1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
21 #include "X86.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/PassManager.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/Function.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/MC/MCCodeEmitter.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39
40 STATISTIC(NumEmitted, "Number of machine instructions emitted");
41
42 namespace {
43 template<class CodeEmitter>
44 class Emitter : public MachineFunctionPass {
45 const X86InstrInfo *II;
46 const TargetData *TD;
47 X86TargetMachine &TM;
48 CodeEmitter &MCE;
49 MachineModuleInfo *MMI;
50 intptr_t PICBaseOffset;
51 bool Is64BitMode;
52 bool IsPIC;
53 public:
54 static char ID;
Emitter(X86TargetMachine & tm,CodeEmitter & mce)55 explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
56 : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
57 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
58 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Emitter(X86TargetMachine & tm,CodeEmitter & mce,const X86InstrInfo & ii,const TargetData & td,bool is64)59 Emitter(X86TargetMachine &tm, CodeEmitter &mce,
60 const X86InstrInfo &ii, const TargetData &td, bool is64)
61 : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
62 MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
63 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
64
65 bool runOnMachineFunction(MachineFunction &MF);
66
getPassName() const67 virtual const char *getPassName() const {
68 return "X86 Machine Code Emitter";
69 }
70
71 void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
72
getAnalysisUsage(AnalysisUsage & AU) const73 void getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.setPreservesAll();
75 AU.addRequired<MachineModuleInfo>();
76 MachineFunctionPass::getAnalysisUsage(AU);
77 }
78
79 private:
80 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
81 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
82 intptr_t Disp = 0, intptr_t PCAdj = 0,
83 bool Indirect = false);
84 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
85 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
86 intptr_t PCAdj = 0);
87 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
88 intptr_t PCAdj = 0);
89
90 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
91 intptr_t Adj = 0, bool IsPCRel = true);
92
93 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
94 void emitRegModRMByte(unsigned RegOpcodeField);
95 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
96 void emitConstant(uint64_t Val, unsigned Size);
97
98 void emitMemModRMByte(const MachineInstr &MI,
99 unsigned Op, unsigned RegOpcodeField,
100 intptr_t PCAdj = 0);
101 };
102
103 template<class CodeEmitter>
104 char Emitter<CodeEmitter>::ID = 0;
105 } // end anonymous namespace.
106
107 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
108 /// to the specified templated MachineCodeEmitter object.
createX86JITCodeEmitterPass(X86TargetMachine & TM,JITCodeEmitter & JCE)109 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
110 JITCodeEmitter &JCE) {
111 return new Emitter<JITCodeEmitter>(TM, JCE);
112 }
113
114 template<class CodeEmitter>
runOnMachineFunction(MachineFunction & MF)115 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
116 MMI = &getAnalysis<MachineModuleInfo>();
117 MCE.setModuleInfo(MMI);
118
119 II = TM.getInstrInfo();
120 TD = TM.getTargetData();
121 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
122 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
123
124 do {
125 DEBUG(dbgs() << "JITTing function '"
126 << MF.getFunction()->getName() << "'\n");
127 MCE.startFunction(MF);
128 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
129 MBB != E; ++MBB) {
130 MCE.StartMachineBasicBlock(MBB);
131 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
132 I != E; ++I) {
133 const MCInstrDesc &Desc = I->getDesc();
134 emitInstruction(*I, &Desc);
135 // MOVPC32r is basically a call plus a pop instruction.
136 if (Desc.getOpcode() == X86::MOVPC32r)
137 emitInstruction(*I, &II->get(X86::POP32r));
138 ++NumEmitted; // Keep track of the # of mi's emitted
139 }
140 }
141 } while (MCE.finishFunction(MF));
142
143 return false;
144 }
145
146 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
147 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
148 /// size, and 3) use of X86-64 extended registers.
determineREX(const MachineInstr & MI)149 static unsigned determineREX(const MachineInstr &MI) {
150 unsigned REX = 0;
151 const MCInstrDesc &Desc = MI.getDesc();
152
153 // Pseudo instructions do not need REX prefix byte.
154 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
155 return 0;
156 if (Desc.TSFlags & X86II::REX_W)
157 REX |= 1 << 3;
158
159 unsigned NumOps = Desc.getNumOperands();
160 if (NumOps) {
161 bool isTwoAddr = NumOps > 1 &&
162 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
163
164 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
165 unsigned i = isTwoAddr ? 1 : 0;
166 for (unsigned e = NumOps; i != e; ++i) {
167 const MachineOperand& MO = MI.getOperand(i);
168 if (MO.isReg()) {
169 unsigned Reg = MO.getReg();
170 if (X86InstrInfo::isX86_64NonExtLowByteReg(Reg))
171 REX |= 0x40;
172 }
173 }
174
175 switch (Desc.TSFlags & X86II::FormMask) {
176 case X86II::MRMInitReg:
177 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
178 REX |= (1 << 0) | (1 << 2);
179 break;
180 case X86II::MRMSrcReg: {
181 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
182 REX |= 1 << 2;
183 i = isTwoAddr ? 2 : 1;
184 for (unsigned e = NumOps; i != e; ++i) {
185 const MachineOperand& MO = MI.getOperand(i);
186 if (X86InstrInfo::isX86_64ExtendedReg(MO))
187 REX |= 1 << 0;
188 }
189 break;
190 }
191 case X86II::MRMSrcMem: {
192 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
193 REX |= 1 << 2;
194 unsigned Bit = 0;
195 i = isTwoAddr ? 2 : 1;
196 for (; i != NumOps; ++i) {
197 const MachineOperand& MO = MI.getOperand(i);
198 if (MO.isReg()) {
199 if (X86InstrInfo::isX86_64ExtendedReg(MO))
200 REX |= 1 << Bit;
201 Bit++;
202 }
203 }
204 break;
205 }
206 case X86II::MRM0m: case X86II::MRM1m:
207 case X86II::MRM2m: case X86II::MRM3m:
208 case X86II::MRM4m: case X86II::MRM5m:
209 case X86II::MRM6m: case X86II::MRM7m:
210 case X86II::MRMDestMem: {
211 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
212 i = isTwoAddr ? 1 : 0;
213 if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
214 REX |= 1 << 2;
215 unsigned Bit = 0;
216 for (; i != e; ++i) {
217 const MachineOperand& MO = MI.getOperand(i);
218 if (MO.isReg()) {
219 if (X86InstrInfo::isX86_64ExtendedReg(MO))
220 REX |= 1 << Bit;
221 Bit++;
222 }
223 }
224 break;
225 }
226 default: {
227 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
228 REX |= 1 << 0;
229 i = isTwoAddr ? 2 : 1;
230 for (unsigned e = NumOps; i != e; ++i) {
231 const MachineOperand& MO = MI.getOperand(i);
232 if (X86InstrInfo::isX86_64ExtendedReg(MO))
233 REX |= 1 << 2;
234 }
235 break;
236 }
237 }
238 }
239 return REX;
240 }
241
242
243 /// emitPCRelativeBlockAddress - This method keeps track of the information
244 /// necessary to resolve the address of this block later and emits a dummy
245 /// value.
246 ///
247 template<class CodeEmitter>
emitPCRelativeBlockAddress(MachineBasicBlock * MBB)248 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
249 // Remember where this reference was and where it is to so we can
250 // deal with it later.
251 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
252 X86::reloc_pcrel_word, MBB));
253 MCE.emitWordLE(0);
254 }
255
256 /// emitGlobalAddress - Emit the specified address to the code stream assuming
257 /// this is part of a "take the address of a global" instruction.
258 ///
259 template<class CodeEmitter>
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,intptr_t Disp,intptr_t PCAdj,bool Indirect)260 void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
261 unsigned Reloc,
262 intptr_t Disp /* = 0 */,
263 intptr_t PCAdj /* = 0 */,
264 bool Indirect /* = false */) {
265 intptr_t RelocCST = Disp;
266 if (Reloc == X86::reloc_picrel_word)
267 RelocCST = PICBaseOffset;
268 else if (Reloc == X86::reloc_pcrel_word)
269 RelocCST = PCAdj;
270 MachineRelocation MR = Indirect
271 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
272 const_cast<GlobalValue *>(GV),
273 RelocCST, false)
274 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
275 const_cast<GlobalValue *>(GV), RelocCST, false);
276 MCE.addRelocation(MR);
277 // The relocated value will be added to the displacement
278 if (Reloc == X86::reloc_absolute_dword)
279 MCE.emitDWordLE(Disp);
280 else
281 MCE.emitWordLE((int32_t)Disp);
282 }
283
284 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
285 /// be emitted to the current location in the function, and allow it to be PC
286 /// relative.
287 template<class CodeEmitter>
emitExternalSymbolAddress(const char * ES,unsigned Reloc)288 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
289 unsigned Reloc) {
290 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
291
292 // X86 never needs stubs because instruction selection will always pick
293 // an instruction sequence that is large enough to hold any address
294 // to a symbol.
295 // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
296 bool NeedStub = false;
297 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
298 Reloc, ES, RelocCST,
299 0, NeedStub));
300 if (Reloc == X86::reloc_absolute_dword)
301 MCE.emitDWordLE(0);
302 else
303 MCE.emitWordLE(0);
304 }
305
306 /// emitConstPoolAddress - Arrange for the address of an constant pool
307 /// to be emitted to the current location in the function, and allow it to be PC
308 /// relative.
309 template<class CodeEmitter>
emitConstPoolAddress(unsigned CPI,unsigned Reloc,intptr_t Disp,intptr_t PCAdj)310 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
311 intptr_t Disp /* = 0 */,
312 intptr_t PCAdj /* = 0 */) {
313 intptr_t RelocCST = 0;
314 if (Reloc == X86::reloc_picrel_word)
315 RelocCST = PICBaseOffset;
316 else if (Reloc == X86::reloc_pcrel_word)
317 RelocCST = PCAdj;
318 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
319 Reloc, CPI, RelocCST));
320 // The relocated value will be added to the displacement
321 if (Reloc == X86::reloc_absolute_dword)
322 MCE.emitDWordLE(Disp);
323 else
324 MCE.emitWordLE((int32_t)Disp);
325 }
326
327 /// emitJumpTableAddress - Arrange for the address of a jump table to
328 /// be emitted to the current location in the function, and allow it to be PC
329 /// relative.
330 template<class CodeEmitter>
emitJumpTableAddress(unsigned JTI,unsigned Reloc,intptr_t PCAdj)331 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
332 intptr_t PCAdj /* = 0 */) {
333 intptr_t RelocCST = 0;
334 if (Reloc == X86::reloc_picrel_word)
335 RelocCST = PICBaseOffset;
336 else if (Reloc == X86::reloc_pcrel_word)
337 RelocCST = PCAdj;
338 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
339 Reloc, JTI, RelocCST));
340 // The relocated value will be added to the displacement
341 if (Reloc == X86::reloc_absolute_dword)
342 MCE.emitDWordLE(0);
343 else
344 MCE.emitWordLE(0);
345 }
346
ModRMByte(unsigned Mod,unsigned RegOpcode,unsigned RM)347 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
348 unsigned RM) {
349 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
350 return RM | (RegOpcode << 3) | (Mod << 6);
351 }
352
353 template<class CodeEmitter>
emitRegModRMByte(unsigned ModRMReg,unsigned RegOpcodeFld)354 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
355 unsigned RegOpcodeFld){
356 MCE.emitByte(ModRMByte(3, RegOpcodeFld, X86_MC::getX86RegNum(ModRMReg)));
357 }
358
359 template<class CodeEmitter>
emitRegModRMByte(unsigned RegOpcodeFld)360 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
361 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
362 }
363
364 template<class CodeEmitter>
emitSIBByte(unsigned SS,unsigned Index,unsigned Base)365 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
366 unsigned Index,
367 unsigned Base) {
368 // SIB byte is in the same format as the ModRMByte...
369 MCE.emitByte(ModRMByte(SS, Index, Base));
370 }
371
372 template<class CodeEmitter>
emitConstant(uint64_t Val,unsigned Size)373 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
374 // Output the constant in little endian byte order...
375 for (unsigned i = 0; i != Size; ++i) {
376 MCE.emitByte(Val & 255);
377 Val >>= 8;
378 }
379 }
380
381 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
382 /// sign-extended field.
isDisp8(int Value)383 static bool isDisp8(int Value) {
384 return Value == (signed char)Value;
385 }
386
gvNeedsNonLazyPtr(const MachineOperand & GVOp,const TargetMachine & TM)387 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
388 const TargetMachine &TM) {
389 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
390 // mechanism as 32-bit mode.
391 if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
392 !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
393 return false;
394
395 // Return true if this is a reference to a stub containing the address of the
396 // global, not the global itself.
397 return isGlobalStubReference(GVOp.getTargetFlags());
398 }
399
400 template<class CodeEmitter>
emitDisplacementField(const MachineOperand * RelocOp,int DispVal,intptr_t Adj,bool IsPCRel)401 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
402 int DispVal,
403 intptr_t Adj /* = 0 */,
404 bool IsPCRel /* = true */) {
405 // If this is a simple integer displacement that doesn't require a relocation,
406 // emit it now.
407 if (!RelocOp) {
408 emitConstant(DispVal, 4);
409 return;
410 }
411
412 // Otherwise, this is something that requires a relocation. Emit it as such
413 // now.
414 unsigned RelocType = Is64BitMode ?
415 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
416 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
417 if (RelocOp->isGlobal()) {
418 // In 64-bit static small code model, we could potentially emit absolute.
419 // But it's probably not beneficial. If the MCE supports using RIP directly
420 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
421 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
422 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
423 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
424 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
425 Adj, Indirect);
426 } else if (RelocOp->isSymbol()) {
427 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
428 } else if (RelocOp->isCPI()) {
429 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
430 RelocOp->getOffset(), Adj);
431 } else {
432 assert(RelocOp->isJTI() && "Unexpected machine operand!");
433 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
434 }
435 }
436
437 template<class CodeEmitter>
emitMemModRMByte(const MachineInstr & MI,unsigned Op,unsigned RegOpcodeField,intptr_t PCAdj)438 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
439 unsigned Op,unsigned RegOpcodeField,
440 intptr_t PCAdj) {
441 const MachineOperand &Op3 = MI.getOperand(Op+3);
442 int DispVal = 0;
443 const MachineOperand *DispForReloc = 0;
444
445 // Figure out what sort of displacement we have to handle here.
446 if (Op3.isGlobal()) {
447 DispForReloc = &Op3;
448 } else if (Op3.isSymbol()) {
449 DispForReloc = &Op3;
450 } else if (Op3.isCPI()) {
451 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
452 DispForReloc = &Op3;
453 } else {
454 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
455 DispVal += Op3.getOffset();
456 }
457 } else if (Op3.isJTI()) {
458 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
459 DispForReloc = &Op3;
460 } else {
461 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
462 }
463 } else {
464 DispVal = Op3.getImm();
465 }
466
467 const MachineOperand &Base = MI.getOperand(Op);
468 const MachineOperand &Scale = MI.getOperand(Op+1);
469 const MachineOperand &IndexReg = MI.getOperand(Op+2);
470
471 unsigned BaseReg = Base.getReg();
472
473 // Handle %rip relative addressing.
474 if (BaseReg == X86::RIP ||
475 (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
476 assert(IndexReg.getReg() == 0 && Is64BitMode &&
477 "Invalid rip-relative address");
478 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
479 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
480 return;
481 }
482
483 // Indicate that the displacement will use an pcrel or absolute reference
484 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
485 // while others, unless explicit asked to use RIP, use absolute references.
486 bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
487
488 // Is a SIB byte needed?
489 // If no BaseReg, issue a RIP relative instruction only if the MCE can
490 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
491 // 2-7) and absolute references.
492 unsigned BaseRegNo = -1U;
493 if (BaseReg != 0 && BaseReg != X86::RIP)
494 BaseRegNo = X86_MC::getX86RegNum(BaseReg);
495
496 if (// The SIB byte must be used if there is an index register.
497 IndexReg.getReg() == 0 &&
498 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
499 // encode to an R/M value of 4, which indicates that a SIB byte is
500 // present.
501 BaseRegNo != N86::ESP &&
502 // If there is no base register and we're in 64-bit mode, we need a SIB
503 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
504 (!Is64BitMode || BaseReg != 0)) {
505 if (BaseReg == 0 || // [disp32] in X86-32 mode
506 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
507 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
508 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
509 return;
510 }
511
512 // If the base is not EBP/ESP and there is no displacement, use simple
513 // indirect register encoding, this handles addresses like [EAX]. The
514 // encoding for [EBP] with no displacement means [disp32] so we handle it
515 // by emitting a displacement of 0 below.
516 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
517 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
518 return;
519 }
520
521 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
522 if (!DispForReloc && isDisp8(DispVal)) {
523 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
524 emitConstant(DispVal, 1);
525 return;
526 }
527
528 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
529 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
530 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
531 return;
532 }
533
534 // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
535 assert(IndexReg.getReg() != X86::ESP &&
536 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
537
538 bool ForceDisp32 = false;
539 bool ForceDisp8 = false;
540 if (BaseReg == 0) {
541 // If there is no base register, we emit the special case SIB byte with
542 // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
543 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
544 ForceDisp32 = true;
545 } else if (DispForReloc) {
546 // Emit the normal disp32 encoding.
547 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
548 ForceDisp32 = true;
549 } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
550 // Emit no displacement ModR/M byte
551 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
552 } else if (isDisp8(DispVal)) {
553 // Emit the disp8 encoding...
554 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
555 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
556 } else {
557 // Emit the normal disp32 encoding...
558 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
559 }
560
561 // Calculate what the SS field value should be...
562 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
563 unsigned SS = SSTable[Scale.getImm()];
564
565 if (BaseReg == 0) {
566 // Handle the SIB byte for the case where there is no base, see Intel
567 // Manual 2A, table 2-7. The displacement has already been output.
568 unsigned IndexRegNo;
569 if (IndexReg.getReg())
570 IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg());
571 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
572 IndexRegNo = 4;
573 emitSIBByte(SS, IndexRegNo, 5);
574 } else {
575 unsigned BaseRegNo = X86_MC::getX86RegNum(BaseReg);
576 unsigned IndexRegNo;
577 if (IndexReg.getReg())
578 IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg());
579 else
580 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
581 emitSIBByte(SS, IndexRegNo, BaseRegNo);
582 }
583
584 // Do we need to output a displacement?
585 if (ForceDisp8) {
586 emitConstant(DispVal, 1);
587 } else if (DispVal != 0 || ForceDisp32) {
588 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
589 }
590 }
591
592 template<class CodeEmitter>
emitInstruction(MachineInstr & MI,const MCInstrDesc * Desc)593 void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
594 const MCInstrDesc *Desc) {
595 DEBUG(dbgs() << MI);
596
597 // If this is a pseudo instruction, lower it.
598 switch (Desc->getOpcode()) {
599 case X86::ADD16rr_DB: Desc = &II->get(X86::OR16rr); MI.setDesc(*Desc);break;
600 case X86::ADD32rr_DB: Desc = &II->get(X86::OR32rr); MI.setDesc(*Desc);break;
601 case X86::ADD64rr_DB: Desc = &II->get(X86::OR64rr); MI.setDesc(*Desc);break;
602 case X86::ADD16ri_DB: Desc = &II->get(X86::OR16ri); MI.setDesc(*Desc);break;
603 case X86::ADD32ri_DB: Desc = &II->get(X86::OR32ri); MI.setDesc(*Desc);break;
604 case X86::ADD64ri32_DB:Desc = &II->get(X86::OR64ri32);MI.setDesc(*Desc);break;
605 case X86::ADD16ri8_DB: Desc = &II->get(X86::OR16ri8);MI.setDesc(*Desc);break;
606 case X86::ADD32ri8_DB: Desc = &II->get(X86::OR32ri8);MI.setDesc(*Desc);break;
607 case X86::ADD64ri8_DB: Desc = &II->get(X86::OR64ri8);MI.setDesc(*Desc);break;
608 }
609
610
611 MCE.processDebugLoc(MI.getDebugLoc(), true);
612
613 unsigned Opcode = Desc->Opcode;
614
615 // Emit the lock opcode prefix as needed.
616 if (Desc->TSFlags & X86II::LOCK)
617 MCE.emitByte(0xF0);
618
619 // Emit segment override opcode prefix as needed.
620 switch (Desc->TSFlags & X86II::SegOvrMask) {
621 case X86II::FS:
622 MCE.emitByte(0x64);
623 break;
624 case X86II::GS:
625 MCE.emitByte(0x65);
626 break;
627 default: llvm_unreachable("Invalid segment!");
628 case 0: break; // No segment override!
629 }
630
631 // Emit the repeat opcode prefix as needed.
632 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
633 MCE.emitByte(0xF3);
634
635 // Emit the operand size opcode prefix as needed.
636 if (Desc->TSFlags & X86II::OpSize)
637 MCE.emitByte(0x66);
638
639 // Emit the address size opcode prefix as needed.
640 if (Desc->TSFlags & X86II::AdSize)
641 MCE.emitByte(0x67);
642
643 bool Need0FPrefix = false;
644 switch (Desc->TSFlags & X86II::Op0Mask) {
645 case X86II::TB: // Two-byte opcode prefix
646 case X86II::T8: // 0F 38
647 case X86II::TA: // 0F 3A
648 case X86II::A6: // 0F A6
649 case X86II::A7: // 0F A7
650 Need0FPrefix = true;
651 break;
652 case X86II::TF: // F2 0F 38
653 MCE.emitByte(0xF2);
654 Need0FPrefix = true;
655 break;
656 case X86II::REP: break; // already handled.
657 case X86II::XS: // F3 0F
658 MCE.emitByte(0xF3);
659 Need0FPrefix = true;
660 break;
661 case X86II::XD: // F2 0F
662 MCE.emitByte(0xF2);
663 Need0FPrefix = true;
664 break;
665 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
666 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
667 MCE.emitByte(0xD8+
668 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
669 >> X86II::Op0Shift));
670 break; // Two-byte opcode prefix
671 default: llvm_unreachable("Invalid prefix!");
672 case 0: break; // No prefix!
673 }
674
675 // Handle REX prefix.
676 if (Is64BitMode) {
677 if (unsigned REX = determineREX(MI))
678 MCE.emitByte(0x40 | REX);
679 }
680
681 // 0x0F escape code must be emitted just before the opcode.
682 if (Need0FPrefix)
683 MCE.emitByte(0x0F);
684
685 switch (Desc->TSFlags & X86II::Op0Mask) {
686 case X86II::TF: // F2 0F 38
687 case X86II::T8: // 0F 38
688 MCE.emitByte(0x38);
689 break;
690 case X86II::TA: // 0F 3A
691 MCE.emitByte(0x3A);
692 break;
693 case X86II::A6: // 0F A6
694 MCE.emitByte(0xA6);
695 break;
696 case X86II::A7: // 0F A7
697 MCE.emitByte(0xA7);
698 break;
699 }
700
701 // If this is a two-address instruction, skip one of the register operands.
702 unsigned NumOps = Desc->getNumOperands();
703 unsigned CurOp = 0;
704 if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) != -1)
705 ++CurOp;
706 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1,MCOI::TIED_TO)== 0)
707 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
708 --NumOps;
709
710 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
711 switch (Desc->TSFlags & X86II::FormMask) {
712 default:
713 llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
714 case X86II::Pseudo:
715 // Remember the current PC offset, this is the PIC relocation
716 // base address.
717 switch (Opcode) {
718 default:
719 llvm_unreachable("pseudo instructions should be removed before code"
720 " emission");
721 break;
722 // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
723 // to make it slightly easier to see.
724 case X86::Int_MemBarrier:
725 DEBUG(dbgs() << "#MEMBARRIER\n");
726 break;
727
728 case TargetOpcode::INLINEASM:
729 // We allow inline assembler nodes with empty bodies - they can
730 // implicitly define registers, which is ok for JIT.
731 if (MI.getOperand(0).getSymbolName()[0])
732 report_fatal_error("JIT does not support inline asm!");
733 break;
734 case TargetOpcode::PROLOG_LABEL:
735 case TargetOpcode::GC_LABEL:
736 case TargetOpcode::EH_LABEL:
737 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
738 break;
739
740 case TargetOpcode::IMPLICIT_DEF:
741 case TargetOpcode::KILL:
742 break;
743 case X86::MOVPC32r: {
744 // This emits the "call" portion of this pseudo instruction.
745 MCE.emitByte(BaseOpcode);
746 emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
747 // Remember PIC base.
748 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
749 X86JITInfo *JTI = TM.getJITInfo();
750 JTI->setPICBase(MCE.getCurrentPCValue());
751 break;
752 }
753 }
754 CurOp = NumOps;
755 break;
756 case X86II::RawFrm: {
757 MCE.emitByte(BaseOpcode);
758
759 if (CurOp == NumOps)
760 break;
761
762 const MachineOperand &MO = MI.getOperand(CurOp++);
763
764 DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
765 DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
766 DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
767 DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
768 DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
769
770 if (MO.isMBB()) {
771 emitPCRelativeBlockAddress(MO.getMBB());
772 break;
773 }
774
775 if (MO.isGlobal()) {
776 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
777 MO.getOffset(), 0);
778 break;
779 }
780
781 if (MO.isSymbol()) {
782 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
783 break;
784 }
785
786 // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
787 if (MO.isJTI()) {
788 emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
789 break;
790 }
791
792 assert(MO.isImm() && "Unknown RawFrm operand!");
793 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32 ||
794 Opcode == X86::WINCALL64pcrel32) {
795 // Fix up immediate operand for pc relative calls.
796 intptr_t Imm = (intptr_t)MO.getImm();
797 Imm = Imm - MCE.getCurrentPCValue() - 4;
798 emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
799 } else
800 emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
801 break;
802 }
803
804 case X86II::AddRegFrm: {
805 MCE.emitByte(BaseOpcode +
806 X86_MC::getX86RegNum(MI.getOperand(CurOp++).getReg()));
807
808 if (CurOp == NumOps)
809 break;
810
811 const MachineOperand &MO1 = MI.getOperand(CurOp++);
812 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
813 if (MO1.isImm()) {
814 emitConstant(MO1.getImm(), Size);
815 break;
816 }
817
818 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
819 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
820 if (Opcode == X86::MOV64ri64i32)
821 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
822 // This should not occur on Darwin for relocatable objects.
823 if (Opcode == X86::MOV64ri)
824 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
825 if (MO1.isGlobal()) {
826 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
827 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
828 Indirect);
829 } else if (MO1.isSymbol())
830 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
831 else if (MO1.isCPI())
832 emitConstPoolAddress(MO1.getIndex(), rt);
833 else if (MO1.isJTI())
834 emitJumpTableAddress(MO1.getIndex(), rt);
835 break;
836 }
837
838 case X86II::MRMDestReg: {
839 MCE.emitByte(BaseOpcode);
840 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
841 X86_MC::getX86RegNum(MI.getOperand(CurOp+1).getReg()));
842 CurOp += 2;
843 if (CurOp != NumOps)
844 emitConstant(MI.getOperand(CurOp++).getImm(),
845 X86II::getSizeOfImm(Desc->TSFlags));
846 break;
847 }
848 case X86II::MRMDestMem: {
849 MCE.emitByte(BaseOpcode);
850 emitMemModRMByte(MI, CurOp,
851 X86_MC::getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
852 .getReg()));
853 CurOp += X86::AddrNumOperands + 1;
854 if (CurOp != NumOps)
855 emitConstant(MI.getOperand(CurOp++).getImm(),
856 X86II::getSizeOfImm(Desc->TSFlags));
857 break;
858 }
859
860 case X86II::MRMSrcReg:
861 MCE.emitByte(BaseOpcode);
862 emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
863 X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
864 CurOp += 2;
865 if (CurOp != NumOps)
866 emitConstant(MI.getOperand(CurOp++).getImm(),
867 X86II::getSizeOfImm(Desc->TSFlags));
868 break;
869
870 case X86II::MRMSrcMem: {
871 int AddrOperands = X86::AddrNumOperands;
872
873 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
874 X86II::getSizeOfImm(Desc->TSFlags) : 0;
875
876 MCE.emitByte(BaseOpcode);
877 emitMemModRMByte(MI, CurOp+1,
878 X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
879 CurOp += AddrOperands + 1;
880 if (CurOp != NumOps)
881 emitConstant(MI.getOperand(CurOp++).getImm(),
882 X86II::getSizeOfImm(Desc->TSFlags));
883 break;
884 }
885
886 case X86II::MRM0r: case X86II::MRM1r:
887 case X86II::MRM2r: case X86II::MRM3r:
888 case X86II::MRM4r: case X86II::MRM5r:
889 case X86II::MRM6r: case X86II::MRM7r: {
890 MCE.emitByte(BaseOpcode);
891 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
892 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
893
894 if (CurOp == NumOps)
895 break;
896
897 const MachineOperand &MO1 = MI.getOperand(CurOp++);
898 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
899 if (MO1.isImm()) {
900 emitConstant(MO1.getImm(), Size);
901 break;
902 }
903
904 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
905 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
906 if (Opcode == X86::MOV64ri32)
907 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
908 if (MO1.isGlobal()) {
909 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
910 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
911 Indirect);
912 } else if (MO1.isSymbol())
913 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
914 else if (MO1.isCPI())
915 emitConstPoolAddress(MO1.getIndex(), rt);
916 else if (MO1.isJTI())
917 emitJumpTableAddress(MO1.getIndex(), rt);
918 break;
919 }
920
921 case X86II::MRM0m: case X86II::MRM1m:
922 case X86II::MRM2m: case X86II::MRM3m:
923 case X86II::MRM4m: case X86II::MRM5m:
924 case X86II::MRM6m: case X86II::MRM7m: {
925 intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
926 (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
927 X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
928
929 MCE.emitByte(BaseOpcode);
930 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
931 PCAdj);
932 CurOp += X86::AddrNumOperands;
933
934 if (CurOp == NumOps)
935 break;
936
937 const MachineOperand &MO = MI.getOperand(CurOp++);
938 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
939 if (MO.isImm()) {
940 emitConstant(MO.getImm(), Size);
941 break;
942 }
943
944 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
945 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
946 if (Opcode == X86::MOV64mi32)
947 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
948 if (MO.isGlobal()) {
949 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
950 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
951 Indirect);
952 } else if (MO.isSymbol())
953 emitExternalSymbolAddress(MO.getSymbolName(), rt);
954 else if (MO.isCPI())
955 emitConstPoolAddress(MO.getIndex(), rt);
956 else if (MO.isJTI())
957 emitJumpTableAddress(MO.getIndex(), rt);
958 break;
959 }
960
961 case X86II::MRMInitReg:
962 MCE.emitByte(BaseOpcode);
963 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
964 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
965 X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
966 ++CurOp;
967 break;
968
969 case X86II::MRM_C1:
970 MCE.emitByte(BaseOpcode);
971 MCE.emitByte(0xC1);
972 break;
973 case X86II::MRM_C8:
974 MCE.emitByte(BaseOpcode);
975 MCE.emitByte(0xC8);
976 break;
977 case X86II::MRM_C9:
978 MCE.emitByte(BaseOpcode);
979 MCE.emitByte(0xC9);
980 break;
981 case X86II::MRM_E8:
982 MCE.emitByte(BaseOpcode);
983 MCE.emitByte(0xE8);
984 break;
985 case X86II::MRM_F0:
986 MCE.emitByte(BaseOpcode);
987 MCE.emitByte(0xF0);
988 break;
989 }
990
991 if (!Desc->isVariadic() && CurOp != NumOps) {
992 #ifndef NDEBUG
993 dbgs() << "Cannot encode all operands of: " << MI << "\n";
994 #endif
995 llvm_unreachable(0);
996 }
997
998 MCE.processDebugLoc(MI.getDebugLoc(), false);
999 }
1000