• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/Support/PatternMatch.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 using namespace llvm;
18 using namespace PatternMatch;
19 
20 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21 /// returning the kind and providing the out parameter results if we
22 /// successfully match.
23 static SelectPatternFlavor
MatchSelectPattern(Value * V,Value * & LHS,Value * & RHS)24 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
25   SelectInst *SI = dyn_cast<SelectInst>(V);
26   if (SI == 0) return SPF_UNKNOWN;
27 
28   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
29   if (ICI == 0) return SPF_UNKNOWN;
30 
31   LHS = ICI->getOperand(0);
32   RHS = ICI->getOperand(1);
33 
34   // (icmp X, Y) ? X : Y
35   if (SI->getTrueValue() == ICI->getOperand(0) &&
36       SI->getFalseValue() == ICI->getOperand(1)) {
37     switch (ICI->getPredicate()) {
38     default: return SPF_UNKNOWN; // Equality.
39     case ICmpInst::ICMP_UGT:
40     case ICmpInst::ICMP_UGE: return SPF_UMAX;
41     case ICmpInst::ICMP_SGT:
42     case ICmpInst::ICMP_SGE: return SPF_SMAX;
43     case ICmpInst::ICMP_ULT:
44     case ICmpInst::ICMP_ULE: return SPF_UMIN;
45     case ICmpInst::ICMP_SLT:
46     case ICmpInst::ICMP_SLE: return SPF_SMIN;
47     }
48   }
49 
50   // (icmp X, Y) ? Y : X
51   if (SI->getTrueValue() == ICI->getOperand(1) &&
52       SI->getFalseValue() == ICI->getOperand(0)) {
53     switch (ICI->getPredicate()) {
54       default: return SPF_UNKNOWN; // Equality.
55       case ICmpInst::ICMP_UGT:
56       case ICmpInst::ICMP_UGE: return SPF_UMIN;
57       case ICmpInst::ICMP_SGT:
58       case ICmpInst::ICMP_SGE: return SPF_SMIN;
59       case ICmpInst::ICMP_ULT:
60       case ICmpInst::ICMP_ULE: return SPF_UMAX;
61       case ICmpInst::ICMP_SLT:
62       case ICmpInst::ICMP_SLE: return SPF_SMAX;
63     }
64   }
65 
66   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
67 
68   return SPF_UNKNOWN;
69 }
70 
71 
72 /// GetSelectFoldableOperands - We want to turn code that looks like this:
73 ///   %C = or %A, %B
74 ///   %D = select %cond, %C, %A
75 /// into:
76 ///   %C = select %cond, %B, 0
77 ///   %D = or %A, %C
78 ///
79 /// Assuming that the specified instruction is an operand to the select, return
80 /// a bitmask indicating which operands of this instruction are foldable if they
81 /// equal the other incoming value of the select.
82 ///
GetSelectFoldableOperands(Instruction * I)83 static unsigned GetSelectFoldableOperands(Instruction *I) {
84   switch (I->getOpcode()) {
85   case Instruction::Add:
86   case Instruction::Mul:
87   case Instruction::And:
88   case Instruction::Or:
89   case Instruction::Xor:
90     return 3;              // Can fold through either operand.
91   case Instruction::Sub:   // Can only fold on the amount subtracted.
92   case Instruction::Shl:   // Can only fold on the shift amount.
93   case Instruction::LShr:
94   case Instruction::AShr:
95     return 1;
96   default:
97     return 0;              // Cannot fold
98   }
99 }
100 
101 /// GetSelectFoldableConstant - For the same transformation as the previous
102 /// function, return the identity constant that goes into the select.
GetSelectFoldableConstant(Instruction * I)103 static Constant *GetSelectFoldableConstant(Instruction *I) {
104   switch (I->getOpcode()) {
105   default: llvm_unreachable("This cannot happen!");
106   case Instruction::Add:
107   case Instruction::Sub:
108   case Instruction::Or:
109   case Instruction::Xor:
110   case Instruction::Shl:
111   case Instruction::LShr:
112   case Instruction::AShr:
113     return Constant::getNullValue(I->getType());
114   case Instruction::And:
115     return Constant::getAllOnesValue(I->getType());
116   case Instruction::Mul:
117     return ConstantInt::get(I->getType(), 1);
118   }
119 }
120 
121 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122 /// have the same opcode and only one use each.  Try to simplify this.
FoldSelectOpOp(SelectInst & SI,Instruction * TI,Instruction * FI)123 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
124                                           Instruction *FI) {
125   if (TI->getNumOperands() == 1) {
126     // If this is a non-volatile load or a cast from the same type,
127     // merge.
128     if (TI->isCast()) {
129       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
130         return 0;
131     } else {
132       return 0;  // unknown unary op.
133     }
134 
135     // Fold this by inserting a select from the input values.
136     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
137                                          FI->getOperand(0), SI.getName()+".v");
138     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
139                             TI->getType());
140   }
141 
142   // Only handle binary operators here.
143   if (!isa<BinaryOperator>(TI))
144     return 0;
145 
146   // Figure out if the operations have any operands in common.
147   Value *MatchOp, *OtherOpT, *OtherOpF;
148   bool MatchIsOpZero;
149   if (TI->getOperand(0) == FI->getOperand(0)) {
150     MatchOp  = TI->getOperand(0);
151     OtherOpT = TI->getOperand(1);
152     OtherOpF = FI->getOperand(1);
153     MatchIsOpZero = true;
154   } else if (TI->getOperand(1) == FI->getOperand(1)) {
155     MatchOp  = TI->getOperand(1);
156     OtherOpT = TI->getOperand(0);
157     OtherOpF = FI->getOperand(0);
158     MatchIsOpZero = false;
159   } else if (!TI->isCommutative()) {
160     return 0;
161   } else if (TI->getOperand(0) == FI->getOperand(1)) {
162     MatchOp  = TI->getOperand(0);
163     OtherOpT = TI->getOperand(1);
164     OtherOpF = FI->getOperand(0);
165     MatchIsOpZero = true;
166   } else if (TI->getOperand(1) == FI->getOperand(0)) {
167     MatchOp  = TI->getOperand(1);
168     OtherOpT = TI->getOperand(0);
169     OtherOpF = FI->getOperand(1);
170     MatchIsOpZero = true;
171   } else {
172     return 0;
173   }
174 
175   // If we reach here, they do have operations in common.
176   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
177                                        OtherOpF, SI.getName()+".v");
178 
179   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
180     if (MatchIsOpZero)
181       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
182     else
183       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
184   }
185   llvm_unreachable("Shouldn't get here");
186   return 0;
187 }
188 
isSelect01(Constant * C1,Constant * C2)189 static bool isSelect01(Constant *C1, Constant *C2) {
190   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
191   if (!C1I)
192     return false;
193   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
194   if (!C2I)
195     return false;
196   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
197     return false;
198   return C1I->isOne() || C1I->isAllOnesValue() ||
199          C2I->isOne() || C2I->isAllOnesValue();
200 }
201 
202 /// FoldSelectIntoOp - Try fold the select into one of the operands to
203 /// facilitate further optimization.
FoldSelectIntoOp(SelectInst & SI,Value * TrueVal,Value * FalseVal)204 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
205                                             Value *FalseVal) {
206   // See the comment above GetSelectFoldableOperands for a description of the
207   // transformation we are doing here.
208   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
209     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
210         !isa<Constant>(FalseVal)) {
211       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
212         unsigned OpToFold = 0;
213         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
214           OpToFold = 1;
215         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
216           OpToFold = 2;
217         }
218 
219         if (OpToFold) {
220           Constant *C = GetSelectFoldableConstant(TVI);
221           Value *OOp = TVI->getOperand(2-OpToFold);
222           // Avoid creating select between 2 constants unless it's selecting
223           // between 0, 1 and -1.
224           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
225             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
226             NewSel->takeName(TVI);
227             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
228             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
229                                                         FalseVal, NewSel);
230             if (isa<PossiblyExactOperator>(BO))
231               BO->setIsExact(TVI_BO->isExact());
232             if (isa<OverflowingBinaryOperator>(BO)) {
233               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
234               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
235             }
236             return BO;
237           }
238         }
239       }
240     }
241   }
242 
243   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
244     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
245         !isa<Constant>(TrueVal)) {
246       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
247         unsigned OpToFold = 0;
248         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
249           OpToFold = 1;
250         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
251           OpToFold = 2;
252         }
253 
254         if (OpToFold) {
255           Constant *C = GetSelectFoldableConstant(FVI);
256           Value *OOp = FVI->getOperand(2-OpToFold);
257           // Avoid creating select between 2 constants unless it's selecting
258           // between 0, 1 and -1.
259           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
260             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
261             NewSel->takeName(FVI);
262             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
263             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
264                                                         TrueVal, NewSel);
265             if (isa<PossiblyExactOperator>(BO))
266               BO->setIsExact(FVI_BO->isExact());
267             if (isa<OverflowingBinaryOperator>(BO)) {
268               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
269               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
270             }
271             return BO;
272           }
273         }
274       }
275     }
276   }
277 
278   return 0;
279 }
280 
281 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
282 /// replaced with RepOp.
SimplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const TargetData * TD)283 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
284                                      const TargetData *TD) {
285   // Trivial replacement.
286   if (V == Op)
287     return RepOp;
288 
289   Instruction *I = dyn_cast<Instruction>(V);
290   if (!I)
291     return 0;
292 
293   // If this is a binary operator, try to simplify it with the replaced op.
294   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
295     if (B->getOperand(0) == Op)
296       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD);
297     if (B->getOperand(1) == Op)
298       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD);
299   }
300 
301   // Same for CmpInsts.
302   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
303     if (C->getOperand(0) == Op)
304       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD);
305     if (C->getOperand(1) == Op)
306       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD);
307   }
308 
309   // TODO: We could hand off more cases to instsimplify here.
310 
311   // If all operands are constant after substituting Op for RepOp then we can
312   // constant fold the instruction.
313   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
314     // Build a list of all constant operands.
315     SmallVector<Constant*, 8> ConstOps;
316     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
317       if (I->getOperand(i) == Op)
318         ConstOps.push_back(CRepOp);
319       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
320         ConstOps.push_back(COp);
321       else
322         break;
323     }
324 
325     // All operands were constants, fold it.
326     if (ConstOps.size() == I->getNumOperands())
327       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
328                                       ConstOps, TD);
329   }
330 
331   return 0;
332 }
333 
334 /// visitSelectInstWithICmp - Visit a SelectInst that has an
335 /// ICmpInst as its first operand.
336 ///
visitSelectInstWithICmp(SelectInst & SI,ICmpInst * ICI)337 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
338                                                    ICmpInst *ICI) {
339   bool Changed = false;
340   ICmpInst::Predicate Pred = ICI->getPredicate();
341   Value *CmpLHS = ICI->getOperand(0);
342   Value *CmpRHS = ICI->getOperand(1);
343   Value *TrueVal = SI.getTrueValue();
344   Value *FalseVal = SI.getFalseValue();
345 
346   // Check cases where the comparison is with a constant that
347   // can be adjusted to fit the min/max idiom. We may move or edit ICI
348   // here, so make sure the select is the only user.
349   if (ICI->hasOneUse())
350     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
351       // X < MIN ? T : F  -->  F
352       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
353           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
354         return ReplaceInstUsesWith(SI, FalseVal);
355       // X > MAX ? T : F  -->  F
356       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
357                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
358         return ReplaceInstUsesWith(SI, FalseVal);
359       switch (Pred) {
360       default: break;
361       case ICmpInst::ICMP_ULT:
362       case ICmpInst::ICMP_SLT:
363       case ICmpInst::ICMP_UGT:
364       case ICmpInst::ICMP_SGT: {
365         // These transformations only work for selects over integers.
366         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
367         if (!SelectTy)
368           break;
369 
370         Constant *AdjustedRHS;
371         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
372           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
373         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
374           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
375 
376         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
377         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
378         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
379             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
380           ; // Nothing to do here. Values match without any sign/zero extension.
381 
382         // Types do not match. Instead of calculating this with mixed types
383         // promote all to the larger type. This enables scalar evolution to
384         // analyze this expression.
385         else if (CmpRHS->getType()->getScalarSizeInBits()
386                  < SelectTy->getBitWidth()) {
387           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
388 
389           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
390           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
391           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
392           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
393           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
394                 sextRHS == FalseVal) {
395             CmpLHS = TrueVal;
396             AdjustedRHS = sextRHS;
397           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
398                      sextRHS == TrueVal) {
399             CmpLHS = FalseVal;
400             AdjustedRHS = sextRHS;
401           } else if (ICI->isUnsigned()) {
402             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
403             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
404             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
405             // zext + signed compare cannot be changed:
406             //    0xff <s 0x00, but 0x00ff >s 0x0000
407             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
408                 zextRHS == FalseVal) {
409               CmpLHS = TrueVal;
410               AdjustedRHS = zextRHS;
411             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
412                        zextRHS == TrueVal) {
413               CmpLHS = FalseVal;
414               AdjustedRHS = zextRHS;
415             } else
416               break;
417           } else
418             break;
419         } else
420           break;
421 
422         Pred = ICmpInst::getSwappedPredicate(Pred);
423         CmpRHS = AdjustedRHS;
424         std::swap(FalseVal, TrueVal);
425         ICI->setPredicate(Pred);
426         ICI->setOperand(0, CmpLHS);
427         ICI->setOperand(1, CmpRHS);
428         SI.setOperand(1, TrueVal);
429         SI.setOperand(2, FalseVal);
430 
431         // Move ICI instruction right before the select instruction. Otherwise
432         // the sext/zext value may be defined after the ICI instruction uses it.
433         ICI->moveBefore(&SI);
434 
435         Changed = true;
436         break;
437       }
438       }
439     }
440 
441   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
442   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
443   // FIXME: Type and constness constraints could be lifted, but we have to
444   //        watch code size carefully. We should consider xor instead of
445   //        sub/add when we decide to do that.
446   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
447     if (TrueVal->getType() == Ty) {
448       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
449         ConstantInt *C1 = NULL, *C2 = NULL;
450         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
451           C1 = dyn_cast<ConstantInt>(TrueVal);
452           C2 = dyn_cast<ConstantInt>(FalseVal);
453         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
454           C1 = dyn_cast<ConstantInt>(FalseVal);
455           C2 = dyn_cast<ConstantInt>(TrueVal);
456         }
457         if (C1 && C2) {
458           // This shift results in either -1 or 0.
459           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
460 
461           // Check if we can express the operation with a single or.
462           if (C2->isAllOnesValue())
463             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
464 
465           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
466           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
467         }
468       }
469     }
470   }
471 
472   // If we have an equality comparison then we know the value in one of the
473   // arms of the select. See if substituting this value into the arm and
474   // simplifying the result yields the same value as the other arm.
475   if (Pred == ICmpInst::ICMP_EQ) {
476     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD) == TrueVal ||
477         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD) == TrueVal)
478       return ReplaceInstUsesWith(SI, FalseVal);
479   } else if (Pred == ICmpInst::ICMP_NE) {
480     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD) == FalseVal ||
481         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD) == FalseVal)
482       return ReplaceInstUsesWith(SI, TrueVal);
483   }
484 
485   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
486 
487   if (isa<Constant>(CmpRHS)) {
488     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
489       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
490       SI.setOperand(1, CmpRHS);
491       Changed = true;
492     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
493       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
494       SI.setOperand(2, CmpRHS);
495       Changed = true;
496     }
497   }
498 
499   return Changed ? &SI : 0;
500 }
501 
502 
503 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
504 /// PHI node (but the two may be in different blocks).  See if the true/false
505 /// values (V) are live in all of the predecessor blocks of the PHI.  For
506 /// example, cases like this cannot be mapped:
507 ///
508 ///   X = phi [ C1, BB1], [C2, BB2]
509 ///   Y = add
510 ///   Z = select X, Y, 0
511 ///
512 /// because Y is not live in BB1/BB2.
513 ///
CanSelectOperandBeMappingIntoPredBlock(const Value * V,const SelectInst & SI)514 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
515                                                    const SelectInst &SI) {
516   // If the value is a non-instruction value like a constant or argument, it
517   // can always be mapped.
518   const Instruction *I = dyn_cast<Instruction>(V);
519   if (I == 0) return true;
520 
521   // If V is a PHI node defined in the same block as the condition PHI, we can
522   // map the arguments.
523   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
524 
525   if (const PHINode *VP = dyn_cast<PHINode>(I))
526     if (VP->getParent() == CondPHI->getParent())
527       return true;
528 
529   // Otherwise, if the PHI and select are defined in the same block and if V is
530   // defined in a different block, then we can transform it.
531   if (SI.getParent() == CondPHI->getParent() &&
532       I->getParent() != CondPHI->getParent())
533     return true;
534 
535   // Otherwise we have a 'hard' case and we can't tell without doing more
536   // detailed dominator based analysis, punt.
537   return false;
538 }
539 
540 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
541 ///   SPF2(SPF1(A, B), C)
FoldSPFofSPF(Instruction * Inner,SelectPatternFlavor SPF1,Value * A,Value * B,Instruction & Outer,SelectPatternFlavor SPF2,Value * C)542 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
543                                         SelectPatternFlavor SPF1,
544                                         Value *A, Value *B,
545                                         Instruction &Outer,
546                                         SelectPatternFlavor SPF2, Value *C) {
547   if (C == A || C == B) {
548     // MAX(MAX(A, B), B) -> MAX(A, B)
549     // MIN(MIN(a, b), a) -> MIN(a, b)
550     if (SPF1 == SPF2)
551       return ReplaceInstUsesWith(Outer, Inner);
552 
553     // MAX(MIN(a, b), a) -> a
554     // MIN(MAX(a, b), a) -> a
555     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
556         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
557         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
558         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
559       return ReplaceInstUsesWith(Outer, C);
560   }
561 
562   // TODO: MIN(MIN(A, 23), 97)
563   return 0;
564 }
565 
566 
567 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
568 /// both be) and we have an icmp instruction with zero, and we have an 'and'
569 /// with the non-constant value and a power of two we can turn the select
570 /// into a shift on the result of the 'and'.
foldSelectICmpAnd(const SelectInst & SI,ConstantInt * TrueVal,ConstantInt * FalseVal,InstCombiner::BuilderTy * Builder)571 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
572                                 ConstantInt *FalseVal,
573                                 InstCombiner::BuilderTy *Builder) {
574   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
575   if (!IC || !IC->isEquality())
576     return 0;
577 
578   if (!match(IC->getOperand(1), m_Zero()))
579     return 0;
580 
581   ConstantInt *AndRHS;
582   Value *LHS = IC->getOperand(0);
583   if (LHS->getType() != SI.getType() ||
584       !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
585     return 0;
586 
587   // If both select arms are non-zero see if we have a select of the form
588   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
589   // for 'x ? 2^n : 0' and fix the thing up at the end.
590   ConstantInt *Offset = 0;
591   if (!TrueVal->isZero() && !FalseVal->isZero()) {
592     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
593       Offset = FalseVal;
594     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
595       Offset = TrueVal;
596     else
597       return 0;
598 
599     // Adjust TrueVal and FalseVal to the offset.
600     TrueVal = ConstantInt::get(Builder->getContext(),
601                                TrueVal->getValue() - Offset->getValue());
602     FalseVal = ConstantInt::get(Builder->getContext(),
603                                 FalseVal->getValue() - Offset->getValue());
604   }
605 
606   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
607   if (!AndRHS->getValue().isPowerOf2() ||
608       (!TrueVal->getValue().isPowerOf2() &&
609        !FalseVal->getValue().isPowerOf2()))
610     return 0;
611 
612   // Determine which shift is needed to transform result of the 'and' into the
613   // desired result.
614   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
615   unsigned ValZeros = ValC->getValue().logBase2();
616   unsigned AndZeros = AndRHS->getValue().logBase2();
617 
618   Value *V = LHS;
619   if (ValZeros > AndZeros)
620     V = Builder->CreateShl(V, ValZeros - AndZeros);
621   else if (ValZeros < AndZeros)
622     V = Builder->CreateLShr(V, AndZeros - ValZeros);
623 
624   // Okay, now we know that everything is set up, we just don't know whether we
625   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
626   bool ShouldNotVal = !TrueVal->isZero();
627   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
628   if (ShouldNotVal)
629     V = Builder->CreateXor(V, ValC);
630 
631   // Apply an offset if needed.
632   if (Offset)
633     V = Builder->CreateAdd(V, Offset);
634   return V;
635 }
636 
visitSelectInst(SelectInst & SI)637 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
638   Value *CondVal = SI.getCondition();
639   Value *TrueVal = SI.getTrueValue();
640   Value *FalseVal = SI.getFalseValue();
641 
642   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
643     return ReplaceInstUsesWith(SI, V);
644 
645   if (SI.getType()->isIntegerTy(1)) {
646     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
647       if (C->getZExtValue()) {
648         // Change: A = select B, true, C --> A = or B, C
649         return BinaryOperator::CreateOr(CondVal, FalseVal);
650       }
651       // Change: A = select B, false, C --> A = and !B, C
652       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
653       return BinaryOperator::CreateAnd(NotCond, FalseVal);
654     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
655       if (C->getZExtValue() == false) {
656         // Change: A = select B, C, false --> A = and B, C
657         return BinaryOperator::CreateAnd(CondVal, TrueVal);
658       }
659       // Change: A = select B, C, true --> A = or !B, C
660       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
661       return BinaryOperator::CreateOr(NotCond, TrueVal);
662     }
663 
664     // select a, b, a  -> a&b
665     // select a, a, b  -> a|b
666     if (CondVal == TrueVal)
667       return BinaryOperator::CreateOr(CondVal, FalseVal);
668     else if (CondVal == FalseVal)
669       return BinaryOperator::CreateAnd(CondVal, TrueVal);
670   }
671 
672   // Selecting between two integer constants?
673   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
674     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
675       // select C, 1, 0 -> zext C to int
676       if (FalseValC->isZero() && TrueValC->getValue() == 1)
677         return new ZExtInst(CondVal, SI.getType());
678 
679       // select C, -1, 0 -> sext C to int
680       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
681         return new SExtInst(CondVal, SI.getType());
682 
683       // select C, 0, 1 -> zext !C to int
684       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
685         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
686         return new ZExtInst(NotCond, SI.getType());
687       }
688 
689       // select C, 0, -1 -> sext !C to int
690       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
691         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
692         return new SExtInst(NotCond, SI.getType());
693       }
694 
695       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
696         return ReplaceInstUsesWith(SI, V);
697     }
698 
699   // See if we are selecting two values based on a comparison of the two values.
700   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
701     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
702       // Transform (X == Y) ? X : Y  -> Y
703       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
704         // This is not safe in general for floating point:
705         // consider X== -0, Y== +0.
706         // It becomes safe if either operand is a nonzero constant.
707         ConstantFP *CFPt, *CFPf;
708         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
709               !CFPt->getValueAPF().isZero()) ||
710             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
711              !CFPf->getValueAPF().isZero()))
712         return ReplaceInstUsesWith(SI, FalseVal);
713       }
714       // Transform (X une Y) ? X : Y  -> X
715       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
716         // This is not safe in general for floating point:
717         // consider X== -0, Y== +0.
718         // It becomes safe if either operand is a nonzero constant.
719         ConstantFP *CFPt, *CFPf;
720         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
721               !CFPt->getValueAPF().isZero()) ||
722             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
723              !CFPf->getValueAPF().isZero()))
724         return ReplaceInstUsesWith(SI, TrueVal);
725       }
726       // NOTE: if we wanted to, this is where to detect MIN/MAX
727 
728     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
729       // Transform (X == Y) ? Y : X  -> X
730       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
731         // This is not safe in general for floating point:
732         // consider X== -0, Y== +0.
733         // It becomes safe if either operand is a nonzero constant.
734         ConstantFP *CFPt, *CFPf;
735         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
736               !CFPt->getValueAPF().isZero()) ||
737             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
738              !CFPf->getValueAPF().isZero()))
739           return ReplaceInstUsesWith(SI, FalseVal);
740       }
741       // Transform (X une Y) ? Y : X  -> Y
742       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
743         // This is not safe in general for floating point:
744         // consider X== -0, Y== +0.
745         // It becomes safe if either operand is a nonzero constant.
746         ConstantFP *CFPt, *CFPf;
747         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
748               !CFPt->getValueAPF().isZero()) ||
749             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
750              !CFPf->getValueAPF().isZero()))
751           return ReplaceInstUsesWith(SI, TrueVal);
752       }
753       // NOTE: if we wanted to, this is where to detect MIN/MAX
754     }
755     // NOTE: if we wanted to, this is where to detect ABS
756   }
757 
758   // See if we are selecting two values based on a comparison of the two values.
759   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
760     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
761       return Result;
762 
763   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
764     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
765       if (TI->hasOneUse() && FI->hasOneUse()) {
766         Instruction *AddOp = 0, *SubOp = 0;
767 
768         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
769         if (TI->getOpcode() == FI->getOpcode())
770           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
771             return IV;
772 
773         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
774         // even legal for FP.
775         if ((TI->getOpcode() == Instruction::Sub &&
776              FI->getOpcode() == Instruction::Add) ||
777             (TI->getOpcode() == Instruction::FSub &&
778              FI->getOpcode() == Instruction::FAdd)) {
779           AddOp = FI; SubOp = TI;
780         } else if ((FI->getOpcode() == Instruction::Sub &&
781                     TI->getOpcode() == Instruction::Add) ||
782                    (FI->getOpcode() == Instruction::FSub &&
783                     TI->getOpcode() == Instruction::FAdd)) {
784           AddOp = TI; SubOp = FI;
785         }
786 
787         if (AddOp) {
788           Value *OtherAddOp = 0;
789           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
790             OtherAddOp = AddOp->getOperand(1);
791           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
792             OtherAddOp = AddOp->getOperand(0);
793           }
794 
795           if (OtherAddOp) {
796             // So at this point we know we have (Y -> OtherAddOp):
797             //        select C, (add X, Y), (sub X, Z)
798             Value *NegVal;  // Compute -Z
799             if (SI.getType()->isFPOrFPVectorTy()) {
800               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
801             } else {
802               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
803             }
804 
805             Value *NewTrueOp = OtherAddOp;
806             Value *NewFalseOp = NegVal;
807             if (AddOp != TI)
808               std::swap(NewTrueOp, NewFalseOp);
809             Value *NewSel =
810               Builder->CreateSelect(CondVal, NewTrueOp,
811                                     NewFalseOp, SI.getName() + ".p");
812 
813             if (SI.getType()->isFPOrFPVectorTy())
814               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
815             else
816               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
817           }
818         }
819       }
820 
821   // See if we can fold the select into one of our operands.
822   if (SI.getType()->isIntegerTy()) {
823     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
824       return FoldI;
825 
826     // MAX(MAX(a, b), a) -> MAX(a, b)
827     // MIN(MIN(a, b), a) -> MIN(a, b)
828     // MAX(MIN(a, b), a) -> a
829     // MIN(MAX(a, b), a) -> a
830     Value *LHS, *RHS, *LHS2, *RHS2;
831     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
832       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
833         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
834                                           SI, SPF, RHS))
835           return R;
836       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
837         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
838                                           SI, SPF, LHS))
839           return R;
840     }
841 
842     // TODO.
843     // ABS(-X) -> ABS(X)
844     // ABS(ABS(X)) -> ABS(X)
845   }
846 
847   // See if we can fold the select into a phi node if the condition is a select.
848   if (isa<PHINode>(SI.getCondition()))
849     // The true/false values have to be live in the PHI predecessor's blocks.
850     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
851         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
852       if (Instruction *NV = FoldOpIntoPhi(SI))
853         return NV;
854 
855   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
856     if (TrueSI->getCondition() == CondVal) {
857       SI.setOperand(1, TrueSI->getTrueValue());
858       return &SI;
859     }
860   }
861   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
862     if (FalseSI->getCondition() == CondVal) {
863       SI.setOperand(2, FalseSI->getFalseValue());
864       return &SI;
865     }
866   }
867 
868   if (BinaryOperator::isNot(CondVal)) {
869     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
870     SI.setOperand(1, FalseVal);
871     SI.setOperand(2, TrueVal);
872     return &SI;
873   }
874 
875   return 0;
876 }
877