1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a hash set that can be used to remove duplication of
11 // nodes in a graph. This code was originally created by Chris Lattner for use
12 // with SelectionDAGCSEMap, but was isolated to provide use across the llvm code
13 // set.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/Support/Allocator.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/Host.h"
22 #include <cassert>
23 #include <cstring>
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // FoldingSetNodeIDRef Implementation
28
29 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
30 /// used to lookup the node in the FoldingSetImpl.
ComputeHash() const31 unsigned FoldingSetNodeIDRef::ComputeHash() const {
32 // This is adapted from SuperFastHash by Paul Hsieh.
33 unsigned Hash = static_cast<unsigned>(Size);
34 for (const unsigned *BP = Data, *E = BP+Size; BP != E; ++BP) {
35 unsigned Data = *BP;
36 Hash += Data & 0xFFFF;
37 unsigned Tmp = ((Data >> 16) << 11) ^ Hash;
38 Hash = (Hash << 16) ^ Tmp;
39 Hash += Hash >> 11;
40 }
41
42 // Force "avalanching" of final 127 bits.
43 Hash ^= Hash << 3;
44 Hash += Hash >> 5;
45 Hash ^= Hash << 4;
46 Hash += Hash >> 17;
47 Hash ^= Hash << 25;
48 Hash += Hash >> 6;
49 return Hash;
50 }
51
operator ==(FoldingSetNodeIDRef RHS) const52 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
53 if (Size != RHS.Size) return false;
54 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
55 }
56
57 //===----------------------------------------------------------------------===//
58 // FoldingSetNodeID Implementation
59
60 /// Add* - Add various data types to Bit data.
61 ///
AddPointer(const void * Ptr)62 void FoldingSetNodeID::AddPointer(const void *Ptr) {
63 // Note: this adds pointers to the hash using sizes and endianness that
64 // depend on the host. It doesn't matter however, because hashing on
65 // pointer values in inherently unstable. Nothing should depend on the
66 // ordering of nodes in the folding set.
67 Bits.append(reinterpret_cast<unsigned *>(&Ptr),
68 reinterpret_cast<unsigned *>(&Ptr+1));
69 }
AddInteger(signed I)70 void FoldingSetNodeID::AddInteger(signed I) {
71 Bits.push_back(I);
72 }
AddInteger(unsigned I)73 void FoldingSetNodeID::AddInteger(unsigned I) {
74 Bits.push_back(I);
75 }
AddInteger(long I)76 void FoldingSetNodeID::AddInteger(long I) {
77 AddInteger((unsigned long)I);
78 }
AddInteger(unsigned long I)79 void FoldingSetNodeID::AddInteger(unsigned long I) {
80 if (sizeof(long) == sizeof(int))
81 AddInteger(unsigned(I));
82 else if (sizeof(long) == sizeof(long long)) {
83 AddInteger((unsigned long long)I);
84 } else {
85 llvm_unreachable("unexpected sizeof(long)");
86 }
87 }
AddInteger(long long I)88 void FoldingSetNodeID::AddInteger(long long I) {
89 AddInteger((unsigned long long)I);
90 }
AddInteger(unsigned long long I)91 void FoldingSetNodeID::AddInteger(unsigned long long I) {
92 AddInteger(unsigned(I));
93 if ((uint64_t)(unsigned)I != I)
94 Bits.push_back(unsigned(I >> 32));
95 }
96
AddString(StringRef String)97 void FoldingSetNodeID::AddString(StringRef String) {
98 unsigned Size = String.size();
99 Bits.push_back(Size);
100 if (!Size) return;
101
102 unsigned Units = Size / 4;
103 unsigned Pos = 0;
104 const unsigned *Base = (const unsigned*) String.data();
105
106 // If the string is aligned do a bulk transfer.
107 if (!((intptr_t)Base & 3)) {
108 Bits.append(Base, Base + Units);
109 Pos = (Units + 1) * 4;
110 } else {
111 // Otherwise do it the hard way.
112 // To be compatible with above bulk transfer, we need to take endianness
113 // into account.
114 if (sys::isBigEndianHost()) {
115 for (Pos += 4; Pos <= Size; Pos += 4) {
116 unsigned V = ((unsigned char)String[Pos - 4] << 24) |
117 ((unsigned char)String[Pos - 3] << 16) |
118 ((unsigned char)String[Pos - 2] << 8) |
119 (unsigned char)String[Pos - 1];
120 Bits.push_back(V);
121 }
122 } else {
123 assert(sys::isLittleEndianHost() && "Unexpected host endianness");
124 for (Pos += 4; Pos <= Size; Pos += 4) {
125 unsigned V = ((unsigned char)String[Pos - 1] << 24) |
126 ((unsigned char)String[Pos - 2] << 16) |
127 ((unsigned char)String[Pos - 3] << 8) |
128 (unsigned char)String[Pos - 4];
129 Bits.push_back(V);
130 }
131 }
132 }
133
134 // With the leftover bits.
135 unsigned V = 0;
136 // Pos will have overshot size by 4 - #bytes left over.
137 // No need to take endianness into account here - this is always executed.
138 switch (Pos - Size) {
139 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
140 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
141 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
142 default: return; // Nothing left.
143 }
144
145 Bits.push_back(V);
146 }
147
148 // AddNodeID - Adds the Bit data of another ID to *this.
AddNodeID(const FoldingSetNodeID & ID)149 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
150 Bits.append(ID.Bits.begin(), ID.Bits.end());
151 }
152
153 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
154 /// lookup the node in the FoldingSetImpl.
ComputeHash() const155 unsigned FoldingSetNodeID::ComputeHash() const {
156 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
157 }
158
159 /// operator== - Used to compare two nodes to each other.
160 ///
operator ==(const FoldingSetNodeID & RHS) const161 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS)const{
162 return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
163 }
164
165 /// operator== - Used to compare two nodes to each other.
166 ///
operator ==(FoldingSetNodeIDRef RHS) const167 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
168 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
169 }
170
171 /// Intern - Copy this node's data to a memory region allocated from the
172 /// given allocator and return a FoldingSetNodeIDRef describing the
173 /// interned data.
174 FoldingSetNodeIDRef
Intern(BumpPtrAllocator & Allocator) const175 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
176 unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
177 std::uninitialized_copy(Bits.begin(), Bits.end(), New);
178 return FoldingSetNodeIDRef(New, Bits.size());
179 }
180
181 //===----------------------------------------------------------------------===//
182 /// Helper functions for FoldingSetImpl.
183
184 /// GetNextPtr - In order to save space, each bucket is a
185 /// singly-linked-list. In order to make deletion more efficient, we make
186 /// the list circular, so we can delete a node without computing its hash.
187 /// The problem with this is that the start of the hash buckets are not
188 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
189 /// use GetBucketPtr when this happens.
GetNextPtr(void * NextInBucketPtr)190 static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
191 // The low bit is set if this is the pointer back to the bucket.
192 if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
193 return 0;
194
195 return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
196 }
197
198
199 /// testing.
GetBucketPtr(void * NextInBucketPtr)200 static void **GetBucketPtr(void *NextInBucketPtr) {
201 intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
202 assert((Ptr & 1) && "Not a bucket pointer");
203 return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
204 }
205
206 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
207 /// the specified ID.
GetBucketFor(unsigned Hash,void ** Buckets,unsigned NumBuckets)208 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
209 // NumBuckets is always a power of 2.
210 unsigned BucketNum = Hash & (NumBuckets-1);
211 return Buckets + BucketNum;
212 }
213
214 /// AllocateBuckets - Allocated initialized bucket memory.
AllocateBuckets(unsigned NumBuckets)215 static void **AllocateBuckets(unsigned NumBuckets) {
216 void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
217 // Set the very last bucket to be a non-null "pointer".
218 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
219 return Buckets;
220 }
221
222 //===----------------------------------------------------------------------===//
223 // FoldingSetImpl Implementation
224
FoldingSetImpl(unsigned Log2InitSize)225 FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
226 assert(5 < Log2InitSize && Log2InitSize < 32 &&
227 "Initial hash table size out of range");
228 NumBuckets = 1 << Log2InitSize;
229 Buckets = AllocateBuckets(NumBuckets);
230 NumNodes = 0;
231 }
~FoldingSetImpl()232 FoldingSetImpl::~FoldingSetImpl() {
233 free(Buckets);
234 }
clear()235 void FoldingSetImpl::clear() {
236 // Set all but the last bucket to null pointers.
237 memset(Buckets, 0, NumBuckets*sizeof(void*));
238
239 // Set the very last bucket to be a non-null "pointer".
240 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
241
242 // Reset the node count to zero.
243 NumNodes = 0;
244 }
245
246 /// GrowHashTable - Double the size of the hash table and rehash everything.
247 ///
GrowHashTable()248 void FoldingSetImpl::GrowHashTable() {
249 void **OldBuckets = Buckets;
250 unsigned OldNumBuckets = NumBuckets;
251 NumBuckets <<= 1;
252
253 // Clear out new buckets.
254 Buckets = AllocateBuckets(NumBuckets);
255 NumNodes = 0;
256
257 // Walk the old buckets, rehashing nodes into their new place.
258 FoldingSetNodeID TempID;
259 for (unsigned i = 0; i != OldNumBuckets; ++i) {
260 void *Probe = OldBuckets[i];
261 if (!Probe) continue;
262 while (Node *NodeInBucket = GetNextPtr(Probe)) {
263 // Figure out the next link, remove NodeInBucket from the old link.
264 Probe = NodeInBucket->getNextInBucket();
265 NodeInBucket->SetNextInBucket(0);
266
267 // Insert the node into the new bucket, after recomputing the hash.
268 InsertNode(NodeInBucket,
269 GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
270 Buckets, NumBuckets));
271 TempID.clear();
272 }
273 }
274
275 free(OldBuckets);
276 }
277
278 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
279 /// return it. If not, return the insertion token that will make insertion
280 /// faster.
281 FoldingSetImpl::Node
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)282 *FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
283 void *&InsertPos) {
284
285 void **Bucket = GetBucketFor(ID.ComputeHash(), Buckets, NumBuckets);
286 void *Probe = *Bucket;
287
288 InsertPos = 0;
289
290 FoldingSetNodeID TempID;
291 while (Node *NodeInBucket = GetNextPtr(Probe)) {
292 if (NodeEquals(NodeInBucket, ID, TempID))
293 return NodeInBucket;
294 TempID.clear();
295
296 Probe = NodeInBucket->getNextInBucket();
297 }
298
299 // Didn't find the node, return null with the bucket as the InsertPos.
300 InsertPos = Bucket;
301 return 0;
302 }
303
304 /// InsertNode - Insert the specified node into the folding set, knowing that it
305 /// is not already in the map. InsertPos must be obtained from
306 /// FindNodeOrInsertPos.
InsertNode(Node * N,void * InsertPos)307 void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
308 assert(N->getNextInBucket() == 0);
309 // Do we need to grow the hashtable?
310 if (NumNodes+1 > NumBuckets*2) {
311 GrowHashTable();
312 FoldingSetNodeID TempID;
313 InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
314 }
315
316 ++NumNodes;
317
318 /// The insert position is actually a bucket pointer.
319 void **Bucket = static_cast<void**>(InsertPos);
320
321 void *Next = *Bucket;
322
323 // If this is the first insertion into this bucket, its next pointer will be
324 // null. Pretend as if it pointed to itself, setting the low bit to indicate
325 // that it is a pointer to the bucket.
326 if (Next == 0)
327 Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
328
329 // Set the node's next pointer, and make the bucket point to the node.
330 N->SetNextInBucket(Next);
331 *Bucket = N;
332 }
333
334 /// RemoveNode - Remove a node from the folding set, returning true if one was
335 /// removed or false if the node was not in the folding set.
RemoveNode(Node * N)336 bool FoldingSetImpl::RemoveNode(Node *N) {
337 // Because each bucket is a circular list, we don't need to compute N's hash
338 // to remove it.
339 void *Ptr = N->getNextInBucket();
340 if (Ptr == 0) return false; // Not in folding set.
341
342 --NumNodes;
343 N->SetNextInBucket(0);
344
345 // Remember what N originally pointed to, either a bucket or another node.
346 void *NodeNextPtr = Ptr;
347
348 // Chase around the list until we find the node (or bucket) which points to N.
349 while (true) {
350 if (Node *NodeInBucket = GetNextPtr(Ptr)) {
351 // Advance pointer.
352 Ptr = NodeInBucket->getNextInBucket();
353
354 // We found a node that points to N, change it to point to N's next node,
355 // removing N from the list.
356 if (Ptr == N) {
357 NodeInBucket->SetNextInBucket(NodeNextPtr);
358 return true;
359 }
360 } else {
361 void **Bucket = GetBucketPtr(Ptr);
362 Ptr = *Bucket;
363
364 // If we found that the bucket points to N, update the bucket to point to
365 // whatever is next.
366 if (Ptr == N) {
367 *Bucket = NodeNextPtr;
368 return true;
369 }
370 }
371 }
372 }
373
374 /// GetOrInsertNode - If there is an existing simple Node exactly
375 /// equal to the specified node, return it. Otherwise, insert 'N' and it
376 /// instead.
GetOrInsertNode(FoldingSetImpl::Node * N)377 FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
378 FoldingSetNodeID ID;
379 GetNodeProfile(N, ID);
380 void *IP;
381 if (Node *E = FindNodeOrInsertPos(ID, IP))
382 return E;
383 InsertNode(N, IP);
384 return N;
385 }
386
387 //===----------------------------------------------------------------------===//
388 // FoldingSetIteratorImpl Implementation
389
FoldingSetIteratorImpl(void ** Bucket)390 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
391 // Skip to the first non-null non-self-cycle bucket.
392 while (*Bucket != reinterpret_cast<void*>(-1) &&
393 (*Bucket == 0 || GetNextPtr(*Bucket) == 0))
394 ++Bucket;
395
396 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
397 }
398
advance()399 void FoldingSetIteratorImpl::advance() {
400 // If there is another link within this bucket, go to it.
401 void *Probe = NodePtr->getNextInBucket();
402
403 if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
404 NodePtr = NextNodeInBucket;
405 else {
406 // Otherwise, this is the last link in this bucket.
407 void **Bucket = GetBucketPtr(Probe);
408
409 // Skip to the next non-null non-self-cycle bucket.
410 do {
411 ++Bucket;
412 } while (*Bucket != reinterpret_cast<void*>(-1) &&
413 (*Bucket == 0 || GetNextPtr(*Bucket) == 0));
414
415 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
416 }
417 }
418
419 //===----------------------------------------------------------------------===//
420 // FoldingSetBucketIteratorImpl Implementation
421
FoldingSetBucketIteratorImpl(void ** Bucket)422 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
423 Ptr = (*Bucket == 0 || GetNextPtr(*Bucket) == 0) ? (void*) Bucket : *Bucket;
424 }
425