1 //===-- MBlazeISelLowering.cpp - MBlaze DAG Lowering Implementation -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that MBlaze uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "mblaze-lower"
16 #include "MBlazeISelLowering.h"
17 #include "MBlazeMachineFunction.h"
18 #include "MBlazeTargetMachine.h"
19 #include "MBlazeTargetObjectFile.h"
20 #include "MBlazeSubtarget.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/CallingConv.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37
38 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
39 CCValAssign::LocInfo &LocInfo,
40 ISD::ArgFlagsTy &ArgFlags,
41 CCState &State);
42
getTargetNodeName(unsigned Opcode) const43 const char *MBlazeTargetLowering::getTargetNodeName(unsigned Opcode) const {
44 switch (Opcode) {
45 case MBlazeISD::JmpLink : return "MBlazeISD::JmpLink";
46 case MBlazeISD::GPRel : return "MBlazeISD::GPRel";
47 case MBlazeISD::Wrap : return "MBlazeISD::Wrap";
48 case MBlazeISD::ICmp : return "MBlazeISD::ICmp";
49 case MBlazeISD::Ret : return "MBlazeISD::Ret";
50 case MBlazeISD::Select_CC : return "MBlazeISD::Select_CC";
51 default : return NULL;
52 }
53 }
54
MBlazeTargetLowering(MBlazeTargetMachine & TM)55 MBlazeTargetLowering::MBlazeTargetLowering(MBlazeTargetMachine &TM)
56 : TargetLowering(TM, new MBlazeTargetObjectFile()) {
57 Subtarget = &TM.getSubtarget<MBlazeSubtarget>();
58
59 // MBlaze does not have i1 type, so use i32 for
60 // setcc operations results (slt, sgt, ...).
61 setBooleanContents(ZeroOrOneBooleanContent);
62
63 // Set up the register classes
64 addRegisterClass(MVT::i32, MBlaze::GPRRegisterClass);
65 if (Subtarget->hasFPU()) {
66 addRegisterClass(MVT::f32, MBlaze::GPRRegisterClass);
67 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
68 }
69
70 // Floating point operations which are not supported
71 setOperationAction(ISD::FREM, MVT::f32, Expand);
72 setOperationAction(ISD::FMA, MVT::f32, Expand);
73 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Expand);
74 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Expand);
75 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
76 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
77 setOperationAction(ISD::FP_ROUND, MVT::f32, Expand);
78 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
79 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
80 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
81 setOperationAction(ISD::FSIN, MVT::f32, Expand);
82 setOperationAction(ISD::FCOS, MVT::f32, Expand);
83 setOperationAction(ISD::FPOWI, MVT::f32, Expand);
84 setOperationAction(ISD::FPOW, MVT::f32, Expand);
85 setOperationAction(ISD::FLOG, MVT::f32, Expand);
86 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
87 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
88 setOperationAction(ISD::FEXP, MVT::f32, Expand);
89
90 // Load extented operations for i1 types must be promoted
91 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
92 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
93 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
94
95 // Sign extended loads must be expanded
96 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
97 setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
98
99 // MBlaze has no REM or DIVREM operations.
100 setOperationAction(ISD::UREM, MVT::i32, Expand);
101 setOperationAction(ISD::SREM, MVT::i32, Expand);
102 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
103 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
104
105 // If the processor doesn't support multiply then expand it
106 if (!Subtarget->hasMul()) {
107 setOperationAction(ISD::MUL, MVT::i32, Expand);
108 }
109
110 // If the processor doesn't support 64-bit multiply then expand
111 if (!Subtarget->hasMul() || !Subtarget->hasMul64()) {
112 setOperationAction(ISD::MULHS, MVT::i32, Expand);
113 setOperationAction(ISD::MULHS, MVT::i64, Expand);
114 setOperationAction(ISD::MULHU, MVT::i32, Expand);
115 setOperationAction(ISD::MULHU, MVT::i64, Expand);
116 }
117
118 // If the processor doesn't support division then expand
119 if (!Subtarget->hasDiv()) {
120 setOperationAction(ISD::UDIV, MVT::i32, Expand);
121 setOperationAction(ISD::SDIV, MVT::i32, Expand);
122 }
123
124 // Expand unsupported conversions
125 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
126 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
127
128 // Expand SELECT_CC
129 setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
130
131 // MBlaze doesn't have MUL_LOHI
132 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
133 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
134 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
135 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
136
137 // Used by legalize types to correctly generate the setcc result.
138 // Without this, every float setcc comes with a AND/OR with the result,
139 // we don't want this, since the fpcmp result goes to a flag register,
140 // which is used implicitly by brcond and select operations.
141 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
142 AddPromotedToType(ISD::SELECT, MVT::i1, MVT::i32);
143 AddPromotedToType(ISD::SELECT_CC, MVT::i1, MVT::i32);
144
145 // MBlaze Custom Operations
146 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
147 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
148 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
149 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
150
151 // Variable Argument support
152 setOperationAction(ISD::VASTART, MVT::Other, Custom);
153 setOperationAction(ISD::VAEND, MVT::Other, Expand);
154 setOperationAction(ISD::VAARG, MVT::Other, Expand);
155 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
156
157
158 // Operations not directly supported by MBlaze.
159 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
160 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
161 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
162 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
163 setOperationAction(ISD::ROTL, MVT::i32, Expand);
164 setOperationAction(ISD::ROTR, MVT::i32, Expand);
165 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
166 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
167 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
168 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
169 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
170 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
171 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
172
173 // We don't have line number support yet.
174 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
175
176 // Use the default for now
177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179
180 // MBlaze doesn't have extending float->double load/store
181 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
182 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
183
184 setMinFunctionAlignment(2);
185
186 setStackPointerRegisterToSaveRestore(MBlaze::R1);
187 computeRegisterProperties();
188 }
189
getSetCCResultType(EVT VT) const190 MVT::SimpleValueType MBlazeTargetLowering::getSetCCResultType(EVT VT) const {
191 return MVT::i32;
192 }
193
LowerOperation(SDValue Op,SelectionDAG & DAG) const194 SDValue MBlazeTargetLowering::LowerOperation(SDValue Op,
195 SelectionDAG &DAG) const {
196 switch (Op.getOpcode())
197 {
198 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
199 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
200 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
201 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
202 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
203 case ISD::VASTART: return LowerVASTART(Op, DAG);
204 }
205 return SDValue();
206 }
207
208 //===----------------------------------------------------------------------===//
209 // Lower helper functions
210 //===----------------------------------------------------------------------===//
211 MachineBasicBlock*
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const212 MBlazeTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
213 MachineBasicBlock *MBB)
214 const {
215 switch (MI->getOpcode()) {
216 default: assert(false && "Unexpected instr type to insert");
217
218 case MBlaze::ShiftRL:
219 case MBlaze::ShiftRA:
220 case MBlaze::ShiftL:
221 return EmitCustomShift(MI, MBB);
222
223 case MBlaze::Select_FCC:
224 case MBlaze::Select_CC:
225 return EmitCustomSelect(MI, MBB);
226
227 case MBlaze::CAS32:
228 case MBlaze::SWP32:
229 case MBlaze::LAA32:
230 case MBlaze::LAS32:
231 case MBlaze::LAD32:
232 case MBlaze::LAO32:
233 case MBlaze::LAX32:
234 case MBlaze::LAN32:
235 return EmitCustomAtomic(MI, MBB);
236
237 case MBlaze::MEMBARRIER:
238 // The Microblaze does not need memory barriers. Just delete the pseudo
239 // instruction and finish.
240 MI->eraseFromParent();
241 return MBB;
242 }
243 }
244
245 MachineBasicBlock*
EmitCustomShift(MachineInstr * MI,MachineBasicBlock * MBB) const246 MBlazeTargetLowering::EmitCustomShift(MachineInstr *MI,
247 MachineBasicBlock *MBB) const {
248 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
249 DebugLoc dl = MI->getDebugLoc();
250
251 // To "insert" a shift left instruction, we actually have to insert a
252 // simple loop. The incoming instruction knows the destination vreg to
253 // set, the source vreg to operate over and the shift amount.
254 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
255 MachineFunction::iterator It = MBB;
256 ++It;
257
258 // start:
259 // andi samt, samt, 31
260 // beqid samt, finish
261 // add dst, src, r0
262 // loop:
263 // addik samt, samt, -1
264 // sra dst, dst
265 // bneid samt, loop
266 // nop
267 // finish:
268 MachineFunction *F = MBB->getParent();
269 MachineRegisterInfo &R = F->getRegInfo();
270 MachineBasicBlock *loop = F->CreateMachineBasicBlock(LLVM_BB);
271 MachineBasicBlock *finish = F->CreateMachineBasicBlock(LLVM_BB);
272 F->insert(It, loop);
273 F->insert(It, finish);
274
275 // Update machine-CFG edges by transferring adding all successors and
276 // remaining instructions from the current block to the new block which
277 // will contain the Phi node for the select.
278 finish->splice(finish->begin(), MBB,
279 llvm::next(MachineBasicBlock::iterator(MI)),
280 MBB->end());
281 finish->transferSuccessorsAndUpdatePHIs(MBB);
282
283 // Add the true and fallthrough blocks as its successors.
284 MBB->addSuccessor(loop);
285 MBB->addSuccessor(finish);
286
287 // Next, add the finish block as a successor of the loop block
288 loop->addSuccessor(finish);
289 loop->addSuccessor(loop);
290
291 unsigned IAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
292 BuildMI(MBB, dl, TII->get(MBlaze::ANDI), IAMT)
293 .addReg(MI->getOperand(2).getReg())
294 .addImm(31);
295
296 unsigned IVAL = R.createVirtualRegister(MBlaze::GPRRegisterClass);
297 BuildMI(MBB, dl, TII->get(MBlaze::ADDIK), IVAL)
298 .addReg(MI->getOperand(1).getReg())
299 .addImm(0);
300
301 BuildMI(MBB, dl, TII->get(MBlaze::BEQID))
302 .addReg(IAMT)
303 .addMBB(finish);
304
305 unsigned DST = R.createVirtualRegister(MBlaze::GPRRegisterClass);
306 unsigned NDST = R.createVirtualRegister(MBlaze::GPRRegisterClass);
307 BuildMI(loop, dl, TII->get(MBlaze::PHI), DST)
308 .addReg(IVAL).addMBB(MBB)
309 .addReg(NDST).addMBB(loop);
310
311 unsigned SAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
312 unsigned NAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
313 BuildMI(loop, dl, TII->get(MBlaze::PHI), SAMT)
314 .addReg(IAMT).addMBB(MBB)
315 .addReg(NAMT).addMBB(loop);
316
317 if (MI->getOpcode() == MBlaze::ShiftL)
318 BuildMI(loop, dl, TII->get(MBlaze::ADD), NDST).addReg(DST).addReg(DST);
319 else if (MI->getOpcode() == MBlaze::ShiftRA)
320 BuildMI(loop, dl, TII->get(MBlaze::SRA), NDST).addReg(DST);
321 else if (MI->getOpcode() == MBlaze::ShiftRL)
322 BuildMI(loop, dl, TII->get(MBlaze::SRL), NDST).addReg(DST);
323 else
324 llvm_unreachable("Cannot lower unknown shift instruction");
325
326 BuildMI(loop, dl, TII->get(MBlaze::ADDIK), NAMT)
327 .addReg(SAMT)
328 .addImm(-1);
329
330 BuildMI(loop, dl, TII->get(MBlaze::BNEID))
331 .addReg(NAMT)
332 .addMBB(loop);
333
334 BuildMI(*finish, finish->begin(), dl,
335 TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
336 .addReg(IVAL).addMBB(MBB)
337 .addReg(NDST).addMBB(loop);
338
339 // The pseudo instruction is no longer needed so remove it
340 MI->eraseFromParent();
341 return finish;
342 }
343
344 MachineBasicBlock*
EmitCustomSelect(MachineInstr * MI,MachineBasicBlock * MBB) const345 MBlazeTargetLowering::EmitCustomSelect(MachineInstr *MI,
346 MachineBasicBlock *MBB) const {
347 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
348 DebugLoc dl = MI->getDebugLoc();
349
350 // To "insert" a SELECT_CC instruction, we actually have to insert the
351 // diamond control-flow pattern. The incoming instruction knows the
352 // destination vreg to set, the condition code register to branch on, the
353 // true/false values to select between, and a branch opcode to use.
354 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
355 MachineFunction::iterator It = MBB;
356 ++It;
357
358 // thisMBB:
359 // ...
360 // TrueVal = ...
361 // setcc r1, r2, r3
362 // bNE r1, r0, copy1MBB
363 // fallthrough --> copy0MBB
364 MachineFunction *F = MBB->getParent();
365 MachineBasicBlock *flsBB = F->CreateMachineBasicBlock(LLVM_BB);
366 MachineBasicBlock *dneBB = F->CreateMachineBasicBlock(LLVM_BB);
367
368 unsigned Opc;
369 switch (MI->getOperand(4).getImm()) {
370 default: llvm_unreachable("Unknown branch condition");
371 case MBlazeCC::EQ: Opc = MBlaze::BEQID; break;
372 case MBlazeCC::NE: Opc = MBlaze::BNEID; break;
373 case MBlazeCC::GT: Opc = MBlaze::BGTID; break;
374 case MBlazeCC::LT: Opc = MBlaze::BLTID; break;
375 case MBlazeCC::GE: Opc = MBlaze::BGEID; break;
376 case MBlazeCC::LE: Opc = MBlaze::BLEID; break;
377 }
378
379 F->insert(It, flsBB);
380 F->insert(It, dneBB);
381
382 // Transfer the remainder of MBB and its successor edges to dneBB.
383 dneBB->splice(dneBB->begin(), MBB,
384 llvm::next(MachineBasicBlock::iterator(MI)),
385 MBB->end());
386 dneBB->transferSuccessorsAndUpdatePHIs(MBB);
387
388 MBB->addSuccessor(flsBB);
389 MBB->addSuccessor(dneBB);
390 flsBB->addSuccessor(dneBB);
391
392 BuildMI(MBB, dl, TII->get(Opc))
393 .addReg(MI->getOperand(3).getReg())
394 .addMBB(dneBB);
395
396 // sinkMBB:
397 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
398 // ...
399 //BuildMI(dneBB, dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
400 // .addReg(MI->getOperand(1).getReg()).addMBB(flsBB)
401 // .addReg(MI->getOperand(2).getReg()).addMBB(BB);
402
403 BuildMI(*dneBB, dneBB->begin(), dl,
404 TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
405 .addReg(MI->getOperand(2).getReg()).addMBB(flsBB)
406 .addReg(MI->getOperand(1).getReg()).addMBB(MBB);
407
408 MI->eraseFromParent(); // The pseudo instruction is gone now.
409 return dneBB;
410 }
411
412 MachineBasicBlock*
EmitCustomAtomic(MachineInstr * MI,MachineBasicBlock * MBB) const413 MBlazeTargetLowering::EmitCustomAtomic(MachineInstr *MI,
414 MachineBasicBlock *MBB) const {
415 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
416 DebugLoc dl = MI->getDebugLoc();
417
418 // All atomic instructions on the Microblaze are implemented using the
419 // load-linked / store-conditional style atomic instruction sequences.
420 // Thus, all operations will look something like the following:
421 //
422 // start:
423 // lwx RV, RP, 0
424 // <do stuff>
425 // swx RV, RP, 0
426 // addic RC, R0, 0
427 // bneid RC, start
428 //
429 // exit:
430 //
431 // To "insert" a shift left instruction, we actually have to insert a
432 // simple loop. The incoming instruction knows the destination vreg to
433 // set, the source vreg to operate over and the shift amount.
434 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
435 MachineFunction::iterator It = MBB;
436 ++It;
437
438 // start:
439 // andi samt, samt, 31
440 // beqid samt, finish
441 // add dst, src, r0
442 // loop:
443 // addik samt, samt, -1
444 // sra dst, dst
445 // bneid samt, loop
446 // nop
447 // finish:
448 MachineFunction *F = MBB->getParent();
449 MachineRegisterInfo &R = F->getRegInfo();
450
451 // Create the start and exit basic blocks for the atomic operation
452 MachineBasicBlock *start = F->CreateMachineBasicBlock(LLVM_BB);
453 MachineBasicBlock *exit = F->CreateMachineBasicBlock(LLVM_BB);
454 F->insert(It, start);
455 F->insert(It, exit);
456
457 // Update machine-CFG edges by transferring adding all successors and
458 // remaining instructions from the current block to the new block which
459 // will contain the Phi node for the select.
460 exit->splice(exit->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)),
461 MBB->end());
462 exit->transferSuccessorsAndUpdatePHIs(MBB);
463
464 // Add the fallthrough block as its successors.
465 MBB->addSuccessor(start);
466
467 BuildMI(start, dl, TII->get(MBlaze::LWX), MI->getOperand(0).getReg())
468 .addReg(MI->getOperand(1).getReg())
469 .addReg(MBlaze::R0);
470
471 MachineBasicBlock *final = start;
472 unsigned finalReg = 0;
473
474 switch (MI->getOpcode()) {
475 default: llvm_unreachable("Cannot lower unknown atomic instruction!");
476
477 case MBlaze::SWP32:
478 finalReg = MI->getOperand(2).getReg();
479 start->addSuccessor(exit);
480 start->addSuccessor(start);
481 break;
482
483 case MBlaze::LAN32:
484 case MBlaze::LAX32:
485 case MBlaze::LAO32:
486 case MBlaze::LAD32:
487 case MBlaze::LAS32:
488 case MBlaze::LAA32: {
489 unsigned opcode = 0;
490 switch (MI->getOpcode()) {
491 default: llvm_unreachable("Cannot lower unknown atomic load!");
492 case MBlaze::LAA32: opcode = MBlaze::ADDIK; break;
493 case MBlaze::LAS32: opcode = MBlaze::RSUBIK; break;
494 case MBlaze::LAD32: opcode = MBlaze::AND; break;
495 case MBlaze::LAO32: opcode = MBlaze::OR; break;
496 case MBlaze::LAX32: opcode = MBlaze::XOR; break;
497 case MBlaze::LAN32: opcode = MBlaze::AND; break;
498 }
499
500 finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass);
501 start->addSuccessor(exit);
502 start->addSuccessor(start);
503
504 BuildMI(start, dl, TII->get(opcode), finalReg)
505 .addReg(MI->getOperand(0).getReg())
506 .addReg(MI->getOperand(2).getReg());
507
508 if (MI->getOpcode() == MBlaze::LAN32) {
509 unsigned tmp = finalReg;
510 finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass);
511 BuildMI(start, dl, TII->get(MBlaze::XORI), finalReg)
512 .addReg(tmp)
513 .addImm(-1);
514 }
515 break;
516 }
517
518 case MBlaze::CAS32: {
519 finalReg = MI->getOperand(3).getReg();
520 final = F->CreateMachineBasicBlock(LLVM_BB);
521
522 F->insert(It, final);
523 start->addSuccessor(exit);
524 start->addSuccessor(final);
525 final->addSuccessor(exit);
526 final->addSuccessor(start);
527
528 unsigned CMP = R.createVirtualRegister(MBlaze::GPRRegisterClass);
529 BuildMI(start, dl, TII->get(MBlaze::CMP), CMP)
530 .addReg(MI->getOperand(0).getReg())
531 .addReg(MI->getOperand(2).getReg());
532
533 BuildMI(start, dl, TII->get(MBlaze::BNEID))
534 .addReg(CMP)
535 .addMBB(exit);
536
537 final->moveAfter(start);
538 exit->moveAfter(final);
539 break;
540 }
541 }
542
543 unsigned CHK = R.createVirtualRegister(MBlaze::GPRRegisterClass);
544 BuildMI(final, dl, TII->get(MBlaze::SWX))
545 .addReg(finalReg)
546 .addReg(MI->getOperand(1).getReg())
547 .addReg(MBlaze::R0);
548
549 BuildMI(final, dl, TII->get(MBlaze::ADDIC), CHK)
550 .addReg(MBlaze::R0)
551 .addImm(0);
552
553 BuildMI(final, dl, TII->get(MBlaze::BNEID))
554 .addReg(CHK)
555 .addMBB(start);
556
557 // The pseudo instruction is no longer needed so remove it
558 MI->eraseFromParent();
559 return exit;
560 }
561
562 //===----------------------------------------------------------------------===//
563 // Misc Lower Operation implementation
564 //===----------------------------------------------------------------------===//
565 //
566
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const567 SDValue MBlazeTargetLowering::LowerSELECT_CC(SDValue Op,
568 SelectionDAG &DAG) const {
569 SDValue LHS = Op.getOperand(0);
570 SDValue RHS = Op.getOperand(1);
571 SDValue TrueVal = Op.getOperand(2);
572 SDValue FalseVal = Op.getOperand(3);
573 DebugLoc dl = Op.getDebugLoc();
574 unsigned Opc;
575
576 SDValue CompareFlag;
577 if (LHS.getValueType() == MVT::i32) {
578 Opc = MBlazeISD::Select_CC;
579 CompareFlag = DAG.getNode(MBlazeISD::ICmp, dl, MVT::i32, LHS, RHS)
580 .getValue(1);
581 } else {
582 llvm_unreachable("Cannot lower select_cc with unknown type");
583 }
584
585 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
586 CompareFlag);
587 }
588
589 SDValue MBlazeTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const590 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
591 // FIXME there isn't actually debug info here
592 DebugLoc dl = Op.getDebugLoc();
593 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
594 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
595
596 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, GA);
597 }
598
599 SDValue MBlazeTargetLowering::
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const600 LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
601 llvm_unreachable("TLS not implemented for MicroBlaze.");
602 return SDValue(); // Not reached
603 }
604
605 SDValue MBlazeTargetLowering::
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const606 LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
607 SDValue ResNode;
608 SDValue HiPart;
609 // FIXME there isn't actually debug info here
610 DebugLoc dl = Op.getDebugLoc();
611
612 EVT PtrVT = Op.getValueType();
613 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
614
615 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 0);
616 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, JTI);
617 }
618
619 SDValue MBlazeTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const620 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
621 SDValue ResNode;
622 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
623 const Constant *C = N->getConstVal();
624 DebugLoc dl = Op.getDebugLoc();
625
626 SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
627 N->getOffset(), 0);
628 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, CP);
629 }
630
LowerVASTART(SDValue Op,SelectionDAG & DAG) const631 SDValue MBlazeTargetLowering::LowerVASTART(SDValue Op,
632 SelectionDAG &DAG) const {
633 MachineFunction &MF = DAG.getMachineFunction();
634 MBlazeFunctionInfo *FuncInfo = MF.getInfo<MBlazeFunctionInfo>();
635
636 DebugLoc dl = Op.getDebugLoc();
637 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
638 getPointerTy());
639
640 // vastart just stores the address of the VarArgsFrameIndex slot into the
641 // memory location argument.
642 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
643 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
644 MachinePointerInfo(SV),
645 false, false, 0);
646 }
647
648 //===----------------------------------------------------------------------===//
649 // Calling Convention Implementation
650 //===----------------------------------------------------------------------===//
651
652 #include "MBlazeGenCallingConv.inc"
653
CC_MBlaze_AssignReg(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)654 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
655 CCValAssign::LocInfo &LocInfo,
656 ISD::ArgFlagsTy &ArgFlags,
657 CCState &State) {
658 static const unsigned ArgRegs[] = {
659 MBlaze::R5, MBlaze::R6, MBlaze::R7,
660 MBlaze::R8, MBlaze::R9, MBlaze::R10
661 };
662
663 const unsigned NumArgRegs = array_lengthof(ArgRegs);
664 unsigned Reg = State.AllocateReg(ArgRegs, NumArgRegs);
665 if (!Reg) return false;
666
667 unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
668 State.AllocateStack(SizeInBytes, SizeInBytes);
669 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
670
671 return true;
672 }
673
674 //===----------------------------------------------------------------------===//
675 // Call Calling Convention Implementation
676 //===----------------------------------------------------------------------===//
677
678 /// LowerCall - functions arguments are copied from virtual regs to
679 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
680 /// TODO: isVarArg, isTailCall.
681 SDValue MBlazeTargetLowering::
LowerCall(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool & isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const682 LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
683 bool isVarArg, bool &isTailCall,
684 const SmallVectorImpl<ISD::OutputArg> &Outs,
685 const SmallVectorImpl<SDValue> &OutVals,
686 const SmallVectorImpl<ISD::InputArg> &Ins,
687 DebugLoc dl, SelectionDAG &DAG,
688 SmallVectorImpl<SDValue> &InVals) const {
689 // MBlaze does not yet support tail call optimization
690 isTailCall = false;
691
692 // The MBlaze requires stack slots for arguments passed to var arg
693 // functions even if they are passed in registers.
694 bool needsRegArgSlots = isVarArg;
695
696 MachineFunction &MF = DAG.getMachineFunction();
697 MachineFrameInfo *MFI = MF.getFrameInfo();
698 const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
699
700 // Analyze operands of the call, assigning locations to each operand.
701 SmallVector<CCValAssign, 16> ArgLocs;
702 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
703 getTargetMachine(), ArgLocs, *DAG.getContext());
704 CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze);
705
706 // Get a count of how many bytes are to be pushed on the stack.
707 unsigned NumBytes = CCInfo.getNextStackOffset();
708
709 // Variable argument function calls require a minimum of 24-bytes of stack
710 if (isVarArg && NumBytes < 24) NumBytes = 24;
711
712 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
713
714 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
715 SmallVector<SDValue, 8> MemOpChains;
716
717 // Walk the register/memloc assignments, inserting copies/loads.
718 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
719 CCValAssign &VA = ArgLocs[i];
720 MVT RegVT = VA.getLocVT();
721 SDValue Arg = OutVals[i];
722
723 // Promote the value if needed.
724 switch (VA.getLocInfo()) {
725 default: llvm_unreachable("Unknown loc info!");
726 case CCValAssign::Full: break;
727 case CCValAssign::SExt:
728 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
729 break;
730 case CCValAssign::ZExt:
731 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
732 break;
733 case CCValAssign::AExt:
734 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
735 break;
736 }
737
738 // Arguments that can be passed on register must be kept at
739 // RegsToPass vector
740 if (VA.isRegLoc()) {
741 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
742 } else {
743 // Register can't get to this point...
744 assert(VA.isMemLoc());
745
746 // Since we are alread passing values on the stack we don't
747 // need to worry about creating additional slots for the
748 // values passed via registers.
749 needsRegArgSlots = false;
750
751 // Create the frame index object for this incoming parameter
752 unsigned ArgSize = VA.getValVT().getSizeInBits()/8;
753 unsigned StackLoc = VA.getLocMemOffset() + 4;
754 int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true);
755
756 SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
757
758 // emit ISD::STORE whichs stores the
759 // parameter value to a stack Location
760 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
761 MachinePointerInfo(),
762 false, false, 0));
763 }
764 }
765
766 // If we need to reserve stack space for the arguments passed via registers
767 // then create a fixed stack object at the beginning of the stack.
768 if (needsRegArgSlots && TFI.hasReservedCallFrame(MF))
769 MFI->CreateFixedObject(28,0,true);
770
771 // Transform all store nodes into one single node because all store
772 // nodes are independent of each other.
773 if (!MemOpChains.empty())
774 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
775 &MemOpChains[0], MemOpChains.size());
776
777 // Build a sequence of copy-to-reg nodes chained together with token
778 // chain and flag operands which copy the outgoing args into registers.
779 // The InFlag in necessary since all emitted instructions must be
780 // stuck together.
781 SDValue InFlag;
782 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
783 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
784 RegsToPass[i].second, InFlag);
785 InFlag = Chain.getValue(1);
786 }
787
788 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
789 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
790 // node so that legalize doesn't hack it.
791 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
792 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
793 getPointerTy(), 0, 0);
794 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
795 Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
796 getPointerTy(), 0);
797
798 // MBlazeJmpLink = #chain, #target_address, #opt_in_flags...
799 // = Chain, Callee, Reg#1, Reg#2, ...
800 //
801 // Returns a chain & a flag for retval copy to use.
802 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
803 SmallVector<SDValue, 8> Ops;
804 Ops.push_back(Chain);
805 Ops.push_back(Callee);
806
807 // Add argument registers to the end of the list so that they are
808 // known live into the call.
809 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
810 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
811 RegsToPass[i].second.getValueType()));
812 }
813
814 if (InFlag.getNode())
815 Ops.push_back(InFlag);
816
817 Chain = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
818 InFlag = Chain.getValue(1);
819
820 // Create the CALLSEQ_END node.
821 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
822 DAG.getIntPtrConstant(0, true), InFlag);
823 if (!Ins.empty())
824 InFlag = Chain.getValue(1);
825
826 // Handle result values, copying them out of physregs into vregs that we
827 // return.
828 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
829 Ins, dl, DAG, InVals);
830 }
831
832 /// LowerCallResult - Lower the result values of a call into the
833 /// appropriate copies out of appropriate physical registers.
834 SDValue MBlazeTargetLowering::
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const835 LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv,
836 bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins,
837 DebugLoc dl, SelectionDAG &DAG,
838 SmallVectorImpl<SDValue> &InVals) const {
839 // Assign locations to each value returned by this call.
840 SmallVector<CCValAssign, 16> RVLocs;
841 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
842 getTargetMachine(), RVLocs, *DAG.getContext());
843
844 CCInfo.AnalyzeCallResult(Ins, RetCC_MBlaze);
845
846 // Copy all of the result registers out of their specified physreg.
847 for (unsigned i = 0; i != RVLocs.size(); ++i) {
848 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
849 RVLocs[i].getValVT(), InFlag).getValue(1);
850 InFlag = Chain.getValue(2);
851 InVals.push_back(Chain.getValue(0));
852 }
853
854 return Chain;
855 }
856
857 //===----------------------------------------------------------------------===//
858 // Formal Arguments Calling Convention Implementation
859 //===----------------------------------------------------------------------===//
860
861 /// LowerFormalArguments - transform physical registers into
862 /// virtual registers and generate load operations for
863 /// arguments places on the stack.
864 SDValue MBlazeTargetLowering::
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const865 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
866 const SmallVectorImpl<ISD::InputArg> &Ins,
867 DebugLoc dl, SelectionDAG &DAG,
868 SmallVectorImpl<SDValue> &InVals) const {
869 MachineFunction &MF = DAG.getMachineFunction();
870 MachineFrameInfo *MFI = MF.getFrameInfo();
871 MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>();
872
873 unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
874 MBlazeFI->setVarArgsFrameIndex(0);
875
876 // Used with vargs to acumulate store chains.
877 std::vector<SDValue> OutChains;
878
879 // Keep track of the last register used for arguments
880 unsigned ArgRegEnd = 0;
881
882 // Assign locations to all of the incoming arguments.
883 SmallVector<CCValAssign, 16> ArgLocs;
884 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
885 getTargetMachine(), ArgLocs, *DAG.getContext());
886
887 CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze);
888 SDValue StackPtr;
889
890 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
891 CCValAssign &VA = ArgLocs[i];
892
893 // Arguments stored on registers
894 if (VA.isRegLoc()) {
895 MVT RegVT = VA.getLocVT();
896 ArgRegEnd = VA.getLocReg();
897 TargetRegisterClass *RC = 0;
898
899 if (RegVT == MVT::i32)
900 RC = MBlaze::GPRRegisterClass;
901 else if (RegVT == MVT::f32)
902 RC = MBlaze::GPRRegisterClass;
903 else
904 llvm_unreachable("RegVT not supported by LowerFormalArguments");
905
906 // Transform the arguments stored on
907 // physical registers into virtual ones
908 unsigned Reg = MF.addLiveIn(ArgRegEnd, RC);
909 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
910
911 // If this is an 8 or 16-bit value, it has been passed promoted
912 // to 32 bits. Insert an assert[sz]ext to capture this, then
913 // truncate to the right size. If if is a floating point value
914 // then convert to the correct type.
915 if (VA.getLocInfo() != CCValAssign::Full) {
916 unsigned Opcode = 0;
917 if (VA.getLocInfo() == CCValAssign::SExt)
918 Opcode = ISD::AssertSext;
919 else if (VA.getLocInfo() == CCValAssign::ZExt)
920 Opcode = ISD::AssertZext;
921 if (Opcode)
922 ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
923 DAG.getValueType(VA.getValVT()));
924 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
925 }
926
927 InVals.push_back(ArgValue);
928 } else { // VA.isRegLoc()
929 // sanity check
930 assert(VA.isMemLoc());
931
932 // The last argument is not a register
933 ArgRegEnd = 0;
934
935 // The stack pointer offset is relative to the caller stack frame.
936 // Since the real stack size is unknown here, a negative SPOffset
937 // is used so there's a way to adjust these offsets when the stack
938 // size get known (on EliminateFrameIndex). A dummy SPOffset is
939 // used instead of a direct negative address (which is recorded to
940 // be used on emitPrologue) to avoid mis-calc of the first stack
941 // offset on PEI::calculateFrameObjectOffsets.
942 // Arguments are always 32-bit.
943 unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
944 unsigned StackLoc = VA.getLocMemOffset() + 4;
945 int FI = MFI->CreateFixedObject(ArgSize, 0, true);
946 MBlazeFI->recordLoadArgsFI(FI, -StackLoc);
947 MBlazeFI->recordLiveIn(FI);
948
949 // Create load nodes to retrieve arguments from the stack
950 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
951 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
952 MachinePointerInfo::getFixedStack(FI),
953 false, false, 0));
954 }
955 }
956
957 // To meet ABI, when VARARGS are passed on registers, the registers
958 // must have their values written to the caller stack frame. If the last
959 // argument was placed in the stack, there's no need to save any register.
960 if ((isVarArg) && ArgRegEnd) {
961 if (StackPtr.getNode() == 0)
962 StackPtr = DAG.getRegister(StackReg, getPointerTy());
963
964 // The last register argument that must be saved is MBlaze::R10
965 TargetRegisterClass *RC = MBlaze::GPRRegisterClass;
966
967 unsigned Begin = MBlazeRegisterInfo::getRegisterNumbering(MBlaze::R5);
968 unsigned Start = MBlazeRegisterInfo::getRegisterNumbering(ArgRegEnd+1);
969 unsigned End = MBlazeRegisterInfo::getRegisterNumbering(MBlaze::R10);
970 unsigned StackLoc = Start - Begin + 1;
971
972 for (; Start <= End; ++Start, ++StackLoc) {
973 unsigned Reg = MBlazeRegisterInfo::getRegisterFromNumbering(Start);
974 unsigned LiveReg = MF.addLiveIn(Reg, RC);
975 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32);
976
977 int FI = MFI->CreateFixedObject(4, 0, true);
978 MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4));
979 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
980 OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
981 MachinePointerInfo(),
982 false, false, 0));
983
984 // Record the frame index of the first variable argument
985 // which is a value necessary to VASTART.
986 if (!MBlazeFI->getVarArgsFrameIndex())
987 MBlazeFI->setVarArgsFrameIndex(FI);
988 }
989 }
990
991 // All stores are grouped in one node to allow the matching between
992 // the size of Ins and InVals. This only happens when on varg functions
993 if (!OutChains.empty()) {
994 OutChains.push_back(Chain);
995 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
996 &OutChains[0], OutChains.size());
997 }
998
999 return Chain;
1000 }
1001
1002 //===----------------------------------------------------------------------===//
1003 // Return Value Calling Convention Implementation
1004 //===----------------------------------------------------------------------===//
1005
1006 SDValue MBlazeTargetLowering::
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1007 LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1008 const SmallVectorImpl<ISD::OutputArg> &Outs,
1009 const SmallVectorImpl<SDValue> &OutVals,
1010 DebugLoc dl, SelectionDAG &DAG) const {
1011 // CCValAssign - represent the assignment of
1012 // the return value to a location
1013 SmallVector<CCValAssign, 16> RVLocs;
1014
1015 // CCState - Info about the registers and stack slot.
1016 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1017 getTargetMachine(), RVLocs, *DAG.getContext());
1018
1019 // Analize return values.
1020 CCInfo.AnalyzeReturn(Outs, RetCC_MBlaze);
1021
1022 // If this is the first return lowered for this function, add
1023 // the regs to the liveout set for the function.
1024 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1025 for (unsigned i = 0; i != RVLocs.size(); ++i)
1026 if (RVLocs[i].isRegLoc())
1027 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1028 }
1029
1030 SDValue Flag;
1031
1032 // Copy the result values into the output registers.
1033 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1034 CCValAssign &VA = RVLocs[i];
1035 assert(VA.isRegLoc() && "Can only return in registers!");
1036
1037 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1038 OutVals[i], Flag);
1039
1040 // guarantee that all emitted copies are
1041 // stuck together, avoiding something bad
1042 Flag = Chain.getValue(1);
1043 }
1044
1045 // If this function is using the interrupt_handler calling convention
1046 // then use "rtid r14, 0" otherwise use "rtsd r15, 8"
1047 unsigned Ret = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlazeISD::IRet
1048 : MBlazeISD::Ret;
1049 unsigned Reg = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlaze::R14
1050 : MBlaze::R15;
1051 SDValue DReg = DAG.getRegister(Reg, MVT::i32);
1052
1053 if (Flag.getNode())
1054 return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg, Flag);
1055
1056 return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg);
1057 }
1058
1059 //===----------------------------------------------------------------------===//
1060 // MBlaze Inline Assembly Support
1061 //===----------------------------------------------------------------------===//
1062
1063 /// getConstraintType - Given a constraint letter, return the type of
1064 /// constraint it is for this target.
1065 MBlazeTargetLowering::ConstraintType MBlazeTargetLowering::
getConstraintType(const std::string & Constraint) const1066 getConstraintType(const std::string &Constraint) const
1067 {
1068 // MBlaze specific constrainy
1069 //
1070 // 'd' : An address register. Equivalent to r.
1071 // 'y' : Equivalent to r; retained for
1072 // backwards compatibility.
1073 // 'f' : Floating Point registers.
1074 if (Constraint.size() == 1) {
1075 switch (Constraint[0]) {
1076 default : break;
1077 case 'd':
1078 case 'y':
1079 case 'f':
1080 return C_RegisterClass;
1081 break;
1082 }
1083 }
1084 return TargetLowering::getConstraintType(Constraint);
1085 }
1086
1087 /// Examine constraint type and operand type and determine a weight value.
1088 /// This object must already have been set up with the operand type
1089 /// and the current alternative constraint selected.
1090 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const1091 MBlazeTargetLowering::getSingleConstraintMatchWeight(
1092 AsmOperandInfo &info, const char *constraint) const {
1093 ConstraintWeight weight = CW_Invalid;
1094 Value *CallOperandVal = info.CallOperandVal;
1095 // If we don't have a value, we can't do a match,
1096 // but allow it at the lowest weight.
1097 if (CallOperandVal == NULL)
1098 return CW_Default;
1099 Type *type = CallOperandVal->getType();
1100 // Look at the constraint type.
1101 switch (*constraint) {
1102 default:
1103 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1104 break;
1105 case 'd':
1106 case 'y':
1107 if (type->isIntegerTy())
1108 weight = CW_Register;
1109 break;
1110 case 'f':
1111 if (type->isFloatTy())
1112 weight = CW_Register;
1113 break;
1114 }
1115 return weight;
1116 }
1117
1118 /// Given a register class constraint, like 'r', if this corresponds directly
1119 /// to an LLVM register class, return a register of 0 and the register class
1120 /// pointer.
1121 std::pair<unsigned, const TargetRegisterClass*> MBlazeTargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const1122 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
1123 if (Constraint.size() == 1) {
1124 switch (Constraint[0]) {
1125 case 'r':
1126 return std::make_pair(0U, MBlaze::GPRRegisterClass);
1127 // TODO: These can't possibly be right, but match what was in
1128 // getRegClassForInlineAsmConstraint.
1129 case 'd':
1130 case 'y':
1131 case 'f':
1132 if (VT == MVT::f32)
1133 return std::make_pair(0U, MBlaze::GPRRegisterClass);
1134 }
1135 }
1136 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1137 }
1138
1139 bool MBlazeTargetLowering::
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1140 isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1141 // The MBlaze target isn't yet aware of offsets.
1142 return false;
1143 }
1144
isFPImmLegal(const APFloat & Imm,EVT VT) const1145 bool MBlazeTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1146 return VT != MVT::f32;
1147 }
1148