1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include <algorithm>
31 using namespace llvm;
32
33 /// DeleteDeadBlock - Delete the specified block, which must have no
34 /// predecessors.
DeleteDeadBlock(BasicBlock * BB)35 void llvm::DeleteDeadBlock(BasicBlock *BB) {
36 assert((pred_begin(BB) == pred_end(BB) ||
37 // Can delete self loop.
38 BB->getSinglePredecessor() == BB) && "Block is not dead!");
39 TerminatorInst *BBTerm = BB->getTerminator();
40
41 // Loop through all of our successors and make sure they know that one
42 // of their predecessors is going away.
43 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
44 BBTerm->getSuccessor(i)->removePredecessor(BB);
45
46 // Zap all the instructions in the block.
47 while (!BB->empty()) {
48 Instruction &I = BB->back();
49 // If this instruction is used, replace uses with an arbitrary value.
50 // Because control flow can't get here, we don't care what we replace the
51 // value with. Note that since this block is unreachable, and all values
52 // contained within it must dominate their uses, that all uses will
53 // eventually be removed (they are themselves dead).
54 if (!I.use_empty())
55 I.replaceAllUsesWith(UndefValue::get(I.getType()));
56 BB->getInstList().pop_back();
57 }
58
59 // Zap the block!
60 BB->eraseFromParent();
61 }
62
63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
64 /// any single-entry PHI nodes in it, fold them away. This handles the case
65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
66 /// when the block has exactly one predecessor.
FoldSingleEntryPHINodes(BasicBlock * BB,Pass * P)67 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
68 if (!isa<PHINode>(BB->begin())) return;
69
70 AliasAnalysis *AA = 0;
71 MemoryDependenceAnalysis *MemDep = 0;
72 if (P) {
73 AA = P->getAnalysisIfAvailable<AliasAnalysis>();
74 MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
75 }
76
77 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
78 if (PN->getIncomingValue(0) != PN)
79 PN->replaceAllUsesWith(PN->getIncomingValue(0));
80 else
81 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
82
83 if (MemDep)
84 MemDep->removeInstruction(PN); // Memdep updates AA itself.
85 else if (AA && isa<PointerType>(PN->getType()))
86 AA->deleteValue(PN);
87
88 PN->eraseFromParent();
89 }
90 }
91
92
93 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
94 /// is dead. Also recursively delete any operands that become dead as
95 /// a result. This includes tracing the def-use list from the PHI to see if
96 /// it is ultimately unused or if it reaches an unused cycle.
DeleteDeadPHIs(BasicBlock * BB)97 bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
98 // Recursively deleting a PHI may cause multiple PHIs to be deleted
99 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
100 SmallVector<WeakVH, 8> PHIs;
101 for (BasicBlock::iterator I = BB->begin();
102 PHINode *PN = dyn_cast<PHINode>(I); ++I)
103 PHIs.push_back(PN);
104
105 bool Changed = false;
106 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
107 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
108 Changed |= RecursivelyDeleteDeadPHINode(PN);
109
110 return Changed;
111 }
112
113 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
114 /// if possible. The return value indicates success or failure.
MergeBlockIntoPredecessor(BasicBlock * BB,Pass * P)115 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
116 // Don't merge away blocks who have their address taken.
117 if (BB->hasAddressTaken()) return false;
118
119 // Can't merge if there are multiple predecessors, or no predecessors.
120 BasicBlock *PredBB = BB->getUniquePredecessor();
121 if (!PredBB) return false;
122
123 // Don't break self-loops.
124 if (PredBB == BB) return false;
125 // Don't break invokes.
126 if (isa<InvokeInst>(PredBB->getTerminator())) return false;
127
128 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
129 BasicBlock *OnlySucc = BB;
130 for (; SI != SE; ++SI)
131 if (*SI != OnlySucc) {
132 OnlySucc = 0; // There are multiple distinct successors!
133 break;
134 }
135
136 // Can't merge if there are multiple successors.
137 if (!OnlySucc) return false;
138
139 // Can't merge if there is PHI loop.
140 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
141 if (PHINode *PN = dyn_cast<PHINode>(BI)) {
142 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
143 if (PN->getIncomingValue(i) == PN)
144 return false;
145 } else
146 break;
147 }
148
149 // Begin by getting rid of unneeded PHIs.
150 if (isa<PHINode>(BB->front()))
151 FoldSingleEntryPHINodes(BB, P);
152
153 // Delete the unconditional branch from the predecessor...
154 PredBB->getInstList().pop_back();
155
156 // Make all PHI nodes that referred to BB now refer to Pred as their
157 // source...
158 BB->replaceAllUsesWith(PredBB);
159
160 // Move all definitions in the successor to the predecessor...
161 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
162
163 // Inherit predecessors name if it exists.
164 if (!PredBB->hasName())
165 PredBB->takeName(BB);
166
167 // Finally, erase the old block and update dominator info.
168 if (P) {
169 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
170 if (DomTreeNode *DTN = DT->getNode(BB)) {
171 DomTreeNode *PredDTN = DT->getNode(PredBB);
172 SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
173 for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
174 DE = Children.end(); DI != DE; ++DI)
175 DT->changeImmediateDominator(*DI, PredDTN);
176
177 DT->eraseNode(BB);
178 }
179
180 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
181 LI->removeBlock(BB);
182
183 if (MemoryDependenceAnalysis *MD =
184 P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
185 MD->invalidateCachedPredecessors();
186 }
187 }
188
189 BB->eraseFromParent();
190 return true;
191 }
192
193 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
194 /// with a value, then remove and delete the original instruction.
195 ///
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)196 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
197 BasicBlock::iterator &BI, Value *V) {
198 Instruction &I = *BI;
199 // Replaces all of the uses of the instruction with uses of the value
200 I.replaceAllUsesWith(V);
201
202 // Make sure to propagate a name if there is one already.
203 if (I.hasName() && !V->hasName())
204 V->takeName(&I);
205
206 // Delete the unnecessary instruction now...
207 BI = BIL.erase(BI);
208 }
209
210
211 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
212 /// instruction specified by I. The original instruction is deleted and BI is
213 /// updated to point to the new instruction.
214 ///
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)215 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
216 BasicBlock::iterator &BI, Instruction *I) {
217 assert(I->getParent() == 0 &&
218 "ReplaceInstWithInst: Instruction already inserted into basic block!");
219
220 // Insert the new instruction into the basic block...
221 BasicBlock::iterator New = BIL.insert(BI, I);
222
223 // Replace all uses of the old instruction, and delete it.
224 ReplaceInstWithValue(BIL, BI, I);
225
226 // Move BI back to point to the newly inserted instruction
227 BI = New;
228 }
229
230 /// ReplaceInstWithInst - Replace the instruction specified by From with the
231 /// instruction specified by To.
232 ///
ReplaceInstWithInst(Instruction * From,Instruction * To)233 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
234 BasicBlock::iterator BI(From);
235 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
236 }
237
238 /// GetSuccessorNumber - Search for the specified successor of basic block BB
239 /// and return its position in the terminator instruction's list of
240 /// successors. It is an error to call this with a block that is not a
241 /// successor.
GetSuccessorNumber(BasicBlock * BB,BasicBlock * Succ)242 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
243 TerminatorInst *Term = BB->getTerminator();
244 #ifndef NDEBUG
245 unsigned e = Term->getNumSuccessors();
246 #endif
247 for (unsigned i = 0; ; ++i) {
248 assert(i != e && "Didn't find edge?");
249 if (Term->getSuccessor(i) == Succ)
250 return i;
251 }
252 return 0;
253 }
254
255 /// SplitEdge - Split the edge connecting specified block. Pass P must
256 /// not be NULL.
SplitEdge(BasicBlock * BB,BasicBlock * Succ,Pass * P)257 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
258 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
259
260 // If this is a critical edge, let SplitCriticalEdge do it.
261 TerminatorInst *LatchTerm = BB->getTerminator();
262 if (SplitCriticalEdge(LatchTerm, SuccNum, P))
263 return LatchTerm->getSuccessor(SuccNum);
264
265 // If the edge isn't critical, then BB has a single successor or Succ has a
266 // single pred. Split the block.
267 BasicBlock::iterator SplitPoint;
268 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
269 // If the successor only has a single pred, split the top of the successor
270 // block.
271 assert(SP == BB && "CFG broken");
272 SP = NULL;
273 return SplitBlock(Succ, Succ->begin(), P);
274 }
275
276 // Otherwise, if BB has a single successor, split it at the bottom of the
277 // block.
278 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
279 "Should have a single succ!");
280 return SplitBlock(BB, BB->getTerminator(), P);
281 }
282
283 /// SplitBlock - Split the specified block at the specified instruction - every
284 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
285 /// to a new block. The two blocks are joined by an unconditional branch and
286 /// the loop info is updated.
287 ///
SplitBlock(BasicBlock * Old,Instruction * SplitPt,Pass * P)288 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
289 BasicBlock::iterator SplitIt = SplitPt;
290 while (isa<PHINode>(SplitIt))
291 ++SplitIt;
292 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
293
294 // The new block lives in whichever loop the old one did. This preserves
295 // LCSSA as well, because we force the split point to be after any PHI nodes.
296 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
297 if (Loop *L = LI->getLoopFor(Old))
298 L->addBasicBlockToLoop(New, LI->getBase());
299
300 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
301 // Old dominates New. New node dominates all other nodes dominated by Old.
302 DomTreeNode *OldNode = DT->getNode(Old);
303 std::vector<DomTreeNode *> Children;
304 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
305 I != E; ++I)
306 Children.push_back(*I);
307
308 DomTreeNode *NewNode = DT->addNewBlock(New,Old);
309 for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
310 E = Children.end(); I != E; ++I)
311 DT->changeImmediateDominator(*I, NewNode);
312 }
313
314 return New;
315 }
316
317
318 /// SplitBlockPredecessors - This method transforms BB by introducing a new
319 /// basic block into the function, and moving some of the predecessors of BB to
320 /// be predecessors of the new block. The new predecessors are indicated by the
321 /// Preds array, which has NumPreds elements in it. The new block is given a
322 /// suffix of 'Suffix'.
323 ///
324 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
325 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
326 /// preserve LoopSimplify (because it's complicated to handle the case where one
327 /// of the edges being split is an exit of a loop with other exits).
328 ///
SplitBlockPredecessors(BasicBlock * BB,BasicBlock * const * Preds,unsigned NumPreds,const char * Suffix,Pass * P)329 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
330 BasicBlock *const *Preds,
331 unsigned NumPreds, const char *Suffix,
332 Pass *P) {
333 // Create new basic block, insert right before the original block.
334 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
335 BB->getParent(), BB);
336
337 // The new block unconditionally branches to the old block.
338 BranchInst *BI = BranchInst::Create(BB, NewBB);
339
340 LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
341 Loop *L = LI ? LI->getLoopFor(BB) : 0;
342 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
343
344 // Move the edges from Preds to point to NewBB instead of BB.
345 // While here, if we need to preserve loop analyses, collect
346 // some information about how this split will affect loops.
347 bool HasLoopExit = false;
348 bool IsLoopEntry = !!L;
349 bool SplitMakesNewLoopHeader = false;
350 for (unsigned i = 0; i != NumPreds; ++i) {
351 // This is slightly more strict than necessary; the minimum requirement
352 // is that there be no more than one indirectbr branching to BB. And
353 // all BlockAddress uses would need to be updated.
354 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
355 "Cannot split an edge from an IndirectBrInst");
356
357 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
358
359 if (LI) {
360 // If we need to preserve LCSSA, determine if any of
361 // the preds is a loop exit.
362 if (PreserveLCSSA)
363 if (Loop *PL = LI->getLoopFor(Preds[i]))
364 if (!PL->contains(BB))
365 HasLoopExit = true;
366 // If we need to preserve LoopInfo, note whether any of the
367 // preds crosses an interesting loop boundary.
368 if (L) {
369 if (L->contains(Preds[i]))
370 IsLoopEntry = false;
371 else
372 SplitMakesNewLoopHeader = true;
373 }
374 }
375 }
376
377 // Update dominator tree if available.
378 DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
379 if (DT)
380 DT->splitBlock(NewBB);
381
382 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
383 // node becomes an incoming value for BB's phi node. However, if the Preds
384 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
385 // account for the newly created predecessor.
386 if (NumPreds == 0) {
387 // Insert dummy values as the incoming value.
388 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
389 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
390 return NewBB;
391 }
392
393 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
394
395 if (L) {
396 if (IsLoopEntry) {
397 // Add the new block to the nearest enclosing loop (and not an
398 // adjacent loop). To find this, examine each of the predecessors and
399 // determine which loops enclose them, and select the most-nested loop
400 // which contains the loop containing the block being split.
401 Loop *InnermostPredLoop = 0;
402 for (unsigned i = 0; i != NumPreds; ++i)
403 if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
404 // Seek a loop which actually contains the block being split (to
405 // avoid adjacent loops).
406 while (PredLoop && !PredLoop->contains(BB))
407 PredLoop = PredLoop->getParentLoop();
408 // Select the most-nested of these loops which contains the block.
409 if (PredLoop &&
410 PredLoop->contains(BB) &&
411 (!InnermostPredLoop ||
412 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
413 InnermostPredLoop = PredLoop;
414 }
415 if (InnermostPredLoop)
416 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
417 } else {
418 L->addBasicBlockToLoop(NewBB, LI->getBase());
419 if (SplitMakesNewLoopHeader)
420 L->moveToHeader(NewBB);
421 }
422 }
423
424 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
425 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
426 PHINode *PN = cast<PHINode>(I++);
427
428 // Check to see if all of the values coming in are the same. If so, we
429 // don't need to create a new PHI node, unless it's needed for LCSSA.
430 Value *InVal = 0;
431 if (!HasLoopExit) {
432 InVal = PN->getIncomingValueForBlock(Preds[0]);
433 for (unsigned i = 1; i != NumPreds; ++i)
434 if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
435 InVal = 0;
436 break;
437 }
438 }
439
440 if (InVal) {
441 // If all incoming values for the new PHI would be the same, just don't
442 // make a new PHI. Instead, just remove the incoming values from the old
443 // PHI.
444 for (unsigned i = 0; i != NumPreds; ++i)
445 PN->removeIncomingValue(Preds[i], false);
446 } else {
447 // If the values coming into the block are not the same, we need a PHI.
448 // Create the new PHI node, insert it into NewBB at the end of the block
449 PHINode *NewPHI =
450 PHINode::Create(PN->getType(), NumPreds, PN->getName()+".ph", BI);
451 if (AA) AA->copyValue(PN, NewPHI);
452
453 // Move all of the PHI values for 'Preds' to the new PHI.
454 for (unsigned i = 0; i != NumPreds; ++i) {
455 Value *V = PN->removeIncomingValue(Preds[i], false);
456 NewPHI->addIncoming(V, Preds[i]);
457 }
458 InVal = NewPHI;
459 }
460
461 // Add an incoming value to the PHI node in the loop for the preheader
462 // edge.
463 PN->addIncoming(InVal, NewBB);
464 }
465
466 return NewBB;
467 }
468
469 /// FindFunctionBackedges - Analyze the specified function to find all of the
470 /// loop backedges in the function and return them. This is a relatively cheap
471 /// (compared to computing dominators and loop info) analysis.
472 ///
473 /// The output is added to Result, as pairs of <from,to> edge info.
FindFunctionBackedges(const Function & F,SmallVectorImpl<std::pair<const BasicBlock *,const BasicBlock * >> & Result)474 void llvm::FindFunctionBackedges(const Function &F,
475 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
476 const BasicBlock *BB = &F.getEntryBlock();
477 if (succ_begin(BB) == succ_end(BB))
478 return;
479
480 SmallPtrSet<const BasicBlock*, 8> Visited;
481 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
482 SmallPtrSet<const BasicBlock*, 8> InStack;
483
484 Visited.insert(BB);
485 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
486 InStack.insert(BB);
487 do {
488 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
489 const BasicBlock *ParentBB = Top.first;
490 succ_const_iterator &I = Top.second;
491
492 bool FoundNew = false;
493 while (I != succ_end(ParentBB)) {
494 BB = *I++;
495 if (Visited.insert(BB)) {
496 FoundNew = true;
497 break;
498 }
499 // Successor is in VisitStack, it's a back edge.
500 if (InStack.count(BB))
501 Result.push_back(std::make_pair(ParentBB, BB));
502 }
503
504 if (FoundNew) {
505 // Go down one level if there is a unvisited successor.
506 InStack.insert(BB);
507 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
508 } else {
509 // Go up one level.
510 InStack.erase(VisitStack.pop_back_val().first);
511 }
512 } while (!VisitStack.empty());
513 }
514
515 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
516 /// instruction into a predecessor which ends in an unconditional branch. If
517 /// the return instruction returns a value defined by a PHI, propagate the
518 /// right value into the return. It returns the new return instruction in the
519 /// predecessor.
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred)520 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
521 BasicBlock *Pred) {
522 Instruction *UncondBranch = Pred->getTerminator();
523 // Clone the return and add it to the end of the predecessor.
524 Instruction *NewRet = RI->clone();
525 Pred->getInstList().push_back(NewRet);
526
527 // If the return instruction returns a value, and if the value was a
528 // PHI node in "BB", propagate the right value into the return.
529 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
530 i != e; ++i)
531 if (PHINode *PN = dyn_cast<PHINode>(*i))
532 if (PN->getParent() == BB)
533 *i = PN->getIncomingValueForBlock(Pred);
534
535 // Update any PHI nodes in the returning block to realize that we no
536 // longer branch to them.
537 BB->removePredecessor(Pred);
538 UncondBranch->eraseFromParent();
539 return cast<ReturnInst>(NewRet);
540 }
541
542 /// GetFirstDebugLocInBasicBlock - Return first valid DebugLoc entry in a
543 /// given basic block.
GetFirstDebugLocInBasicBlock(const BasicBlock * BB)544 DebugLoc llvm::GetFirstDebugLocInBasicBlock(const BasicBlock *BB) {
545 if (const Instruction *I = BB->getFirstNonPHI())
546 return I->getDebugLoc();
547 // Scanning entire block may be too expensive, if the first instruction
548 // does not have valid location info.
549 return DebugLoc();
550 }
551