint?
506       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
507       // Update eviction cost.
508       Cost.BrokenHints += BreaksHint;
509       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
510       // Abort if this would be too expensive.
511       if (!(Cost < MaxCost))
512         return false;
513       // Finally, apply the eviction policy for non-urgent evictions.
514       if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
515         return false;
516     }
517   }
518   MaxCost = Cost;
519   return true;
520 }
521 
522 /// evictInterference - Evict any interferring registers that prevent VirtReg
523 /// from being assigned to Physreg. This assumes that canEvictInterference
524 /// returned true.
evictInterference(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & NewVRegs)525 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
526                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
527   // Make sure that VirtReg has a cascade number, and assign that cascade
528   // number to every evicted register. These live ranges than then only be
529   // evicted by a newer cascade, preventing infinite loops.
530   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
531   if (!Cascade)
532     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
533 
534   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
535                << " interference: Cascade " << Cascade << '\n');
536   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
537     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
538     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
539     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
540       LiveInterval *Intf = Q.interferingVRegs()[i];
541       unassign(*Intf, VRM->getPhys(Intf->reg));
542       assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
543               VirtReg.isSpillable() < Intf->isSpillable()) &&
544              "Cannot decrease cascade number, illegal eviction");
545       ExtraRegInfo[Intf->reg].Cascade = Cascade;
546       ++NumEvicted;
547       NewVRegs.push_back(Intf);
548     }
549   }
550 }
551 
552 /// tryEvict - Try to evict all interferences for a physreg.
553 /// @param  VirtReg Currently unassigned virtual register.
554 /// @param  Order   Physregs to try.
555 /// @return         Physreg to assign VirtReg, or 0.
tryEvict(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs,unsigned CostPerUseLimit)556 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
557                             AllocationOrder &Order,
558                             SmallVectorImpl<LiveInterval*> &NewVRegs,
559                             unsigned CostPerUseLimit) {
560   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
561 
562   // Keep track of the cheapest interference seen so far.
563   EvictionCost BestCost(~0u);
564   unsigned BestPhys = 0;
565 
566   // When we are just looking for a reduced cost per use, don't break any
567   // hints, and only evict smaller spill weights.
568   if (CostPerUseLimit < ~0u) {
569     BestCost.BrokenHints = 0;
570     BestCost.MaxWeight = VirtReg.weight;
571   }
572 
573   Order.rewind();
574   while (unsigned PhysReg = Order.next()) {
575     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
576       continue;
577     // The first use of a callee-saved register in a function has cost 1.
578     // Don't start using a CSR when the CostPerUseLimit is low.
579     if (CostPerUseLimit == 1)
580      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
581        if (!MRI->isPhysRegUsed(CSR)) {
582          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
583                       << PrintReg(CSR, TRI) << '\n');
584          continue;
585        }
586 
587     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
588       continue;
589 
590     // Best so far.
591     BestPhys = PhysReg;
592 
593     // Stop if the hint can be used.
594     if (Order.isHint(PhysReg))
595       break;
596   }
597 
598   if (!BestPhys)
599     return 0;
600 
601   evictInterference(VirtReg, BestPhys, NewVRegs);
602   return BestPhys;
603 }
604 
605 
606 //===----------------------------------------------------------------------===//
607 //                              Region Splitting
608 //===----------------------------------------------------------------------===//
609 
610 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
611 /// interference pattern in Physreg and its aliases. Add the constraints to
612 /// SpillPlacement and return the static cost of this split in Cost, assuming
613 /// that all preferences in SplitConstraints are met.
614 /// Return false if there are no bundles with positive bias.
addSplitConstraints(InterferenceCache::Cursor Intf,float & Cost)615 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
616                                    float &Cost) {
617   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
618 
619   // Reset interference dependent info.
620   SplitConstraints.resize(UseBlocks.size());
621   float StaticCost = 0;
622   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
623     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
624     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
625 
626     BC.Number = BI.MBB->getNumber();
627     Intf.moveToBlock(BC.Number);
628     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
629     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
630 
631     if (!Intf.hasInterference())
632       continue;
633 
634     // Number of spill code instructions to insert.
635     unsigned Ins = 0;
636 
637     // Interference for the live-in value.
638     if (BI.LiveIn) {
639       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
640         BC.Entry = SpillPlacement::MustSpill, ++Ins;
641       else if (Intf.first() < BI.FirstUse)
642         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
643       else if (Intf.first() < BI.LastUse)
644         ++Ins;
645     }
646 
647     // Interference for the live-out value.
648     if (BI.LiveOut) {
649       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
650         BC.Exit = SpillPlacement::MustSpill, ++Ins;
651       else if (Intf.last() > BI.LastUse)
652         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
653       else if (Intf.last() > BI.FirstUse)
654         ++Ins;
655     }
656 
657     // Accumulate the total frequency of inserted spill code.
658     if (Ins)
659       StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
660   }
661   Cost = StaticCost;
662 
663   // Add constraints for use-blocks. Note that these are the only constraints
664   // that may add a positive bias, it is downhill from here.
665   SpillPlacer->addConstraints(SplitConstraints);
666   return SpillPlacer->scanActiveBundles();
667 }
668 
669 
670 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
671 /// live-through blocks in Blocks.
addThroughConstraints(InterferenceCache::Cursor Intf,ArrayRef<unsigned> Blocks)672 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
673                                      ArrayRef<unsigned> Blocks) {
674   const unsigned GroupSize = 8;
675   SpillPlacement::BlockConstraint BCS[GroupSize];
676   unsigned TBS[GroupSize];
677   unsigned B = 0, T = 0;
678 
679   for (unsigned i = 0; i != Blocks.size(); ++i) {
680     unsigned Number = Blocks[i];
681     Intf.moveToBlock(Number);
682 
683     if (!Intf.hasInterference()) {
684       assert(T < GroupSize && "Array overflow");
685       TBS[T] = Number;
686       if (++T == GroupSize) {
687         SpillPlacer->addLinks(makeArrayRef(TBS, T));
688         T = 0;
689       }
690       continue;
691     }
692 
693     assert(B < GroupSize && "Array overflow");
694     BCS[B].Number = Number;
695 
696     // Interference for the live-in value.
697     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
698       BCS[B].Entry = SpillPlacement::MustSpill;
699     else
700       BCS[B].Entry = SpillPlacement::PrefSpill;
701 
702     // Interference for the live-out value.
703     if (Intf.last() >= SA->getLastSplitPoint(Number))
704       BCS[B].Exit = SpillPlacement::MustSpill;
705     else
706       BCS[B].Exit = SpillPlacement::PrefSpill;
707 
708     if (++B == GroupSize) {
709       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
710       SpillPlacer->addConstraints(Array);
711       B = 0;
712     }
713   }
714 
715   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
716   SpillPlacer->addConstraints(Array);
717   SpillPlacer->addLinks(makeArrayRef(TBS, T));
718 }
719 
growRegion(GlobalSplitCandidate & Cand)720 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
721   // Keep track of through blocks that have not been added to SpillPlacer.
722   BitVector Todo = SA->getThroughBlocks();
723   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
724   unsigned AddedTo = 0;
725 #ifndef NDEBUG
726   unsigned Visited = 0;
727 #endif
728 
729   for (;;) {
730     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
731     // Find new through blocks in the periphery of PrefRegBundles.
732     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
733       unsigned Bundle = NewBundles[i];
734       // Look at all blocks connected to Bundle in the full graph.
735       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
736       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
737            I != E; ++I) {
738         unsigned Block = *I;
739         if (!Todo.test(Block))
740           continue;
741         Todo.reset(Block);
742         // This is a new through block. Add it to SpillPlacer later.
743         ActiveBlocks.push_back(Block);
744 #ifndef NDEBUG
745         ++Visited;
746 #endif
747       }
748     }
749     // Any new blocks to add?
750     if (ActiveBlocks.size() == AddedTo)
751       break;
752     addThroughConstraints(Cand.Intf, makeArrayRef(ActiveBlocks).slice(AddedTo));
753     AddedTo = ActiveBlocks.size();
754 
755     // Perhaps iterating can enable more bundles?
756     SpillPlacer->iterate();
757   }
758   DEBUG(dbgs() << ", v=" << Visited);
759 }
760 
761 /// calcSpillCost - Compute how expensive it would be to split the live range in
762 /// SA around all use blocks instead of forming bundle regions.
calcSpillCost()763 float RAGreedy::calcSpillCost() {
764   float Cost = 0;
765   const LiveInterval &LI = SA->getParent();
766   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
767   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
768     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
769     unsigned Number = BI.MBB->getNumber();
770     // We normally only need one spill instruction - a load or a store.
771     Cost += SpillPlacer->getBlockFrequency(Number);
772 
773     // Unless the value is redefined in the block.
774     if (BI.LiveIn && BI.LiveOut) {
775       SlotIndex Start, Stop;
776       tie(Start, Stop) = Indexes->getMBBRange(Number);
777       LiveInterval::const_iterator I = LI.find(Start);
778       assert(I != LI.end() && "Expected live-in value");
779       // Is there a different live-out value? If so, we need an extra spill
780       // instruction.
781       if (I->end < Stop)
782         Cost += SpillPlacer->getBlockFrequency(Number);
783     }
784   }
785   return Cost;
786 }
787 
788 /// calcGlobalSplitCost - Return the global split cost of following the split
789 /// pattern in LiveBundles. This cost should be added to the local cost of the
790 /// interference pattern in SplitConstraints.
791 ///
calcGlobalSplitCost(GlobalSplitCandidate & Cand)792 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
793   float GlobalCost = 0;
794   const BitVector &LiveBundles = Cand.LiveBundles;
795   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
796   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
797     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
798     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
799     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
800     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
801     unsigned Ins = 0;
802 
803     if (BI.LiveIn)
804       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
805     if (BI.LiveOut)
806       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
807     if (Ins)
808       GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
809   }
810 
811   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
812     unsigned Number = Cand.ActiveBlocks[i];
813     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
814     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
815     if (!RegIn && !RegOut)
816       continue;
817     if (RegIn && RegOut) {
818       // We need double spill code if this block has interference.
819       Cand.Intf.moveToBlock(Number);
820       if (Cand.Intf.hasInterference())
821         GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
822       continue;
823     }
824     // live-in / stack-out or stack-in live-out.
825     GlobalCost += SpillPlacer->getBlockFrequency(Number);
826   }
827   return GlobalCost;
828 }
829 
830 /// splitAroundRegion - Split VirtReg around the region determined by
831 /// LiveBundles. Make an effort to avoid interference from PhysReg.
832 ///
833 /// The 'register' interval is going to contain as many uses as possible while
834 /// avoiding interference. The 'stack' interval is the complement constructed by
835 /// SplitEditor. It will contain the rest.
836 ///
splitAroundRegion(LiveInterval & VirtReg,GlobalSplitCandidate & Cand,SmallVectorImpl<LiveInterval * > & NewVRegs)837 void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
838                                  GlobalSplitCandidate &Cand,
839                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
840   const BitVector &LiveBundles = Cand.LiveBundles;
841 
842   DEBUG({
843     dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
844            << " with bundles";
845     for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
846       dbgs() << " EB#" << i;
847     dbgs() << ".\n";
848   });
849 
850   InterferenceCache::Cursor &Intf = Cand.Intf;
851   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
852   SE->reset(LREdit);
853 
854   // Create the main cross-block interval.
855   const unsigned MainIntv = SE->openIntv();
856 
857   // First handle all the blocks with uses.
858   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
859   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
860     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
861     bool RegIn  = BI.LiveIn &&
862                   LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
863     bool RegOut = BI.LiveOut &&
864                   LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
865 
866     // Create separate intervals for isolated blocks with multiple uses.
867     if (!RegIn && !RegOut) {
868       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
869       if (!BI.isOneInstr()) {
870         SE->splitSingleBlock(BI);
871         SE->selectIntv(MainIntv);
872       }
873       continue;
874     }
875 
876     Intf.moveToBlock(BI.MBB->getNumber());
877 
878     if (RegIn && RegOut)
879       SE->splitLiveThroughBlock(BI.MBB->getNumber(),
880                                 MainIntv, Intf.first(),
881                                 MainIntv, Intf.last());
882     else if (RegIn)
883       SE->splitRegInBlock(BI, MainIntv, Intf.first());
884     else
885       SE->splitRegOutBlock(BI, MainIntv, Intf.last());
886   }
887 
888   // Handle live-through blocks.
889   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
890     unsigned Number = Cand.ActiveBlocks[i];
891     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
892     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
893     if (!RegIn && !RegOut)
894       continue;
895     Intf.moveToBlock(Number);
896     SE->splitLiveThroughBlock(Number, RegIn  ? MainIntv : 0, Intf.first(),
897                                       RegOut ? MainIntv : 0, Intf.last());
898   }
899 
900   ++NumGlobalSplits;
901 
902   SmallVector<unsigned, 8> IntvMap;
903   SE->finish(&IntvMap);
904   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
905 
906   ExtraRegInfo.resize(MRI->getNumVirtRegs());
907   unsigned OrigBlocks = SA->getNumLiveBlocks();
908 
909   // Sort out the new intervals created by splitting. We get four kinds:
910   // - Remainder intervals should not be split again.
911   // - Candidate intervals can be assigned to Cand.PhysReg.
912   // - Block-local splits are candidates for local splitting.
913   // - DCE leftovers should go back on the queue.
914   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
915     LiveInterval &Reg = *LREdit.get(i);
916 
917     // Ignore old intervals from DCE.
918     if (getStage(Reg) != RS_New)
919       continue;
920 
921     // Remainder interval. Don't try splitting again, spill if it doesn't
922     // allocate.
923     if (IntvMap[i] == 0) {
924       setStage(Reg, RS_Global);
925       continue;
926     }
927 
928     // Main interval. Allow repeated splitting as long as the number of live
929     // blocks is strictly decreasing.
930     if (IntvMap[i] == MainIntv) {
931       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
932         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
933                      << " blocks as original.\n");
934         // Don't allow repeated splitting as a safe guard against looping.
935         setStage(Reg, RS_Global);
936       }
937       continue;
938     }
939 
940     // Other intervals are treated as new. This includes local intervals created
941     // for blocks with multiple uses, and anything created by DCE.
942   }
943 
944   if (VerifyEnabled)
945     MF->verify(this, "After splitting live range around region");
946 }
947 
tryRegionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)948 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
949                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
950   float BestCost = Hysteresis * calcSpillCost();
951   DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
952   const unsigned NoCand = ~0u;
953   unsigned BestCand = NoCand;
954   unsigned NumCands = 0;
955 
956   Order.rewind();
957   while (unsigned PhysReg = Order.next()) {
958     // Discard bad candidates before we run out of interference cache cursors.
959     // This will only affect register classes with a lot of registers (>32).
960     if (NumCands == IntfCache.getMaxCursors()) {
961       unsigned WorstCount = ~0u;
962       unsigned Worst = 0;
963       for (unsigned i = 0; i != NumCands; ++i) {
964         if (i == BestCand)
965           continue;
966         unsigned Count = GlobalCand[i].LiveBundles.count();
967         if (Count < WorstCount)
968           Worst = i, WorstCount = Count;
969       }
970       --NumCands;
971       GlobalCand[Worst] = GlobalCand[NumCands];
972     }
973 
974     if (GlobalCand.size() <= NumCands)
975       GlobalCand.resize(NumCands+1);
976     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
977     Cand.reset(IntfCache, PhysReg);
978 
979     SpillPlacer->prepare(Cand.LiveBundles);
980     float Cost;
981     if (!addSplitConstraints(Cand.Intf, Cost)) {
982       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
983       continue;
984     }
985     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
986     if (Cost >= BestCost) {
987       DEBUG({
988         if (BestCand == NoCand)
989           dbgs() << " worse than no bundles\n";
990         else
991           dbgs() << " worse than "
992                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
993       });
994       continue;
995     }
996     growRegion(Cand);
997 
998     SpillPlacer->finish();
999 
1000     // No live bundles, defer to splitSingleBlocks().
1001     if (!Cand.LiveBundles.any()) {
1002       DEBUG(dbgs() << " no bundles.\n");
1003       continue;
1004     }
1005 
1006     Cost += calcGlobalSplitCost(Cand);
1007     DEBUG({
1008       dbgs() << ", total = " << Cost << " with bundles";
1009       for (int i = Cand.LiveBundles.find_first(); i>=0;
1010            i = Cand.LiveBundles.find_next(i))
1011         dbgs() << " EB#" << i;
1012       dbgs() << ".\n";
1013     });
1014     if (Cost < BestCost) {
1015       BestCand = NumCands;
1016       BestCost = Hysteresis * Cost; // Prevent rounding effects.
1017     }
1018     ++NumCands;
1019   }
1020 
1021   if (BestCand == NoCand)
1022     return 0;
1023 
1024   splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1025   return 0;
1026 }
1027 
1028 
1029 //===----------------------------------------------------------------------===//
1030 //                             Local Splitting
1031 //===----------------------------------------------------------------------===//
1032 
1033 
1034 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1035 /// in order to use PhysReg between two entries in SA->UseSlots.
1036 ///
1037 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1038 ///
calcGapWeights(unsigned PhysReg,SmallVectorImpl<float> & GapWeight)1039 void RAGreedy::calcGapWeights(unsigned PhysReg,
1040                               SmallVectorImpl<float> &GapWeight) {
1041   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1042   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1043   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1044   const unsigned NumGaps = Uses.size()-1;
1045 
1046   // Start and end points for the interference check.
1047   SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1048   SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1049 
1050   GapWeight.assign(NumGaps, 0.0f);
1051 
1052   // Add interference from each overlapping register.
1053   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1054     if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1055            .checkInterference())
1056       continue;
1057 
1058     // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1059     // so we don't need InterferenceQuery.
1060     //
1061     // Interference that overlaps an instruction is counted in both gaps
1062     // surrounding the instruction. The exception is interference before
1063     // StartIdx and after StopIdx.
1064     //
1065     LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1066     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1067       // Skip the gaps before IntI.
1068       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1069         if (++Gap == NumGaps)
1070           break;
1071       if (Gap == NumGaps)
1072         break;
1073 
1074       // Update the gaps covered by IntI.
1075       const float weight = IntI.value()->weight;
1076       for (; Gap != NumGaps; ++Gap) {
1077         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1078         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1079           break;
1080       }
1081       if (Gap == NumGaps)
1082         break;
1083     }
1084   }
1085 }
1086 
1087 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1088 /// basic block.
1089 ///
tryLocalSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)1090 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1091                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1092   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1093   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1094 
1095   // Note that it is possible to have an interval that is live-in or live-out
1096   // while only covering a single block - A phi-def can use undef values from
1097   // predecessors, and the block could be a single-block loop.
1098   // We don't bother doing anything clever about such a case, we simply assume
1099   // that the interval is continuous from FirstUse to LastUse. We should make
1100   // sure that we don't do anything illegal to such an interval, though.
1101 
1102   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1103   if (Uses.size() <= 2)
1104     return 0;
1105   const unsigned NumGaps = Uses.size()-1;
1106 
1107   DEBUG({
1108     dbgs() << "tryLocalSplit: ";
1109     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1110       dbgs() << ' ' << SA->UseSlots[i];
1111     dbgs() << '\n';
1112   });
1113 
1114   // Since we allow local split results to be split again, there is a risk of
1115   // creating infinite loops. It is tempting to require that the new live
1116   // ranges have less instructions than the original. That would guarantee
1117   // convergence, but it is too strict. A live range with 3 instructions can be
1118   // split 2+3 (including the COPY), and we want to allow that.
1119   //
1120   // Instead we use these rules:
1121   //
1122   // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1123   //    noop split, of course).
1124   // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1125   //    the new ranges must have fewer instructions than before the split.
1126   // 3. New ranges with the same number of instructions are marked RS_Local,
1127   //    smaller ranges are marked RS_New.
1128   //
1129   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1130   // excessive splitting and infinite loops.
1131   //
1132   bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1133 
1134   // Best split candidate.
1135   unsigned BestBefore = NumGaps;
1136   unsigned BestAfter = 0;
1137   float BestDiff = 0;
1138 
1139   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1140   SmallVector<float, 8> GapWeight;
1141 
1142   Order.rewind();
1143   while (unsigned PhysReg = Order.next()) {
1144     // Keep track of the largest spill weight that would need to be evicted in
1145     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1146     calcGapWeights(PhysReg, GapWeight);
1147 
1148     // Try to find the best sequence of gaps to close.
1149     // The new spill weight must be larger than any gap interference.
1150 
1151     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1152     unsigned SplitBefore = 0, SplitAfter = 1;
1153 
1154     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1155     // It is the spill weight that needs to be evicted.
1156     float MaxGap = GapWeight[0];
1157 
1158     for (;;) {
1159       // Live before/after split?
1160       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1161       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1162 
1163       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1164                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1165                    << " i=" << MaxGap);
1166 
1167       // Stop before the interval gets so big we wouldn't be making progress.
1168       if (!LiveBefore && !LiveAfter) {
1169         DEBUG(dbgs() << " all\n");
1170         break;
1171       }
1172       // Should the interval be extended or shrunk?
1173       bool Shrink = true;
1174 
1175       // How many gaps would the new range have?
1176       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1177 
1178       // Legally, without causing looping?
1179       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1180 
1181       if (Legal && MaxGap < HUGE_VALF) {
1182         // Estimate the new spill weight. Each instruction reads or writes the
1183         // register. Conservatively assume there are no read-modify-write
1184         // instructions.
1185         //
1186         // Try to guess the size of the new interval.
1187         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1188                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
1189                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1190         // Would this split be possible to allocate?
1191         // Never allocate all gaps, we wouldn't be making progress.
1192         DEBUG(dbgs() << " w=" << EstWeight);
1193         if (EstWeight * Hysteresis >= MaxGap) {
1194           Shrink = false;
1195           float Diff = EstWeight - MaxGap;
1196           if (Diff > BestDiff) {
1197             DEBUG(dbgs() << " (best)");
1198             BestDiff = Hysteresis * Diff;
1199             BestBefore = SplitBefore;
1200             BestAfter = SplitAfter;
1201           }
1202         }
1203       }
1204 
1205       // Try to shrink.
1206       if (Shrink) {
1207         if (++SplitBefore < SplitAfter) {
1208           DEBUG(dbgs() << " shrink\n");
1209           // Recompute the max when necessary.
1210           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1211             MaxGap = GapWeight[SplitBefore];
1212             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1213               MaxGap = std::max(MaxGap, GapWeight[i]);
1214           }
1215           continue;
1216         }
1217         MaxGap = 0;
1218       }
1219 
1220       // Try to extend the interval.
1221       if (SplitAfter >= NumGaps) {
1222         DEBUG(dbgs() << " end\n");
1223         break;
1224       }
1225 
1226       DEBUG(dbgs() << " extend\n");
1227       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1228     }
1229   }
1230 
1231   // Didn't find any candidates?
1232   if (BestBefore == NumGaps)
1233     return 0;
1234 
1235   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1236                << '-' << Uses[BestAfter] << ", " << BestDiff
1237                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1238 
1239   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1240   SE->reset(LREdit);
1241 
1242   SE->openIntv();
1243   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1244   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1245   SE->useIntv(SegStart, SegStop);
1246   SmallVector<unsigned, 8> IntvMap;
1247   SE->finish(&IntvMap);
1248   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1249 
1250   // If the new range has the same number of instructions as before, mark it as
1251   // RS_Local so the next split will be forced to make progress. Otherwise,
1252   // leave the new intervals as RS_New so they can compete.
1253   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1254   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1255   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1256   if (NewGaps >= NumGaps) {
1257     DEBUG(dbgs() << "Tagging non-progress ranges: ");
1258     assert(!ProgressRequired && "Didn't make progress when it was required.");
1259     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1260       if (IntvMap[i] == 1) {
1261         setStage(*LREdit.get(i), RS_Local);
1262         DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1263       }
1264     DEBUG(dbgs() << '\n');
1265   }
1266   ++NumLocalSplits;
1267 
1268   return 0;
1269 }
1270 
1271 //===----------------------------------------------------------------------===//
1272 //                          Live Range Splitting
1273 //===----------------------------------------------------------------------===//
1274 
1275 /// trySplit - Try to split VirtReg or one of its interferences, making it
1276 /// assignable.
1277 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
trySplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)1278 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1279                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
1280   // Local intervals are handled separately.
1281   if (LIS->intervalIsInOneMBB(VirtReg)) {
1282     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1283     SA->analyze(&VirtReg);
1284     return tryLocalSplit(VirtReg, Order, NewVRegs);
1285   }
1286 
1287   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1288 
1289   // Don't iterate global splitting.
1290   // Move straight to spilling if this range was produced by a global split.
1291   if (getStage(VirtReg) >= RS_Global)
1292     return 0;
1293 
1294   SA->analyze(&VirtReg);
1295 
1296   // FIXME: SplitAnalysis may repair broken live ranges coming from the
1297   // coalescer. That may cause the range to become allocatable which means that
1298   // tryRegionSplit won't be making progress. This check should be replaced with
1299   // an assertion when the coalescer is fixed.
1300   if (SA->didRepairRange()) {
1301     // VirtReg has changed, so all cached queries are invalid.
1302     invalidateVirtRegs();
1303     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1304       return PhysReg;
1305   }
1306 
1307   // First try to split around a region spanning multiple blocks.
1308   unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1309   if (PhysReg || !NewVRegs.empty())
1310     return PhysReg;
1311 
1312   // Then isolate blocks with multiple uses.
1313   SplitAnalysis::BlockPtrSet Blocks;
1314   if (SA->getMultiUseBlocks(Blocks)) {
1315     LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1316     SE->reset(LREdit);
1317     SE->splitSingleBlocks(Blocks);
1318     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1319     if (VerifyEnabled)
1320       MF->verify(this, "After splitting live range around basic blocks");
1321   }
1322 
1323   // Don't assign any physregs.
1324   return 0;
1325 }
1326 
1327 
1328 //===----------------------------------------------------------------------===//
1329 //                            Main Entry Point
1330 //===----------------------------------------------------------------------===//
1331 
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<LiveInterval * > & NewVRegs)1332 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1333                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1334   // First try assigning a free register.
1335   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1336   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1337     return PhysReg;
1338 
1339   LiveRangeStage Stage = getStage(VirtReg);
1340   DEBUG(dbgs() << StageName[Stage]
1341                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1342 
1343   // Try to evict a less worthy live range, but only for ranges from the primary
1344   // queue. The RS_Second ranges already failed to do this, and they should not
1345   // get a second chance until they have been split.
1346   if (Stage != RS_Second)
1347     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1348       return PhysReg;
1349 
1350   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1351 
1352   // The first time we see a live range, don't try to split or spill.
1353   // Wait until the second time, when all smaller ranges have been allocated.
1354   // This gives a better picture of the interference to split around.
1355   if (Stage == RS_First) {
1356     setStage(VirtReg, RS_Second);
1357     DEBUG(dbgs() << "wait for second round\n");
1358     NewVRegs.push_back(&VirtReg);
1359     return 0;
1360   }
1361 
1362   // If we couldn't allocate a register from spilling, there is probably some
1363   // invalid inline assembly. The base class wil report it.
1364   if (Stage >= RS_Spill || !VirtReg.isSpillable())
1365     return ~0u;
1366 
1367   // Try splitting VirtReg or interferences.
1368   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1369   if (PhysReg || !NewVRegs.empty())
1370     return PhysReg;
1371 
1372   // Finally spill VirtReg itself.
1373   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1374   LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1375   spiller().spill(LRE);
1376   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1377 
1378   if (VerifyEnabled)
1379     MF->verify(this, "After spilling");
1380 
1381   // The live virtual register requesting allocation was spilled, so tell
1382   // the caller not to allocate anything during this round.
1383   return 0;
1384 }
1385 
runOnMachineFunction(MachineFunction & mf)1386 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1387   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1388                << "********** Function: "
1389                << ((Value*)mf.getFunction())->getName() << '\n');
1390 
1391   MF = &mf;
1392   if (VerifyEnabled)
1393     MF->verify(this, "Before greedy register allocator");
1394 
1395   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1396   Indexes = &getAnalysis<SlotIndexes>();
1397   DomTree = &getAnalysis<MachineDominatorTree>();
1398   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1399   Loops = &getAnalysis<MachineLoopInfo>();
1400   Bundles = &getAnalysis<EdgeBundles>();
1401   SpillPlacer = &getAnalysis<SpillPlacement>();
1402   DebugVars = &getAnalysis<LiveDebugVariables>();
1403 
1404   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1405   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1406   ExtraRegInfo.clear();
1407   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1408   NextCascade = 1;
1409   IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1410 
1411   allocatePhysRegs();
1412   addMBBLiveIns(MF);
1413   LIS->addKillFlags();
1414 
1415   // Run rewriter
1416   {
1417     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1418     VRM->rewrite(Indexes);
1419   }
1420 
1421   // Write out new DBG_VALUE instructions.
1422   DebugVars->emitDebugValues(VRM);
1423 
1424   // The pass output is in VirtRegMap. Release all the transient data.
1425   releaseMemory();
1426 
1427   return true;
1428 }
1429