1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef INSTCOMBINE_INSTCOMBINE_H
11 #define INSTCOMBINE_INSTCOMBINE_H
12
13 #include "InstCombineWorklist.h"
14 #include "llvm/Operator.h"
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/Support/IRBuilder.h"
18 #include "llvm/Support/InstVisitor.h"
19 #include "llvm/Support/TargetFolder.h"
20
21 namespace llvm {
22 class CallSite;
23 class TargetData;
24 class DbgDeclareInst;
25 class MemIntrinsic;
26 class MemSetInst;
27
28 /// SelectPatternFlavor - We can match a variety of different patterns for
29 /// select operations.
30 enum SelectPatternFlavor {
31 SPF_UNKNOWN = 0,
32 SPF_SMIN, SPF_UMIN,
33 SPF_SMAX, SPF_UMAX
34 //SPF_ABS - TODO.
35 };
36
37 /// getComplexity: Assign a complexity or rank value to LLVM Values...
38 /// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
getComplexity(Value * V)39 static inline unsigned getComplexity(Value *V) {
40 if (isa<Instruction>(V)) {
41 if (BinaryOperator::isNeg(V) ||
42 BinaryOperator::isFNeg(V) ||
43 BinaryOperator::isNot(V))
44 return 3;
45 return 4;
46 }
47 if (isa<Argument>(V)) return 3;
48 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
49 }
50
51
52 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
53 /// just like the normal insertion helper, but also adds any new instructions
54 /// to the instcombine worklist.
55 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
56 : public IRBuilderDefaultInserter<true> {
57 InstCombineWorklist &Worklist;
58 public:
InstCombineIRInserter(InstCombineWorklist & WL)59 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
60
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)61 void InsertHelper(Instruction *I, const Twine &Name,
62 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
63 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
64 Worklist.Add(I);
65 }
66 };
67
68 /// InstCombiner - The -instcombine pass.
69 class LLVM_LIBRARY_VISIBILITY InstCombiner
70 : public FunctionPass,
71 public InstVisitor<InstCombiner, Instruction*> {
72 TargetData *TD;
73 bool MadeIRChange;
74 public:
75 /// Worklist - All of the instructions that need to be simplified.
76 InstCombineWorklist Worklist;
77
78 /// Builder - This is an IRBuilder that automatically inserts new
79 /// instructions into the worklist when they are created.
80 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
81 BuilderTy *Builder;
82
83 static char ID; // Pass identification, replacement for typeid
InstCombiner()84 InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
85 initializeInstCombinerPass(*PassRegistry::getPassRegistry());
86 }
87
88 public:
89 virtual bool runOnFunction(Function &F);
90
91 bool DoOneIteration(Function &F, unsigned ItNum);
92
93 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
94
getTargetData()95 TargetData *getTargetData() const { return TD; }
96
97 // Visitation implementation - Implement instruction combining for different
98 // instruction types. The semantics are as follows:
99 // Return Value:
100 // null - No change was made
101 // I - Change was made, I is still valid, I may be dead though
102 // otherwise - Change was made, replace I with returned instruction
103 //
104 Instruction *visitAdd(BinaryOperator &I);
105 Instruction *visitFAdd(BinaryOperator &I);
106 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
107 Instruction *visitSub(BinaryOperator &I);
108 Instruction *visitFSub(BinaryOperator &I);
109 Instruction *visitMul(BinaryOperator &I);
110 Instruction *visitFMul(BinaryOperator &I);
111 Instruction *visitURem(BinaryOperator &I);
112 Instruction *visitSRem(BinaryOperator &I);
113 Instruction *visitFRem(BinaryOperator &I);
114 bool SimplifyDivRemOfSelect(BinaryOperator &I);
115 Instruction *commonRemTransforms(BinaryOperator &I);
116 Instruction *commonIRemTransforms(BinaryOperator &I);
117 Instruction *commonDivTransforms(BinaryOperator &I);
118 Instruction *commonIDivTransforms(BinaryOperator &I);
119 Instruction *visitUDiv(BinaryOperator &I);
120 Instruction *visitSDiv(BinaryOperator &I);
121 Instruction *visitFDiv(BinaryOperator &I);
122 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
123 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
124 Instruction *visitAnd(BinaryOperator &I);
125 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
126 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
127 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
128 Value *A, Value *B, Value *C);
129 Instruction *visitOr (BinaryOperator &I);
130 Instruction *visitXor(BinaryOperator &I);
131 Instruction *visitShl(BinaryOperator &I);
132 Instruction *visitAShr(BinaryOperator &I);
133 Instruction *visitLShr(BinaryOperator &I);
134 Instruction *commonShiftTransforms(BinaryOperator &I);
135 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
136 Constant *RHSC);
137 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
138 GlobalVariable *GV, CmpInst &ICI,
139 ConstantInt *AndCst = 0);
140 Instruction *visitFCmpInst(FCmpInst &I);
141 Instruction *visitICmpInst(ICmpInst &I);
142 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
143 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
144 Instruction *LHS,
145 ConstantInt *RHS);
146 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
147 ConstantInt *DivRHS);
148 Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
149 ConstantInt *DivRHS);
150 Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
151 ICmpInst::Predicate Pred, Value *TheAdd);
152 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
153 ICmpInst::Predicate Cond, Instruction &I);
154 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
155 BinaryOperator &I);
156 Instruction *commonCastTransforms(CastInst &CI);
157 Instruction *commonPointerCastTransforms(CastInst &CI);
158 Instruction *visitTrunc(TruncInst &CI);
159 Instruction *visitZExt(ZExtInst &CI);
160 Instruction *visitSExt(SExtInst &CI);
161 Instruction *visitFPTrunc(FPTruncInst &CI);
162 Instruction *visitFPExt(CastInst &CI);
163 Instruction *visitFPToUI(FPToUIInst &FI);
164 Instruction *visitFPToSI(FPToSIInst &FI);
165 Instruction *visitUIToFP(CastInst &CI);
166 Instruction *visitSIToFP(CastInst &CI);
167 Instruction *visitPtrToInt(PtrToIntInst &CI);
168 Instruction *visitIntToPtr(IntToPtrInst &CI);
169 Instruction *visitBitCast(BitCastInst &CI);
170 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
171 Instruction *FI);
172 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
173 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
174 Value *A, Value *B, Instruction &Outer,
175 SelectPatternFlavor SPF2, Value *C);
176 Instruction *visitSelectInst(SelectInst &SI);
177 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
178 Instruction *visitCallInst(CallInst &CI);
179 Instruction *visitInvokeInst(InvokeInst &II);
180
181 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
182 Instruction *visitPHINode(PHINode &PN);
183 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
184 Instruction *visitAllocaInst(AllocaInst &AI);
185 Instruction *visitMalloc(Instruction &FI);
186 Instruction *visitFree(CallInst &FI);
187 Instruction *visitLoadInst(LoadInst &LI);
188 Instruction *visitStoreInst(StoreInst &SI);
189 Instruction *visitBranchInst(BranchInst &BI);
190 Instruction *visitSwitchInst(SwitchInst &SI);
191 Instruction *visitInsertElementInst(InsertElementInst &IE);
192 Instruction *visitExtractElementInst(ExtractElementInst &EI);
193 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
194 Instruction *visitExtractValueInst(ExtractValueInst &EV);
195
196 // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)197 Instruction *visitInstruction(Instruction &I) { return 0; }
198
199 private:
200 bool ShouldChangeType(Type *From, Type *To) const;
201 Value *dyn_castNegVal(Value *V) const;
202 Value *dyn_castFNegVal(Value *V) const;
203 Type *FindElementAtOffset(Type *Ty, int64_t Offset,
204 SmallVectorImpl<Value*> &NewIndices);
205 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
206
207 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
208 /// results in any code being generated and is interesting to optimize out. If
209 /// the cast can be eliminated by some other simple transformation, we prefer
210 /// to do the simplification first.
211 bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
212 Type *Ty);
213
214 Instruction *visitCallSite(CallSite CS);
215 Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
216 bool transformConstExprCastCall(CallSite CS);
217 Instruction *transformCallThroughTrampoline(CallSite CS);
218 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
219 bool DoXform = true);
220 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
221 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
222 Value *EmitGEPOffset(User *GEP);
223
224 public:
225 // InsertNewInstBefore - insert an instruction New before instruction Old
226 // in the program. Add the new instruction to the worklist.
227 //
InsertNewInstBefore(Instruction * New,Instruction & Old)228 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
229 assert(New && New->getParent() == 0 &&
230 "New instruction already inserted into a basic block!");
231 BasicBlock *BB = Old.getParent();
232 BB->getInstList().insert(&Old, New); // Insert inst
233 Worklist.Add(New);
234 return New;
235 }
236
237 // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
238 // debug loc.
239 //
InsertNewInstWith(Instruction * New,Instruction & Old)240 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
241 New->setDebugLoc(Old.getDebugLoc());
242 return InsertNewInstBefore(New, Old);
243 }
244
245 // ReplaceInstUsesWith - This method is to be used when an instruction is
246 // found to be dead, replacable with another preexisting expression. Here
247 // we add all uses of I to the worklist, replace all uses of I with the new
248 // value, then return I, so that the inst combiner will know that I was
249 // modified.
250 //
ReplaceInstUsesWith(Instruction & I,Value * V)251 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
252 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
253
254 // If we are replacing the instruction with itself, this must be in a
255 // segment of unreachable code, so just clobber the instruction.
256 if (&I == V)
257 V = UndefValue::get(I.getType());
258
259 DEBUG(errs() << "IC: Replacing " << I << "\n"
260 " with " << *V << '\n');
261
262 I.replaceAllUsesWith(V);
263 return &I;
264 }
265
266 // EraseInstFromFunction - When dealing with an instruction that has side
267 // effects or produces a void value, we can't rely on DCE to delete the
268 // instruction. Instead, visit methods should return the value returned by
269 // this function.
EraseInstFromFunction(Instruction & I)270 Instruction *EraseInstFromFunction(Instruction &I) {
271 DEBUG(errs() << "IC: ERASE " << I << '\n');
272
273 assert(I.use_empty() && "Cannot erase instruction that is used!");
274 // Make sure that we reprocess all operands now that we reduced their
275 // use counts.
276 if (I.getNumOperands() < 8) {
277 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
278 if (Instruction *Op = dyn_cast<Instruction>(*i))
279 Worklist.Add(Op);
280 }
281 Worklist.Remove(&I);
282 I.eraseFromParent();
283 MadeIRChange = true;
284 return 0; // Don't do anything with FI
285 }
286
287 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
288 APInt &KnownOne, unsigned Depth = 0) const {
289 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
290 }
291
292 bool MaskedValueIsZero(Value *V, const APInt &Mask,
293 unsigned Depth = 0) const {
294 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
295 }
296 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
297 return llvm::ComputeNumSignBits(Op, TD, Depth);
298 }
299
300 private:
301
302 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
303 /// operators which are associative or commutative.
304 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
305
306 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
307 /// which some other binary operation distributes over either by factorizing
308 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
309 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
310 /// a win). Returns the simplified value, or null if it didn't simplify.
311 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
312
313 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
314 /// based on the demanded bits.
315 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
316 APInt& KnownZero, APInt& KnownOne,
317 unsigned Depth);
318 bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
319 APInt& KnownZero, APInt& KnownOne,
320 unsigned Depth=0);
321
322 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
323 /// SimplifyDemandedBits knows about. See if the instruction has any
324 /// properties that allow us to simplify its operands.
325 bool SimplifyDemandedInstructionBits(Instruction &Inst);
326
327 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
328 APInt& UndefElts, unsigned Depth = 0);
329
330 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
331 // which has a PHI node as operand #0, see if we can fold the instruction
332 // into the PHI (which is only possible if all operands to the PHI are
333 // constants).
334 //
335 Instruction *FoldOpIntoPhi(Instruction &I);
336
337 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
338 // operator and they all are only used by the PHI, PHI together their
339 // inputs, and do the operation once, to the result of the PHI.
340 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
341 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
342 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
343 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
344
345
346 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
347 ConstantInt *AndRHS, BinaryOperator &TheAnd);
348
349 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
350 bool isSub, Instruction &I);
351 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
352 bool isSigned, bool Inside);
353 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
354 Instruction *MatchBSwap(BinaryOperator &I);
355 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
356 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
357 Instruction *SimplifyMemSet(MemSetInst *MI);
358
359
360 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
361 };
362
363
364
365 } // end namespace llvm.
366
367 #endif
368