1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "AllocationOrder.h"
17 #include "InterferenceCache.h"
18 #include "LiveDebugVariables.h"
19 #include "LiveRangeEdit.h"
20 #include "RegAllocBase.h"
21 #include "Spiller.h"
22 #include "SpillPlacement.h"
23 #include "SplitKit.h"
24 #include "VirtRegMap.h"
25 #include "RegisterCoalescer.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Function.h"
29 #include "llvm/PassAnalysisSupport.h"
30 #include "llvm/CodeGen/CalcSpillWeights.h"
31 #include "llvm/CodeGen/EdgeBundles.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/RegAllocRegistry.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Support/Timer.h"
45
46 #include <queue>
47
48 using namespace llvm;
49
50 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51 STATISTIC(NumLocalSplits, "Number of split local live ranges");
52 STATISTIC(NumEvicted, "Number of interferences evicted");
53
54 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
55 createGreedyRegisterAllocator);
56
57 namespace {
58 class RAGreedy : public MachineFunctionPass,
59 public RegAllocBase,
60 private LiveRangeEdit::Delegate {
61
62 // context
63 MachineFunction *MF;
64
65 // analyses
66 SlotIndexes *Indexes;
67 LiveStacks *LS;
68 MachineDominatorTree *DomTree;
69 MachineLoopInfo *Loops;
70 EdgeBundles *Bundles;
71 SpillPlacement *SpillPlacer;
72 LiveDebugVariables *DebugVars;
73
74 // state
75 std::auto_ptr<Spiller> SpillerInstance;
76 std::priority_queue<std::pair<unsigned, unsigned> > Queue;
77 unsigned NextCascade;
78
79 // Live ranges pass through a number of stages as we try to allocate them.
80 // Some of the stages may also create new live ranges:
81 //
82 // - Region splitting.
83 // - Per-block splitting.
84 // - Local splitting.
85 // - Spilling.
86 //
87 // Ranges produced by one of the stages skip the previous stages when they are
88 // dequeued. This improves performance because we can skip interference checks
89 // that are unlikely to give any results. It also guarantees that the live
90 // range splitting algorithm terminates, something that is otherwise hard to
91 // ensure.
92 enum LiveRangeStage {
93 RS_New, ///< Never seen before.
94 RS_First, ///< First time in the queue.
95 RS_Second, ///< Second time in the queue.
96 RS_Global, ///< Produced by global splitting.
97 RS_Local, ///< Produced by local splitting.
98 RS_Spill ///< Produced by spilling.
99 };
100
101 static const char *const StageName[];
102
103 // RegInfo - Keep additional information about each live range.
104 struct RegInfo {
105 LiveRangeStage Stage;
106
107 // Cascade - Eviction loop prevention. See canEvictInterference().
108 unsigned Cascade;
109
RegInfo__anon1dbc7a820111::RAGreedy::RegInfo110 RegInfo() : Stage(RS_New), Cascade(0) {}
111 };
112
113 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
114
getStage(const LiveInterval & VirtReg) const115 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
116 return ExtraRegInfo[VirtReg.reg].Stage;
117 }
118
setStage(const LiveInterval & VirtReg,LiveRangeStage Stage)119 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
120 ExtraRegInfo.resize(MRI->getNumVirtRegs());
121 ExtraRegInfo[VirtReg.reg].Stage = Stage;
122 }
123
124 template<typename Iterator>
setStage(Iterator Begin,Iterator End,LiveRangeStage NewStage)125 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
126 ExtraRegInfo.resize(MRI->getNumVirtRegs());
127 for (;Begin != End; ++Begin) {
128 unsigned Reg = (*Begin)->reg;
129 if (ExtraRegInfo[Reg].Stage == RS_New)
130 ExtraRegInfo[Reg].Stage = NewStage;
131 }
132 }
133
134 /// Cost of evicting interference.
135 struct EvictionCost {
136 unsigned BrokenHints; ///< Total number of broken hints.
137 float MaxWeight; ///< Maximum spill weight evicted.
138
EvictionCost__anon1dbc7a820111::RAGreedy::EvictionCost139 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
140
operator <__anon1dbc7a820111::RAGreedy::EvictionCost141 bool operator<(const EvictionCost &O) const {
142 if (BrokenHints != O.BrokenHints)
143 return BrokenHints < O.BrokenHints;
144 return MaxWeight < O.MaxWeight;
145 }
146 };
147
148 // splitting state.
149 std::auto_ptr<SplitAnalysis> SA;
150 std::auto_ptr<SplitEditor> SE;
151
152 /// Cached per-block interference maps
153 InterferenceCache IntfCache;
154
155 /// All basic blocks where the current register has uses.
156 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
157
158 /// Global live range splitting candidate info.
159 struct GlobalSplitCandidate {
160 unsigned PhysReg;
161 InterferenceCache::Cursor Intf;
162 BitVector LiveBundles;
163 SmallVector<unsigned, 8> ActiveBlocks;
164
reset__anon1dbc7a820111::RAGreedy::GlobalSplitCandidate165 void reset(InterferenceCache &Cache, unsigned Reg) {
166 PhysReg = Reg;
167 Intf.setPhysReg(Cache, Reg);
168 LiveBundles.clear();
169 ActiveBlocks.clear();
170 }
171 };
172
173 /// Candidate info for for each PhysReg in AllocationOrder.
174 /// This vector never shrinks, but grows to the size of the largest register
175 /// class.
176 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
177
178 public:
179 RAGreedy();
180
181 /// Return the pass name.
getPassName() const182 virtual const char* getPassName() const {
183 return "Greedy Register Allocator";
184 }
185
186 /// RAGreedy analysis usage.
187 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
188 virtual void releaseMemory();
spiller()189 virtual Spiller &spiller() { return *SpillerInstance; }
190 virtual void enqueue(LiveInterval *LI);
191 virtual LiveInterval *dequeue();
192 virtual unsigned selectOrSplit(LiveInterval&,
193 SmallVectorImpl<LiveInterval*>&);
194
195 /// Perform register allocation.
196 virtual bool runOnMachineFunction(MachineFunction &mf);
197
198 static char ID;
199
200 private:
201 void LRE_WillEraseInstruction(MachineInstr*);
202 bool LRE_CanEraseVirtReg(unsigned);
203 void LRE_WillShrinkVirtReg(unsigned);
204 void LRE_DidCloneVirtReg(unsigned, unsigned);
205
206 float calcSpillCost();
207 bool addSplitConstraints(InterferenceCache::Cursor, float&);
208 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
209 void growRegion(GlobalSplitCandidate &Cand);
210 float calcGlobalSplitCost(GlobalSplitCandidate&);
211 void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
212 SmallVectorImpl<LiveInterval*>&);
213 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
214 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
215 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
216 void evictInterference(LiveInterval&, unsigned,
217 SmallVectorImpl<LiveInterval*>&);
218
219 unsigned tryAssign(LiveInterval&, AllocationOrder&,
220 SmallVectorImpl<LiveInterval*>&);
221 unsigned tryEvict(LiveInterval&, AllocationOrder&,
222 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
223 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
224 SmallVectorImpl<LiveInterval*>&);
225 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
226 SmallVectorImpl<LiveInterval*>&);
227 unsigned trySplit(LiveInterval&, AllocationOrder&,
228 SmallVectorImpl<LiveInterval*>&);
229 };
230 } // end anonymous namespace
231
232 char RAGreedy::ID = 0;
233
234 #ifndef NDEBUG
235 const char *const RAGreedy::StageName[] = {
236 "RS_New",
237 "RS_First",
238 "RS_Second",
239 "RS_Global",
240 "RS_Local",
241 "RS_Spill"
242 };
243 #endif
244
245 // Hysteresis to use when comparing floats.
246 // This helps stabilize decisions based on float comparisons.
247 const float Hysteresis = 0.98f;
248
249
createGreedyRegisterAllocator()250 FunctionPass* llvm::createGreedyRegisterAllocator() {
251 return new RAGreedy();
252 }
253
RAGreedy()254 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
255 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
256 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
257 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
258 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
259 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
260 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
261 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
262 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
263 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
264 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
265 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
266 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
267 initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
268 }
269
getAnalysisUsage(AnalysisUsage & AU) const270 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
271 AU.setPreservesCFG();
272 AU.addRequired<AliasAnalysis>();
273 AU.addPreserved<AliasAnalysis>();
274 AU.addRequired<LiveIntervals>();
275 AU.addRequired<SlotIndexes>();
276 AU.addPreserved<SlotIndexes>();
277 AU.addRequired<LiveDebugVariables>();
278 AU.addPreserved<LiveDebugVariables>();
279 if (StrongPHIElim)
280 AU.addRequiredID(StrongPHIEliminationID);
281 AU.addRequiredTransitive<RegisterCoalescer>();
282 AU.addRequired<CalculateSpillWeights>();
283 AU.addRequired<LiveStacks>();
284 AU.addPreserved<LiveStacks>();
285 AU.addRequired<MachineDominatorTree>();
286 AU.addPreserved<MachineDominatorTree>();
287 AU.addRequired<MachineLoopInfo>();
288 AU.addPreserved<MachineLoopInfo>();
289 AU.addRequired<VirtRegMap>();
290 AU.addPreserved<VirtRegMap>();
291 AU.addRequired<EdgeBundles>();
292 AU.addRequired<SpillPlacement>();
293 MachineFunctionPass::getAnalysisUsage(AU);
294 }
295
296
297 //===----------------------------------------------------------------------===//
298 // LiveRangeEdit delegate methods
299 //===----------------------------------------------------------------------===//
300
LRE_WillEraseInstruction(MachineInstr * MI)301 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
302 // LRE itself will remove from SlotIndexes and parent basic block.
303 VRM->RemoveMachineInstrFromMaps(MI);
304 }
305
LRE_CanEraseVirtReg(unsigned VirtReg)306 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
307 if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
308 unassign(LIS->getInterval(VirtReg), PhysReg);
309 return true;
310 }
311 // Unassigned virtreg is probably in the priority queue.
312 // RegAllocBase will erase it after dequeueing.
313 return false;
314 }
315
LRE_WillShrinkVirtReg(unsigned VirtReg)316 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
317 unsigned PhysReg = VRM->getPhys(VirtReg);
318 if (!PhysReg)
319 return;
320
321 // Register is assigned, put it back on the queue for reassignment.
322 LiveInterval &LI = LIS->getInterval(VirtReg);
323 unassign(LI, PhysReg);
324 enqueue(&LI);
325 }
326
LRE_DidCloneVirtReg(unsigned New,unsigned Old)327 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
328 // LRE may clone a virtual register because dead code elimination causes it to
329 // be split into connected components. Ensure that the new register gets the
330 // same stage as the parent.
331 ExtraRegInfo.grow(New);
332 ExtraRegInfo[New] = ExtraRegInfo[Old];
333 }
334
releaseMemory()335 void RAGreedy::releaseMemory() {
336 SpillerInstance.reset(0);
337 ExtraRegInfo.clear();
338 GlobalCand.clear();
339 RegAllocBase::releaseMemory();
340 }
341
enqueue(LiveInterval * LI)342 void RAGreedy::enqueue(LiveInterval *LI) {
343 // Prioritize live ranges by size, assigning larger ranges first.
344 // The queue holds (size, reg) pairs.
345 const unsigned Size = LI->getSize();
346 const unsigned Reg = LI->reg;
347 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
348 "Can only enqueue virtual registers");
349 unsigned Prio;
350
351 ExtraRegInfo.grow(Reg);
352 if (ExtraRegInfo[Reg].Stage == RS_New)
353 ExtraRegInfo[Reg].Stage = RS_First;
354
355 if (ExtraRegInfo[Reg].Stage == RS_Second)
356 // Unsplit ranges that couldn't be allocated immediately are deferred until
357 // everything else has been allocated. Long ranges are allocated last so
358 // they are split against realistic interference.
359 Prio = (1u << 31) - Size;
360 else {
361 // Everything else is allocated in long->short order. Long ranges that don't
362 // fit should be spilled ASAP so they don't create interference.
363 Prio = (1u << 31) + Size;
364
365 // Boost ranges that have a physical register hint.
366 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
367 Prio |= (1u << 30);
368 }
369
370 Queue.push(std::make_pair(Prio, Reg));
371 }
372
dequeue()373 LiveInterval *RAGreedy::dequeue() {
374 if (Queue.empty())
375 return 0;
376 LiveInterval *LI = &LIS->getInterval(Queue.top().second);
377 Queue.pop();
378 return LI;
379 }
380
381
382 //===----------------------------------------------------------------------===//
383 // Direct Assignment
384 //===----------------------------------------------------------------------===//
385
386 /// tryAssign - Try to assign VirtReg to an available register.
tryAssign(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)387 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
388 AllocationOrder &Order,
389 SmallVectorImpl<LiveInterval*> &NewVRegs) {
390 Order.rewind();
391 unsigned PhysReg;
392 while ((PhysReg = Order.next()))
393 if (!checkPhysRegInterference(VirtReg, PhysReg))
394 break;
395 if (!PhysReg || Order.isHint(PhysReg))
396 return PhysReg;
397
398 // PhysReg is available, but there may be a better choice.
399
400 // If we missed a simple hint, try to cheaply evict interference from the
401 // preferred register.
402 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
403 if (Order.isHint(Hint)) {
404 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
405 EvictionCost MaxCost(1);
406 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
407 evictInterference(VirtReg, Hint, NewVRegs);
408 return Hint;
409 }
410 }
411
412 // Try to evict interference from a cheaper alternative.
413 unsigned Cost = TRI->getCostPerUse(PhysReg);
414
415 // Most registers have 0 additional cost.
416 if (!Cost)
417 return PhysReg;
418
419 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
420 << '\n');
421 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
422 return CheapReg ? CheapReg : PhysReg;
423 }
424
425
426 //===----------------------------------------------------------------------===//
427 // Interference eviction
428 //===----------------------------------------------------------------------===//
429
430 /// shouldEvict - determine if A should evict the assigned live range B. The
431 /// eviction policy defined by this function together with the allocation order
432 /// defined by enqueue() decides which registers ultimately end up being split
433 /// and spilled.
434 ///
435 /// Cascade numbers are used to prevent infinite loops if this function is a
436 /// cyclic relation.
437 ///
438 /// @param A The live range to be assigned.
439 /// @param IsHint True when A is about to be assigned to its preferred
440 /// register.
441 /// @param B The live range to be evicted.
442 /// @param BreaksHint True when B is already assigned to its preferred register.
shouldEvict(LiveInterval & A,bool IsHint,LiveInterval & B,bool BreaksHint)443 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
444 LiveInterval &B, bool BreaksHint) {
445 bool CanSplit = getStage(B) <= RS_Second;
446
447 // Be fairly aggressive about following hints as long as the evictee can be
448 // split.
449 if (CanSplit && IsHint && !BreaksHint)
450 return true;
451
452 return A.weight > B.weight;
453 }
454
455 /// canEvictInterference - Return true if all interferences between VirtReg and
456 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything
457 ///
458 /// @param VirtReg Live range that is about to be assigned.
459 /// @param PhysReg Desired register for assignment.
460 /// @prarm IsHint True when PhysReg is VirtReg's preferred register.
461 /// @param MaxCost Only look for cheaper candidates and update with new cost
462 /// when returning true.
463 /// @returns True when interference can be evicted cheaper than MaxCost.
canEvictInterference(LiveInterval & VirtReg,unsigned PhysReg,bool IsHint,EvictionCost & MaxCost)464 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
465 bool IsHint, EvictionCost &MaxCost) {
466 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
467 // involved in an eviction before. If a cascade number was assigned, deny
468 // evicting anything with the same or a newer cascade number. This prevents
469 // infinite eviction loops.
470 //
471 // This works out so a register without a cascade number is allowed to evict
472 // anything, and it can be evicted by anything.
473 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
474 if (!Cascade)
475 Cascade = NextCascade;
476
477 EvictionCost Cost;
478 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
479 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
480 // If there is 10 or more interferences, chances are one is heavier.
481 if (Q.collectInterferingVRegs(10) >= 10)
482 return false;
483
484 // Check if any interfering live range is heavier than MaxWeight.
485 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
486 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
487 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
488 return false;
489 // Never evict spill products. They cannot split or spill.
490 if (getStage(*Intf) == RS_Spill)
491 return false;
492 // Once a live range becomes small enough, it is urgent that we find a
493 // register for it. This is indicated by an infinite spill weight. These
494 // urgent live ranges get to evict almost anything.
495 bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
496 // Only evict older cascades or live ranges without a cascade.
497 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
498 if (Cascade <= IntfCascade) {
499 if (!Urgent)
500 return false;
501 // We permit breaking cascades for urgent evictions. It should be the
502 // last resort, though, so make it really expensive.
503 Cost.BrokenHints += 10;
504 }
505 // Would this break a satisfied hint?
506 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
507 // Update eviction cost.
508 Cost.BrokenHints += BreaksHint;
509 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
510 // Abort if this would be too expensive.
511 if (!(Cost < MaxCost))
512 return false;
513 // Finally, apply the eviction policy for non-urgent evictions.
514 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
515 return false;
516 }
517 }
518 MaxCost = Cost;
519 return true;
520 }
521
522 /// evictInterference - Evict any interferring registers that prevent VirtReg
523 /// from being assigned to Physreg. This assumes that canEvictInterference
524 /// returned true.
evictInterference(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & NewVRegs)525 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
526 SmallVectorImpl<LiveInterval*> &NewVRegs) {
527 // Make sure that VirtReg has a cascade number, and assign that cascade
528 // number to every evicted register. These live ranges than then only be
529 // evicted by a newer cascade, preventing infinite loops.
530 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
531 if (!Cascade)
532 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
533
534 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
535 << " interference: Cascade " << Cascade << '\n');
536 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
537 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
538 assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
539 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
540 LiveInterval *Intf = Q.interferingVRegs()[i];
541 unassign(*Intf, VRM->getPhys(Intf->reg));
542 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
543 VirtReg.isSpillable() < Intf->isSpillable()) &&
544 "Cannot decrease cascade number, illegal eviction");
545 ExtraRegInfo[Intf->reg].Cascade = Cascade;
546 ++NumEvicted;
547 NewVRegs.push_back(Intf);
548 }
549 }
550 }
551
552 /// tryEvict - Try to evict all interferences for a physreg.
553 /// @param VirtReg Currently unassigned virtual register.
554 /// @param Order Physregs to try.
555 /// @return Physreg to assign VirtReg, or 0.
tryEvict(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs,unsigned CostPerUseLimit)556 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
557 AllocationOrder &Order,
558 SmallVectorImpl<LiveInterval*> &NewVRegs,
559 unsigned CostPerUseLimit) {
560 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
561
562 // Keep track of the cheapest interference seen so far.
563 EvictionCost BestCost(~0u);
564 unsigned BestPhys = 0;
565
566 // When we are just looking for a reduced cost per use, don't break any
567 // hints, and only evict smaller spill weights.
568 if (CostPerUseLimit < ~0u) {
569 BestCost.BrokenHints = 0;
570 BestCost.MaxWeight = VirtReg.weight;
571 }
572
573 Order.rewind();
574 while (unsigned PhysReg = Order.next()) {
575 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
576 continue;
577 // The first use of a callee-saved register in a function has cost 1.
578 // Don't start using a CSR when the CostPerUseLimit is low.
579 if (CostPerUseLimit == 1)
580 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
581 if (!MRI->isPhysRegUsed(CSR)) {
582 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
583 << PrintReg(CSR, TRI) << '\n');
584 continue;
585 }
586
587 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
588 continue;
589
590 // Best so far.
591 BestPhys = PhysReg;
592
593 // Stop if the hint can be used.
594 if (Order.isHint(PhysReg))
595 break;
596 }
597
598 if (!BestPhys)
599 return 0;
600
601 evictInterference(VirtReg, BestPhys, NewVRegs);
602 return BestPhys;
603 }
604
605
606 //===----------------------------------------------------------------------===//
607 // Region Splitting
608 //===----------------------------------------------------------------------===//
609
610 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
611 /// interference pattern in Physreg and its aliases. Add the constraints to
612 /// SpillPlacement and return the static cost of this split in Cost, assuming
613 /// that all preferences in SplitConstraints are met.
614 /// Return false if there are no bundles with positive bias.
addSplitConstraints(InterferenceCache::Cursor Intf,float & Cost)615 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
616 float &Cost) {
617 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
618
619 // Reset interference dependent info.
620 SplitConstraints.resize(UseBlocks.size());
621 float StaticCost = 0;
622 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
623 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
624 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
625
626 BC.Number = BI.MBB->getNumber();
627 Intf.moveToBlock(BC.Number);
628 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
629 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
630
631 if (!Intf.hasInterference())
632 continue;
633
634 // Number of spill code instructions to insert.
635 unsigned Ins = 0;
636
637 // Interference for the live-in value.
638 if (BI.LiveIn) {
639 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
640 BC.Entry = SpillPlacement::MustSpill, ++Ins;
641 else if (Intf.first() < BI.FirstUse)
642 BC.Entry = SpillPlacement::PrefSpill, ++Ins;
643 else if (Intf.first() < BI.LastUse)
644 ++Ins;
645 }
646
647 // Interference for the live-out value.
648 if (BI.LiveOut) {
649 if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
650 BC.Exit = SpillPlacement::MustSpill, ++Ins;
651 else if (Intf.last() > BI.LastUse)
652 BC.Exit = SpillPlacement::PrefSpill, ++Ins;
653 else if (Intf.last() > BI.FirstUse)
654 ++Ins;
655 }
656
657 // Accumulate the total frequency of inserted spill code.
658 if (Ins)
659 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
660 }
661 Cost = StaticCost;
662
663 // Add constraints for use-blocks. Note that these are the only constraints
664 // that may add a positive bias, it is downhill from here.
665 SpillPlacer->addConstraints(SplitConstraints);
666 return SpillPlacer->scanActiveBundles();
667 }
668
669
670 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
671 /// live-through blocks in Blocks.
addThroughConstraints(InterferenceCache::Cursor Intf,ArrayRef<unsigned> Blocks)672 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
673 ArrayRef<unsigned> Blocks) {
674 const unsigned GroupSize = 8;
675 SpillPlacement::BlockConstraint BCS[GroupSize];
676 unsigned TBS[GroupSize];
677 unsigned B = 0, T = 0;
678
679 for (unsigned i = 0; i != Blocks.size(); ++i) {
680 unsigned Number = Blocks[i];
681 Intf.moveToBlock(Number);
682
683 if (!Intf.hasInterference()) {
684 assert(T < GroupSize && "Array overflow");
685 TBS[T] = Number;
686 if (++T == GroupSize) {
687 SpillPlacer->addLinks(makeArrayRef(TBS, T));
688 T = 0;
689 }
690 continue;
691 }
692
693 assert(B < GroupSize && "Array overflow");
694 BCS[B].Number = Number;
695
696 // Interference for the live-in value.
697 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
698 BCS[B].Entry = SpillPlacement::MustSpill;
699 else
700 BCS[B].Entry = SpillPlacement::PrefSpill;
701
702 // Interference for the live-out value.
703 if (Intf.last() >= SA->getLastSplitPoint(Number))
704 BCS[B].Exit = SpillPlacement::MustSpill;
705 else
706 BCS[B].Exit = SpillPlacement::PrefSpill;
707
708 if (++B == GroupSize) {
709 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
710 SpillPlacer->addConstraints(Array);
711 B = 0;
712 }
713 }
714
715 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
716 SpillPlacer->addConstraints(Array);
717 SpillPlacer->addLinks(makeArrayRef(TBS, T));
718 }
719
growRegion(GlobalSplitCandidate & Cand)720 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
721 // Keep track of through blocks that have not been added to SpillPlacer.
722 BitVector Todo = SA->getThroughBlocks();
723 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
724 unsigned AddedTo = 0;
725 #ifndef NDEBUG
726 unsigned Visited = 0;
727 #endif
728
729 for (;;) {
730 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
731 // Find new through blocks in the periphery of PrefRegBundles.
732 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
733 unsigned Bundle = NewBundles[i];
734 // Look at all blocks connected to Bundle in the full graph.
735 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
736 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
737 I != E; ++I) {
738 unsigned Block = *I;
739 if (!Todo.test(Block))
740 continue;
741 Todo.reset(Block);
742 // This is a new through block. Add it to SpillPlacer later.
743 ActiveBlocks.push_back(Block);
744 #ifndef NDEBUG
745 ++Visited;
746 #endif
747 }
748 }
749 // Any new blocks to add?
750 if (ActiveBlocks.size() == AddedTo)
751 break;
752 addThroughConstraints(Cand.Intf, makeArrayRef(ActiveBlocks).slice(AddedTo));
753 AddedTo = ActiveBlocks.size();
754
755 // Perhaps iterating can enable more bundles?
756 SpillPlacer->iterate();
757 }
758 DEBUG(dbgs() << ", v=" << Visited);
759 }
760
761 /// calcSpillCost - Compute how expensive it would be to split the live range in
762 /// SA around all use blocks instead of forming bundle regions.
calcSpillCost()763 float RAGreedy::calcSpillCost() {
764 float Cost = 0;
765 const LiveInterval &LI = SA->getParent();
766 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
767 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
768 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
769 unsigned Number = BI.MBB->getNumber();
770 // We normally only need one spill instruction - a load or a store.
771 Cost += SpillPlacer->getBlockFrequency(Number);
772
773 // Unless the value is redefined in the block.
774 if (BI.LiveIn && BI.LiveOut) {
775 SlotIndex Start, Stop;
776 tie(Start, Stop) = Indexes->getMBBRange(Number);
777 LiveInterval::const_iterator I = LI.find(Start);
778 assert(I != LI.end() && "Expected live-in value");
779 // Is there a different live-out value? If so, we need an extra spill
780 // instruction.
781 if (I->end < Stop)
782 Cost += SpillPlacer->getBlockFrequency(Number);
783 }
784 }
785 return Cost;
786 }
787
788 /// calcGlobalSplitCost - Return the global split cost of following the split
789 /// pattern in LiveBundles. This cost should be added to the local cost of the
790 /// interference pattern in SplitConstraints.
791 ///
calcGlobalSplitCost(GlobalSplitCandidate & Cand)792 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
793 float GlobalCost = 0;
794 const BitVector &LiveBundles = Cand.LiveBundles;
795 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
796 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
797 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
798 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
799 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
800 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
801 unsigned Ins = 0;
802
803 if (BI.LiveIn)
804 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
805 if (BI.LiveOut)
806 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
807 if (Ins)
808 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
809 }
810
811 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
812 unsigned Number = Cand.ActiveBlocks[i];
813 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
814 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
815 if (!RegIn && !RegOut)
816 continue;
817 if (RegIn && RegOut) {
818 // We need double spill code if this block has interference.
819 Cand.Intf.moveToBlock(Number);
820 if (Cand.Intf.hasInterference())
821 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
822 continue;
823 }
824 // live-in / stack-out or stack-in live-out.
825 GlobalCost += SpillPlacer->getBlockFrequency(Number);
826 }
827 return GlobalCost;
828 }
829
830 /// splitAroundRegion - Split VirtReg around the region determined by
831 /// LiveBundles. Make an effort to avoid interference from PhysReg.
832 ///
833 /// The 'register' interval is going to contain as many uses as possible while
834 /// avoiding interference. The 'stack' interval is the complement constructed by
835 /// SplitEditor. It will contain the rest.
836 ///
splitAroundRegion(LiveInterval & VirtReg,GlobalSplitCandidate & Cand,SmallVectorImpl<LiveInterval * > & NewVRegs)837 void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
838 GlobalSplitCandidate &Cand,
839 SmallVectorImpl<LiveInterval*> &NewVRegs) {
840 const BitVector &LiveBundles = Cand.LiveBundles;
841
842 DEBUG({
843 dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
844 << " with bundles";
845 for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
846 dbgs() << " EB#" << i;
847 dbgs() << ".\n";
848 });
849
850 InterferenceCache::Cursor &Intf = Cand.Intf;
851 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
852 SE->reset(LREdit);
853
854 // Create the main cross-block interval.
855 const unsigned MainIntv = SE->openIntv();
856
857 // First handle all the blocks with uses.
858 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
859 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
860 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
861 bool RegIn = BI.LiveIn &&
862 LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
863 bool RegOut = BI.LiveOut &&
864 LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
865
866 // Create separate intervals for isolated blocks with multiple uses.
867 if (!RegIn && !RegOut) {
868 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
869 if (!BI.isOneInstr()) {
870 SE->splitSingleBlock(BI);
871 SE->selectIntv(MainIntv);
872 }
873 continue;
874 }
875
876 Intf.moveToBlock(BI.MBB->getNumber());
877
878 if (RegIn && RegOut)
879 SE->splitLiveThroughBlock(BI.MBB->getNumber(),
880 MainIntv, Intf.first(),
881 MainIntv, Intf.last());
882 else if (RegIn)
883 SE->splitRegInBlock(BI, MainIntv, Intf.first());
884 else
885 SE->splitRegOutBlock(BI, MainIntv, Intf.last());
886 }
887
888 // Handle live-through blocks.
889 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
890 unsigned Number = Cand.ActiveBlocks[i];
891 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
892 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
893 if (!RegIn && !RegOut)
894 continue;
895 Intf.moveToBlock(Number);
896 SE->splitLiveThroughBlock(Number, RegIn ? MainIntv : 0, Intf.first(),
897 RegOut ? MainIntv : 0, Intf.last());
898 }
899
900 ++NumGlobalSplits;
901
902 SmallVector<unsigned, 8> IntvMap;
903 SE->finish(&IntvMap);
904 DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
905
906 ExtraRegInfo.resize(MRI->getNumVirtRegs());
907 unsigned OrigBlocks = SA->getNumLiveBlocks();
908
909 // Sort out the new intervals created by splitting. We get four kinds:
910 // - Remainder intervals should not be split again.
911 // - Candidate intervals can be assigned to Cand.PhysReg.
912 // - Block-local splits are candidates for local splitting.
913 // - DCE leftovers should go back on the queue.
914 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
915 LiveInterval &Reg = *LREdit.get(i);
916
917 // Ignore old intervals from DCE.
918 if (getStage(Reg) != RS_New)
919 continue;
920
921 // Remainder interval. Don't try splitting again, spill if it doesn't
922 // allocate.
923 if (IntvMap[i] == 0) {
924 setStage(Reg, RS_Global);
925 continue;
926 }
927
928 // Main interval. Allow repeated splitting as long as the number of live
929 // blocks is strictly decreasing.
930 if (IntvMap[i] == MainIntv) {
931 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
932 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
933 << " blocks as original.\n");
934 // Don't allow repeated splitting as a safe guard against looping.
935 setStage(Reg, RS_Global);
936 }
937 continue;
938 }
939
940 // Other intervals are treated as new. This includes local intervals created
941 // for blocks with multiple uses, and anything created by DCE.
942 }
943
944 if (VerifyEnabled)
945 MF->verify(this, "After splitting live range around region");
946 }
947
tryRegionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)948 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
949 SmallVectorImpl<LiveInterval*> &NewVRegs) {
950 float BestCost = Hysteresis * calcSpillCost();
951 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
952 const unsigned NoCand = ~0u;
953 unsigned BestCand = NoCand;
954 unsigned NumCands = 0;
955
956 Order.rewind();
957 while (unsigned PhysReg = Order.next()) {
958 // Discard bad candidates before we run out of interference cache cursors.
959 // This will only affect register classes with a lot of registers (>32).
960 if (NumCands == IntfCache.getMaxCursors()) {
961 unsigned WorstCount = ~0u;
962 unsigned Worst = 0;
963 for (unsigned i = 0; i != NumCands; ++i) {
964 if (i == BestCand)
965 continue;
966 unsigned Count = GlobalCand[i].LiveBundles.count();
967 if (Count < WorstCount)
968 Worst = i, WorstCount = Count;
969 }
970 --NumCands;
971 GlobalCand[Worst] = GlobalCand[NumCands];
972 }
973
974 if (GlobalCand.size() <= NumCands)
975 GlobalCand.resize(NumCands+1);
976 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
977 Cand.reset(IntfCache, PhysReg);
978
979 SpillPlacer->prepare(Cand.LiveBundles);
980 float Cost;
981 if (!addSplitConstraints(Cand.Intf, Cost)) {
982 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
983 continue;
984 }
985 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
986 if (Cost >= BestCost) {
987 DEBUG({
988 if (BestCand == NoCand)
989 dbgs() << " worse than no bundles\n";
990 else
991 dbgs() << " worse than "
992 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
993 });
994 continue;
995 }
996 growRegion(Cand);
997
998 SpillPlacer->finish();
999
1000 // No live bundles, defer to splitSingleBlocks().
1001 if (!Cand.LiveBundles.any()) {
1002 DEBUG(dbgs() << " no bundles.\n");
1003 continue;
1004 }
1005
1006 Cost += calcGlobalSplitCost(Cand);
1007 DEBUG({
1008 dbgs() << ", total = " << Cost << " with bundles";
1009 for (int i = Cand.LiveBundles.find_first(); i>=0;
1010 i = Cand.LiveBundles.find_next(i))
1011 dbgs() << " EB#" << i;
1012 dbgs() << ".\n";
1013 });
1014 if (Cost < BestCost) {
1015 BestCand = NumCands;
1016 BestCost = Hysteresis * Cost; // Prevent rounding effects.
1017 }
1018 ++NumCands;
1019 }
1020
1021 if (BestCand == NoCand)
1022 return 0;
1023
1024 splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1025 return 0;
1026 }
1027
1028
1029 //===----------------------------------------------------------------------===//
1030 // Local Splitting
1031 //===----------------------------------------------------------------------===//
1032
1033
1034 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1035 /// in order to use PhysReg between two entries in SA->UseSlots.
1036 ///
1037 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1038 ///
calcGapWeights(unsigned PhysReg,SmallVectorImpl<float> & GapWeight)1039 void RAGreedy::calcGapWeights(unsigned PhysReg,
1040 SmallVectorImpl<float> &GapWeight) {
1041 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1042 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1043 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1044 const unsigned NumGaps = Uses.size()-1;
1045
1046 // Start and end points for the interference check.
1047 SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1048 SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1049
1050 GapWeight.assign(NumGaps, 0.0f);
1051
1052 // Add interference from each overlapping register.
1053 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1054 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1055 .checkInterference())
1056 continue;
1057
1058 // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1059 // so we don't need InterferenceQuery.
1060 //
1061 // Interference that overlaps an instruction is counted in both gaps
1062 // surrounding the instruction. The exception is interference before
1063 // StartIdx and after StopIdx.
1064 //
1065 LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1066 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1067 // Skip the gaps before IntI.
1068 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1069 if (++Gap == NumGaps)
1070 break;
1071 if (Gap == NumGaps)
1072 break;
1073
1074 // Update the gaps covered by IntI.
1075 const float weight = IntI.value()->weight;
1076 for (; Gap != NumGaps; ++Gap) {
1077 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1078 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1079 break;
1080 }
1081 if (Gap == NumGaps)
1082 break;
1083 }
1084 }
1085 }
1086
1087 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1088 /// basic block.
1089 ///
tryLocalSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)1090 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1091 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1092 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1093 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1094
1095 // Note that it is possible to have an interval that is live-in or live-out
1096 // while only covering a single block - A phi-def can use undef values from
1097 // predecessors, and the block could be a single-block loop.
1098 // We don't bother doing anything clever about such a case, we simply assume
1099 // that the interval is continuous from FirstUse to LastUse. We should make
1100 // sure that we don't do anything illegal to such an interval, though.
1101
1102 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1103 if (Uses.size() <= 2)
1104 return 0;
1105 const unsigned NumGaps = Uses.size()-1;
1106
1107 DEBUG({
1108 dbgs() << "tryLocalSplit: ";
1109 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1110 dbgs() << ' ' << SA->UseSlots[i];
1111 dbgs() << '\n';
1112 });
1113
1114 // Since we allow local split results to be split again, there is a risk of
1115 // creating infinite loops. It is tempting to require that the new live
1116 // ranges have less instructions than the original. That would guarantee
1117 // convergence, but it is too strict. A live range with 3 instructions can be
1118 // split 2+3 (including the COPY), and we want to allow that.
1119 //
1120 // Instead we use these rules:
1121 //
1122 // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1123 // noop split, of course).
1124 // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1125 // the new ranges must have fewer instructions than before the split.
1126 // 3. New ranges with the same number of instructions are marked RS_Local,
1127 // smaller ranges are marked RS_New.
1128 //
1129 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1130 // excessive splitting and infinite loops.
1131 //
1132 bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1133
1134 // Best split candidate.
1135 unsigned BestBefore = NumGaps;
1136 unsigned BestAfter = 0;
1137 float BestDiff = 0;
1138
1139 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1140 SmallVector<float, 8> GapWeight;
1141
1142 Order.rewind();
1143 while (unsigned PhysReg = Order.next()) {
1144 // Keep track of the largest spill weight that would need to be evicted in
1145 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1146 calcGapWeights(PhysReg, GapWeight);
1147
1148 // Try to find the best sequence of gaps to close.
1149 // The new spill weight must be larger than any gap interference.
1150
1151 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1152 unsigned SplitBefore = 0, SplitAfter = 1;
1153
1154 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1155 // It is the spill weight that needs to be evicted.
1156 float MaxGap = GapWeight[0];
1157
1158 for (;;) {
1159 // Live before/after split?
1160 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1161 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1162
1163 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1164 << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1165 << " i=" << MaxGap);
1166
1167 // Stop before the interval gets so big we wouldn't be making progress.
1168 if (!LiveBefore && !LiveAfter) {
1169 DEBUG(dbgs() << " all\n");
1170 break;
1171 }
1172 // Should the interval be extended or shrunk?
1173 bool Shrink = true;
1174
1175 // How many gaps would the new range have?
1176 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1177
1178 // Legally, without causing looping?
1179 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1180
1181 if (Legal && MaxGap < HUGE_VALF) {
1182 // Estimate the new spill weight. Each instruction reads or writes the
1183 // register. Conservatively assume there are no read-modify-write
1184 // instructions.
1185 //
1186 // Try to guess the size of the new interval.
1187 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1188 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1189 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1190 // Would this split be possible to allocate?
1191 // Never allocate all gaps, we wouldn't be making progress.
1192 DEBUG(dbgs() << " w=" << EstWeight);
1193 if (EstWeight * Hysteresis >= MaxGap) {
1194 Shrink = false;
1195 float Diff = EstWeight - MaxGap;
1196 if (Diff > BestDiff) {
1197 DEBUG(dbgs() << " (best)");
1198 BestDiff = Hysteresis * Diff;
1199 BestBefore = SplitBefore;
1200 BestAfter = SplitAfter;
1201 }
1202 }
1203 }
1204
1205 // Try to shrink.
1206 if (Shrink) {
1207 if (++SplitBefore < SplitAfter) {
1208 DEBUG(dbgs() << " shrink\n");
1209 // Recompute the max when necessary.
1210 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1211 MaxGap = GapWeight[SplitBefore];
1212 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1213 MaxGap = std::max(MaxGap, GapWeight[i]);
1214 }
1215 continue;
1216 }
1217 MaxGap = 0;
1218 }
1219
1220 // Try to extend the interval.
1221 if (SplitAfter >= NumGaps) {
1222 DEBUG(dbgs() << " end\n");
1223 break;
1224 }
1225
1226 DEBUG(dbgs() << " extend\n");
1227 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1228 }
1229 }
1230
1231 // Didn't find any candidates?
1232 if (BestBefore == NumGaps)
1233 return 0;
1234
1235 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1236 << '-' << Uses[BestAfter] << ", " << BestDiff
1237 << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1238
1239 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1240 SE->reset(LREdit);
1241
1242 SE->openIntv();
1243 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1244 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1245 SE->useIntv(SegStart, SegStop);
1246 SmallVector<unsigned, 8> IntvMap;
1247 SE->finish(&IntvMap);
1248 DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1249
1250 // If the new range has the same number of instructions as before, mark it as
1251 // RS_Local so the next split will be forced to make progress. Otherwise,
1252 // leave the new intervals as RS_New so they can compete.
1253 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1254 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1255 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1256 if (NewGaps >= NumGaps) {
1257 DEBUG(dbgs() << "Tagging non-progress ranges: ");
1258 assert(!ProgressRequired && "Didn't make progress when it was required.");
1259 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1260 if (IntvMap[i] == 1) {
1261 setStage(*LREdit.get(i), RS_Local);
1262 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1263 }
1264 DEBUG(dbgs() << '\n');
1265 }
1266 ++NumLocalSplits;
1267
1268 return 0;
1269 }
1270
1271 //===----------------------------------------------------------------------===//
1272 // Live Range Splitting
1273 //===----------------------------------------------------------------------===//
1274
1275 /// trySplit - Try to split VirtReg or one of its interferences, making it
1276 /// assignable.
1277 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
trySplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<LiveInterval * > & NewVRegs)1278 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1279 SmallVectorImpl<LiveInterval*>&NewVRegs) {
1280 // Local intervals are handled separately.
1281 if (LIS->intervalIsInOneMBB(VirtReg)) {
1282 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1283 SA->analyze(&VirtReg);
1284 return tryLocalSplit(VirtReg, Order, NewVRegs);
1285 }
1286
1287 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1288
1289 // Don't iterate global splitting.
1290 // Move straight to spilling if this range was produced by a global split.
1291 if (getStage(VirtReg) >= RS_Global)
1292 return 0;
1293
1294 SA->analyze(&VirtReg);
1295
1296 // FIXME: SplitAnalysis may repair broken live ranges coming from the
1297 // coalescer. That may cause the range to become allocatable which means that
1298 // tryRegionSplit won't be making progress. This check should be replaced with
1299 // an assertion when the coalescer is fixed.
1300 if (SA->didRepairRange()) {
1301 // VirtReg has changed, so all cached queries are invalid.
1302 invalidateVirtRegs();
1303 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1304 return PhysReg;
1305 }
1306
1307 // First try to split around a region spanning multiple blocks.
1308 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1309 if (PhysReg || !NewVRegs.empty())
1310 return PhysReg;
1311
1312 // Then isolate blocks with multiple uses.
1313 SplitAnalysis::BlockPtrSet Blocks;
1314 if (SA->getMultiUseBlocks(Blocks)) {
1315 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1316 SE->reset(LREdit);
1317 SE->splitSingleBlocks(Blocks);
1318 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1319 if (VerifyEnabled)
1320 MF->verify(this, "After splitting live range around basic blocks");
1321 }
1322
1323 // Don't assign any physregs.
1324 return 0;
1325 }
1326
1327
1328 //===----------------------------------------------------------------------===//
1329 // Main Entry Point
1330 //===----------------------------------------------------------------------===//
1331
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<LiveInterval * > & NewVRegs)1332 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1333 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1334 // First try assigning a free register.
1335 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1336 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1337 return PhysReg;
1338
1339 LiveRangeStage Stage = getStage(VirtReg);
1340 DEBUG(dbgs() << StageName[Stage]
1341 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1342
1343 // Try to evict a less worthy live range, but only for ranges from the primary
1344 // queue. The RS_Second ranges already failed to do this, and they should not
1345 // get a second chance until they have been split.
1346 if (Stage != RS_Second)
1347 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1348 return PhysReg;
1349
1350 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1351
1352 // The first time we see a live range, don't try to split or spill.
1353 // Wait until the second time, when all smaller ranges have been allocated.
1354 // This gives a better picture of the interference to split around.
1355 if (Stage == RS_First) {
1356 setStage(VirtReg, RS_Second);
1357 DEBUG(dbgs() << "wait for second round\n");
1358 NewVRegs.push_back(&VirtReg);
1359 return 0;
1360 }
1361
1362 // If we couldn't allocate a register from spilling, there is probably some
1363 // invalid inline assembly. The base class wil report it.
1364 if (Stage >= RS_Spill || !VirtReg.isSpillable())
1365 return ~0u;
1366
1367 // Try splitting VirtReg or interferences.
1368 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1369 if (PhysReg || !NewVRegs.empty())
1370 return PhysReg;
1371
1372 // Finally spill VirtReg itself.
1373 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1374 LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1375 spiller().spill(LRE);
1376 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1377
1378 if (VerifyEnabled)
1379 MF->verify(this, "After spilling");
1380
1381 // The live virtual register requesting allocation was spilled, so tell
1382 // the caller not to allocate anything during this round.
1383 return 0;
1384 }
1385
runOnMachineFunction(MachineFunction & mf)1386 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1387 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1388 << "********** Function: "
1389 << ((Value*)mf.getFunction())->getName() << '\n');
1390
1391 MF = &mf;
1392 if (VerifyEnabled)
1393 MF->verify(this, "Before greedy register allocator");
1394
1395 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1396 Indexes = &getAnalysis<SlotIndexes>();
1397 DomTree = &getAnalysis<MachineDominatorTree>();
1398 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1399 Loops = &getAnalysis<MachineLoopInfo>();
1400 Bundles = &getAnalysis<EdgeBundles>();
1401 SpillPlacer = &getAnalysis<SpillPlacement>();
1402 DebugVars = &getAnalysis<LiveDebugVariables>();
1403
1404 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1405 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1406 ExtraRegInfo.clear();
1407 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1408 NextCascade = 1;
1409 IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1410
1411 allocatePhysRegs();
1412 addMBBLiveIns(MF);
1413 LIS->addKillFlags();
1414
1415 // Run rewriter
1416 {
1417 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1418 VRM->rewrite(Indexes);
1419 }
1420
1421 // Write out new DBG_VALUE instructions.
1422 DebugVars->emitDebugValues(VRM);
1423
1424 // The pass output is in VirtRegMap. Release all the transient data.
1425 releaseMemory();
1426
1427 return true;
1428 }
1429