1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal. Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "dse"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/Dominators.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/Statistic.h"
36 using namespace llvm;
37
38 STATISTIC(NumFastStores, "Number of stores deleted");
39 STATISTIC(NumFastOther , "Number of other instrs removed");
40
41 namespace {
42 struct DSE : public FunctionPass {
43 AliasAnalysis *AA;
44 MemoryDependenceAnalysis *MD;
45
46 static char ID; // Pass identification, replacement for typeid
DSE__anon43a1fe6c0111::DSE47 DSE() : FunctionPass(ID), AA(0), MD(0) {
48 initializeDSEPass(*PassRegistry::getPassRegistry());
49 }
50
runOnFunction__anon43a1fe6c0111::DSE51 virtual bool runOnFunction(Function &F) {
52 AA = &getAnalysis<AliasAnalysis>();
53 MD = &getAnalysis<MemoryDependenceAnalysis>();
54 DominatorTree &DT = getAnalysis<DominatorTree>();
55
56 bool Changed = false;
57 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
58 // Only check non-dead blocks. Dead blocks may have strange pointer
59 // cycles that will confuse alias analysis.
60 if (DT.isReachableFromEntry(I))
61 Changed |= runOnBasicBlock(*I);
62
63 AA = 0; MD = 0;
64 return Changed;
65 }
66
67 bool runOnBasicBlock(BasicBlock &BB);
68 bool HandleFree(CallInst *F);
69 bool handleEndBlock(BasicBlock &BB);
70 void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
71 SmallPtrSet<Value*, 16> &DeadStackObjects);
72
getAnalysisUsage__anon43a1fe6c0111::DSE73 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.setPreservesCFG();
75 AU.addRequired<DominatorTree>();
76 AU.addRequired<AliasAnalysis>();
77 AU.addRequired<MemoryDependenceAnalysis>();
78 AU.addPreserved<AliasAnalysis>();
79 AU.addPreserved<DominatorTree>();
80 AU.addPreserved<MemoryDependenceAnalysis>();
81 }
82 };
83 }
84
85 char DSE::ID = 0;
86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)87 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
91
92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
93
94 //===----------------------------------------------------------------------===//
95 // Helper functions
96 //===----------------------------------------------------------------------===//
97
98 /// DeleteDeadInstruction - Delete this instruction. Before we do, go through
99 /// and zero out all the operands of this instruction. If any of them become
100 /// dead, delete them and the computation tree that feeds them.
101 ///
102 /// If ValueSet is non-null, remove any deleted instructions from it as well.
103 ///
DeleteDeadInstruction(Instruction * I,MemoryDependenceAnalysis & MD,SmallPtrSet<Value *,16> * ValueSet=0)104 static void DeleteDeadInstruction(Instruction *I,
105 MemoryDependenceAnalysis &MD,
106 SmallPtrSet<Value*, 16> *ValueSet = 0) {
107 SmallVector<Instruction*, 32> NowDeadInsts;
108
109 NowDeadInsts.push_back(I);
110 --NumFastOther;
111
112 // Before we touch this instruction, remove it from memdep!
113 do {
114 Instruction *DeadInst = NowDeadInsts.pop_back_val();
115 ++NumFastOther;
116
117 // This instruction is dead, zap it, in stages. Start by removing it from
118 // MemDep, which needs to know the operands and needs it to be in the
119 // function.
120 MD.removeInstruction(DeadInst);
121
122 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
123 Value *Op = DeadInst->getOperand(op);
124 DeadInst->setOperand(op, 0);
125
126 // If this operand just became dead, add it to the NowDeadInsts list.
127 if (!Op->use_empty()) continue;
128
129 if (Instruction *OpI = dyn_cast<Instruction>(Op))
130 if (isInstructionTriviallyDead(OpI))
131 NowDeadInsts.push_back(OpI);
132 }
133
134 DeadInst->eraseFromParent();
135
136 if (ValueSet) ValueSet->erase(DeadInst);
137 } while (!NowDeadInsts.empty());
138 }
139
140
141 /// hasMemoryWrite - Does this instruction write some memory? This only returns
142 /// true for things that we can analyze with other helpers below.
hasMemoryWrite(Instruction * I)143 static bool hasMemoryWrite(Instruction *I) {
144 if (isa<StoreInst>(I))
145 return true;
146 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
147 switch (II->getIntrinsicID()) {
148 default:
149 return false;
150 case Intrinsic::memset:
151 case Intrinsic::memmove:
152 case Intrinsic::memcpy:
153 case Intrinsic::init_trampoline:
154 case Intrinsic::lifetime_end:
155 return true;
156 }
157 }
158 return false;
159 }
160
161 /// getLocForWrite - Return a Location stored to by the specified instruction.
162 static AliasAnalysis::Location
getLocForWrite(Instruction * Inst,AliasAnalysis & AA)163 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
164 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
165 return AA.getLocation(SI);
166
167 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
168 // memcpy/memmove/memset.
169 AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
170 // If we don't have target data around, an unknown size in Location means
171 // that we should use the size of the pointee type. This isn't valid for
172 // memset/memcpy, which writes more than an i8.
173 if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
174 return AliasAnalysis::Location();
175 return Loc;
176 }
177
178 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
179 if (II == 0) return AliasAnalysis::Location();
180
181 switch (II->getIntrinsicID()) {
182 default: return AliasAnalysis::Location(); // Unhandled intrinsic.
183 case Intrinsic::init_trampoline:
184 // If we don't have target data around, an unknown size in Location means
185 // that we should use the size of the pointee type. This isn't valid for
186 // init.trampoline, which writes more than an i8.
187 if (AA.getTargetData() == 0) return AliasAnalysis::Location();
188
189 // FIXME: We don't know the size of the trampoline, so we can't really
190 // handle it here.
191 return AliasAnalysis::Location(II->getArgOperand(0));
192 case Intrinsic::lifetime_end: {
193 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
194 return AliasAnalysis::Location(II->getArgOperand(1), Len);
195 }
196 }
197 }
198
199 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
200 /// instruction if any.
201 static AliasAnalysis::Location
getLocForRead(Instruction * Inst,AliasAnalysis & AA)202 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
203 assert(hasMemoryWrite(Inst) && "Unknown instruction case");
204
205 // The only instructions that both read and write are the mem transfer
206 // instructions (memcpy/memmove).
207 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
208 return AA.getLocationForSource(MTI);
209 return AliasAnalysis::Location();
210 }
211
212
213 /// isRemovable - If the value of this instruction and the memory it writes to
214 /// is unused, may we delete this instruction?
isRemovable(Instruction * I)215 static bool isRemovable(Instruction *I) {
216 // Don't remove volatile stores.
217 if (StoreInst *SI = dyn_cast<StoreInst>(I))
218 return !SI->isVolatile();
219
220 IntrinsicInst *II = cast<IntrinsicInst>(I);
221 switch (II->getIntrinsicID()) {
222 default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
223 case Intrinsic::lifetime_end:
224 // Never remove dead lifetime_end's, e.g. because it is followed by a
225 // free.
226 return false;
227 case Intrinsic::init_trampoline:
228 // Always safe to remove init_trampoline.
229 return true;
230
231 case Intrinsic::memset:
232 case Intrinsic::memmove:
233 case Intrinsic::memcpy:
234 // Don't remove volatile memory intrinsics.
235 return !cast<MemIntrinsic>(II)->isVolatile();
236 }
237 }
238
239 /// getStoredPointerOperand - Return the pointer that is being written to.
getStoredPointerOperand(Instruction * I)240 static Value *getStoredPointerOperand(Instruction *I) {
241 if (StoreInst *SI = dyn_cast<StoreInst>(I))
242 return SI->getPointerOperand();
243 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
244 return MI->getDest();
245
246 IntrinsicInst *II = cast<IntrinsicInst>(I);
247 switch (II->getIntrinsicID()) {
248 default: assert(false && "Unexpected intrinsic!");
249 case Intrinsic::init_trampoline:
250 return II->getArgOperand(0);
251 }
252 }
253
getPointerSize(Value * V,AliasAnalysis & AA)254 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
255 const TargetData *TD = AA.getTargetData();
256 if (TD == 0)
257 return AliasAnalysis::UnknownSize;
258
259 if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
260 // Get size information for the alloca
261 if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
262 return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
263 return AliasAnalysis::UnknownSize;
264 }
265
266 assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
267 PointerType *PT = cast<PointerType>(V->getType());
268 return TD->getTypeAllocSize(PT->getElementType());
269 }
270
271 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
272 /// pointing to an object with a pointer size we can trust.
isObjectPointerWithTrustworthySize(const Value * V)273 static bool isObjectPointerWithTrustworthySize(const Value *V) {
274 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
275 return !AI->isArrayAllocation();
276 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
277 return !GV->mayBeOverridden();
278 if (const Argument *A = dyn_cast<Argument>(V))
279 return A->hasByValAttr();
280 return false;
281 }
282
283 /// isCompleteOverwrite - Return true if a store to the 'Later' location
284 /// completely overwrites a store to the 'Earlier' location.
isCompleteOverwrite(const AliasAnalysis::Location & Later,const AliasAnalysis::Location & Earlier,AliasAnalysis & AA)285 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
286 const AliasAnalysis::Location &Earlier,
287 AliasAnalysis &AA) {
288 const Value *P1 = Earlier.Ptr->stripPointerCasts();
289 const Value *P2 = Later.Ptr->stripPointerCasts();
290
291 // If the start pointers are the same, we just have to compare sizes to see if
292 // the later store was larger than the earlier store.
293 if (P1 == P2) {
294 // If we don't know the sizes of either access, then we can't do a
295 // comparison.
296 if (Later.Size == AliasAnalysis::UnknownSize ||
297 Earlier.Size == AliasAnalysis::UnknownSize) {
298 // If we have no TargetData information around, then the size of the store
299 // is inferrable from the pointee type. If they are the same type, then
300 // we know that the store is safe.
301 if (AA.getTargetData() == 0)
302 return Later.Ptr->getType() == Earlier.Ptr->getType();
303 return false;
304 }
305
306 // Make sure that the Later size is >= the Earlier size.
307 if (Later.Size < Earlier.Size)
308 return false;
309 return true;
310 }
311
312 // Otherwise, we have to have size information, and the later store has to be
313 // larger than the earlier one.
314 if (Later.Size == AliasAnalysis::UnknownSize ||
315 Earlier.Size == AliasAnalysis::UnknownSize ||
316 Later.Size <= Earlier.Size || AA.getTargetData() == 0)
317 return false;
318
319 // Check to see if the later store is to the entire object (either a global,
320 // an alloca, or a byval argument). If so, then it clearly overwrites any
321 // other store to the same object.
322 const TargetData &TD = *AA.getTargetData();
323
324 const Value *UO1 = GetUnderlyingObject(P1, &TD),
325 *UO2 = GetUnderlyingObject(P2, &TD);
326
327 // If we can't resolve the same pointers to the same object, then we can't
328 // analyze them at all.
329 if (UO1 != UO2)
330 return false;
331
332 // If the "Later" store is to a recognizable object, get its size.
333 if (isObjectPointerWithTrustworthySize(UO2)) {
334 uint64_t ObjectSize =
335 TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
336 if (ObjectSize == Later.Size)
337 return true;
338 }
339
340 // Okay, we have stores to two completely different pointers. Try to
341 // decompose the pointer into a "base + constant_offset" form. If the base
342 // pointers are equal, then we can reason about the two stores.
343 int64_t EarlierOff = 0, LaterOff = 0;
344 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
345 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
346
347 // If the base pointers still differ, we have two completely different stores.
348 if (BP1 != BP2)
349 return false;
350
351 // The later store completely overlaps the earlier store if:
352 //
353 // 1. Both start at the same offset and the later one's size is greater than
354 // or equal to the earlier one's, or
355 //
356 // |--earlier--|
357 // |-- later --|
358 //
359 // 2. The earlier store has an offset greater than the later offset, but which
360 // still lies completely within the later store.
361 //
362 // |--earlier--|
363 // |----- later ------|
364 //
365 // We have to be careful here as *Off is signed while *.Size is unsigned.
366 if (EarlierOff >= LaterOff &&
367 uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
368 return true;
369
370 // Otherwise, they don't completely overlap.
371 return false;
372 }
373
374 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
375 /// memory region into an identical pointer) then it doesn't actually make its
376 /// input dead in the traditional sense. Consider this case:
377 ///
378 /// memcpy(A <- B)
379 /// memcpy(A <- A)
380 ///
381 /// In this case, the second store to A does not make the first store to A dead.
382 /// The usual situation isn't an explicit A<-A store like this (which can be
383 /// trivially removed) but a case where two pointers may alias.
384 ///
385 /// This function detects when it is unsafe to remove a dependent instruction
386 /// because the DSE inducing instruction may be a self-read.
isPossibleSelfRead(Instruction * Inst,const AliasAnalysis::Location & InstStoreLoc,Instruction * DepWrite,AliasAnalysis & AA)387 static bool isPossibleSelfRead(Instruction *Inst,
388 const AliasAnalysis::Location &InstStoreLoc,
389 Instruction *DepWrite, AliasAnalysis &AA) {
390 // Self reads can only happen for instructions that read memory. Get the
391 // location read.
392 AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
393 if (InstReadLoc.Ptr == 0) return false; // Not a reading instruction.
394
395 // If the read and written loc obviously don't alias, it isn't a read.
396 if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
397
398 // Okay, 'Inst' may copy over itself. However, we can still remove a the
399 // DepWrite instruction if we can prove that it reads from the same location
400 // as Inst. This handles useful cases like:
401 // memcpy(A <- B)
402 // memcpy(A <- B)
403 // Here we don't know if A/B may alias, but we do know that B/B are must
404 // aliases, so removing the first memcpy is safe (assuming it writes <= #
405 // bytes as the second one.
406 AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
407
408 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
409 return false;
410
411 // If DepWrite doesn't read memory or if we can't prove it is a must alias,
412 // then it can't be considered dead.
413 return true;
414 }
415
416
417 //===----------------------------------------------------------------------===//
418 // DSE Pass
419 //===----------------------------------------------------------------------===//
420
runOnBasicBlock(BasicBlock & BB)421 bool DSE::runOnBasicBlock(BasicBlock &BB) {
422 bool MadeChange = false;
423
424 // Do a top-down walk on the BB.
425 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
426 Instruction *Inst = BBI++;
427
428 // Handle 'free' calls specially.
429 if (CallInst *F = isFreeCall(Inst)) {
430 MadeChange |= HandleFree(F);
431 continue;
432 }
433
434 // If we find something that writes memory, get its memory dependence.
435 if (!hasMemoryWrite(Inst))
436 continue;
437
438 MemDepResult InstDep = MD->getDependency(Inst);
439
440 // Ignore any store where we can't find a local dependence.
441 // FIXME: cross-block DSE would be fun. :)
442 if (InstDep.isNonLocal() || InstDep.isUnknown())
443 continue;
444
445 // If we're storing the same value back to a pointer that we just
446 // loaded from, then the store can be removed.
447 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
448 if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
449 if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
450 SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
451 DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n "
452 << "LOAD: " << *DepLoad << "\n STORE: " << *SI << '\n');
453
454 // DeleteDeadInstruction can delete the current instruction. Save BBI
455 // in case we need it.
456 WeakVH NextInst(BBI);
457
458 DeleteDeadInstruction(SI, *MD);
459
460 if (NextInst == 0) // Next instruction deleted.
461 BBI = BB.begin();
462 else if (BBI != BB.begin()) // Revisit this instruction if possible.
463 --BBI;
464 ++NumFastStores;
465 MadeChange = true;
466 continue;
467 }
468 }
469 }
470
471 // Figure out what location is being stored to.
472 AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
473
474 // If we didn't get a useful location, fail.
475 if (Loc.Ptr == 0)
476 continue;
477
478 while (!InstDep.isNonLocal() && !InstDep.isUnknown()) {
479 // Get the memory clobbered by the instruction we depend on. MemDep will
480 // skip any instructions that 'Loc' clearly doesn't interact with. If we
481 // end up depending on a may- or must-aliased load, then we can't optimize
482 // away the store and we bail out. However, if we depend on on something
483 // that overwrites the memory location we *can* potentially optimize it.
484 //
485 // Find out what memory location the dependent instruction stores.
486 Instruction *DepWrite = InstDep.getInst();
487 AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
488 // If we didn't get a useful location, or if it isn't a size, bail out.
489 if (DepLoc.Ptr == 0)
490 break;
491
492 // If we find a write that is a) removable (i.e., non-volatile), b) is
493 // completely obliterated by the store to 'Loc', and c) which we know that
494 // 'Inst' doesn't load from, then we can remove it.
495 if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
496 !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
497 DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
498 << *DepWrite << "\n KILLER: " << *Inst << '\n');
499
500 // Delete the store and now-dead instructions that feed it.
501 DeleteDeadInstruction(DepWrite, *MD);
502 ++NumFastStores;
503 MadeChange = true;
504
505 // DeleteDeadInstruction can delete the current instruction in loop
506 // cases, reset BBI.
507 BBI = Inst;
508 if (BBI != BB.begin())
509 --BBI;
510 break;
511 }
512
513 // If this is a may-aliased store that is clobbering the store value, we
514 // can keep searching past it for another must-aliased pointer that stores
515 // to the same location. For example, in:
516 // store -> P
517 // store -> Q
518 // store -> P
519 // we can remove the first store to P even though we don't know if P and Q
520 // alias.
521 if (DepWrite == &BB.front()) break;
522
523 // Can't look past this instruction if it might read 'Loc'.
524 if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
525 break;
526
527 InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
528 }
529 }
530
531 // If this block ends in a return, unwind, or unreachable, all allocas are
532 // dead at its end, which means stores to them are also dead.
533 if (BB.getTerminator()->getNumSuccessors() == 0)
534 MadeChange |= handleEndBlock(BB);
535
536 return MadeChange;
537 }
538
539 /// HandleFree - Handle frees of entire structures whose dependency is a store
540 /// to a field of that structure.
HandleFree(CallInst * F)541 bool DSE::HandleFree(CallInst *F) {
542 bool MadeChange = false;
543
544 MemDepResult Dep = MD->getDependency(F);
545
546 while (!Dep.isNonLocal() && !Dep.isUnknown()) {
547 Instruction *Dependency = Dep.getInst();
548 if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
549 return MadeChange;
550
551 Value *DepPointer =
552 GetUnderlyingObject(getStoredPointerOperand(Dependency));
553
554 // Check for aliasing.
555 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
556 return MadeChange;
557
558 // DCE instructions only used to calculate that store
559 DeleteDeadInstruction(Dependency, *MD);
560 ++NumFastStores;
561 MadeChange = true;
562
563 // Inst's old Dependency is now deleted. Compute the next dependency,
564 // which may also be dead, as in
565 // s[0] = 0;
566 // s[1] = 0; // This has just been deleted.
567 // free(s);
568 Dep = MD->getDependency(F);
569 };
570
571 return MadeChange;
572 }
573
574 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
575 /// function end block. Ex:
576 /// %A = alloca i32
577 /// ...
578 /// store i32 1, i32* %A
579 /// ret void
handleEndBlock(BasicBlock & BB)580 bool DSE::handleEndBlock(BasicBlock &BB) {
581 bool MadeChange = false;
582
583 // Keep track of all of the stack objects that are dead at the end of the
584 // function.
585 SmallPtrSet<Value*, 16> DeadStackObjects;
586
587 // Find all of the alloca'd pointers in the entry block.
588 BasicBlock *Entry = BB.getParent()->begin();
589 for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
590 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
591 DeadStackObjects.insert(AI);
592
593 // Treat byval arguments the same, stores to them are dead at the end of the
594 // function.
595 for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
596 AE = BB.getParent()->arg_end(); AI != AE; ++AI)
597 if (AI->hasByValAttr())
598 DeadStackObjects.insert(AI);
599
600 // Scan the basic block backwards
601 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
602 --BBI;
603
604 // If we find a store, check to see if it points into a dead stack value.
605 if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
606 // See through pointer-to-pointer bitcasts
607 Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
608
609 // Stores to stack values are valid candidates for removal.
610 if (DeadStackObjects.count(Pointer)) {
611 Instruction *Dead = BBI++;
612
613 DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
614 << *Dead << "\n Object: " << *Pointer << '\n');
615
616 // DCE instructions only used to calculate that store.
617 DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
618 ++NumFastStores;
619 MadeChange = true;
620 continue;
621 }
622 }
623
624 // Remove any dead non-memory-mutating instructions.
625 if (isInstructionTriviallyDead(BBI)) {
626 Instruction *Inst = BBI++;
627 DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
628 ++NumFastOther;
629 MadeChange = true;
630 continue;
631 }
632
633 if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
634 DeadStackObjects.erase(A);
635 continue;
636 }
637
638 if (CallSite CS = cast<Value>(BBI)) {
639 // If this call does not access memory, it can't be loading any of our
640 // pointers.
641 if (AA->doesNotAccessMemory(CS))
642 continue;
643
644 // If the call might load from any of our allocas, then any store above
645 // the call is live.
646 SmallVector<Value*, 8> LiveAllocas;
647 for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
648 E = DeadStackObjects.end(); I != E; ++I) {
649 // See if the call site touches it.
650 AliasAnalysis::ModRefResult A =
651 AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
652
653 if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
654 LiveAllocas.push_back(*I);
655 }
656
657 for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
658 E = LiveAllocas.end(); I != E; ++I)
659 DeadStackObjects.erase(*I);
660
661 // If all of the allocas were clobbered by the call then we're not going
662 // to find anything else to process.
663 if (DeadStackObjects.empty())
664 return MadeChange;
665
666 continue;
667 }
668
669 AliasAnalysis::Location LoadedLoc;
670
671 // If we encounter a use of the pointer, it is no longer considered dead
672 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
673 LoadedLoc = AA->getLocation(L);
674 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
675 LoadedLoc = AA->getLocation(V);
676 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
677 LoadedLoc = AA->getLocationForSource(MTI);
678 } else {
679 // Not a loading instruction.
680 continue;
681 }
682
683 // Remove any allocas from the DeadPointer set that are loaded, as this
684 // makes any stores above the access live.
685 RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
686
687 // If all of the allocas were clobbered by the access then we're not going
688 // to find anything else to process.
689 if (DeadStackObjects.empty())
690 break;
691 }
692
693 return MadeChange;
694 }
695
696 /// RemoveAccessedObjects - Check to see if the specified location may alias any
697 /// of the stack objects in the DeadStackObjects set. If so, they become live
698 /// because the location is being loaded.
RemoveAccessedObjects(const AliasAnalysis::Location & LoadedLoc,SmallPtrSet<Value *,16> & DeadStackObjects)699 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
700 SmallPtrSet<Value*, 16> &DeadStackObjects) {
701 const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
702
703 // A constant can't be in the dead pointer set.
704 if (isa<Constant>(UnderlyingPointer))
705 return;
706
707 // If the kill pointer can be easily reduced to an alloca, don't bother doing
708 // extraneous AA queries.
709 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
710 DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
711 return;
712 }
713
714 SmallVector<Value*, 16> NowLive;
715 for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
716 E = DeadStackObjects.end(); I != E; ++I) {
717 // See if the loaded location could alias the stack location.
718 AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
719 if (!AA->isNoAlias(StackLoc, LoadedLoc))
720 NowLive.push_back(*I);
721 }
722
723 for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
724 I != E; ++I)
725 DeadStackObjects.erase(*I);
726 }
727
728