• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include <algorithm>
31 using namespace llvm;
32 
33 /// DeleteDeadBlock - Delete the specified block, which must have no
34 /// predecessors.
DeleteDeadBlock(BasicBlock * BB)35 void llvm::DeleteDeadBlock(BasicBlock *BB) {
36   assert((pred_begin(BB) == pred_end(BB) ||
37          // Can delete self loop.
38          BB->getSinglePredecessor() == BB) && "Block is not dead!");
39   TerminatorInst *BBTerm = BB->getTerminator();
40 
41   // Loop through all of our successors and make sure they know that one
42   // of their predecessors is going away.
43   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
44     BBTerm->getSuccessor(i)->removePredecessor(BB);
45 
46   // Zap all the instructions in the block.
47   while (!BB->empty()) {
48     Instruction &I = BB->back();
49     // If this instruction is used, replace uses with an arbitrary value.
50     // Because control flow can't get here, we don't care what we replace the
51     // value with.  Note that since this block is unreachable, and all values
52     // contained within it must dominate their uses, that all uses will
53     // eventually be removed (they are themselves dead).
54     if (!I.use_empty())
55       I.replaceAllUsesWith(UndefValue::get(I.getType()));
56     BB->getInstList().pop_back();
57   }
58 
59   // Zap the block!
60   BB->eraseFromParent();
61 }
62 
63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
64 /// any single-entry PHI nodes in it, fold them away.  This handles the case
65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
66 /// when the block has exactly one predecessor.
FoldSingleEntryPHINodes(BasicBlock * BB,Pass * P)67 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
68   if (!isa<PHINode>(BB->begin())) return;
69 
70   AliasAnalysis *AA = 0;
71   MemoryDependenceAnalysis *MemDep = 0;
72   if (P) {
73     AA = P->getAnalysisIfAvailable<AliasAnalysis>();
74     MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
75   }
76 
77   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
78     if (PN->getIncomingValue(0) != PN)
79       PN->replaceAllUsesWith(PN->getIncomingValue(0));
80     else
81       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
82 
83     if (MemDep)
84       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
85     else if (AA && isa<PointerType>(PN->getType()))
86       AA->deleteValue(PN);
87 
88     PN->eraseFromParent();
89   }
90 }
91 
92 
93 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
94 /// is dead. Also recursively delete any operands that become dead as
95 /// a result. This includes tracing the def-use list from the PHI to see if
96 /// it is ultimately unused or if it reaches an unused cycle.
DeleteDeadPHIs(BasicBlock * BB)97 bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
98   // Recursively deleting a PHI may cause multiple PHIs to be deleted
99   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
100   SmallVector<WeakVH, 8> PHIs;
101   for (BasicBlock::iterator I = BB->begin();
102        PHINode *PN = dyn_cast<PHINode>(I); ++I)
103     PHIs.push_back(PN);
104 
105   bool Changed = false;
106   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
107     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
108       Changed |= RecursivelyDeleteDeadPHINode(PN);
109 
110   return Changed;
111 }
112 
113 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
114 /// if possible.  The return value indicates success or failure.
MergeBlockIntoPredecessor(BasicBlock * BB,Pass * P)115 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
116   // Don't merge away blocks who have their address taken.
117   if (BB->hasAddressTaken()) return false;
118 
119   // Can't merge if there are multiple predecessors, or no predecessors.
120   BasicBlock *PredBB = BB->getUniquePredecessor();
121   if (!PredBB) return false;
122 
123   // Don't break self-loops.
124   if (PredBB == BB) return false;
125   // Don't break invokes.
126   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
127 
128   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
129   BasicBlock *OnlySucc = BB;
130   for (; SI != SE; ++SI)
131     if (*SI != OnlySucc) {
132       OnlySucc = 0;     // There are multiple distinct successors!
133       break;
134     }
135 
136   // Can't merge if there are multiple successors.
137   if (!OnlySucc) return false;
138 
139   // Can't merge if there is PHI loop.
140   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
141     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
142       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
143         if (PN->getIncomingValue(i) == PN)
144           return false;
145     } else
146       break;
147   }
148 
149   // Begin by getting rid of unneeded PHIs.
150   if (isa<PHINode>(BB->front()))
151     FoldSingleEntryPHINodes(BB, P);
152 
153   // Delete the unconditional branch from the predecessor...
154   PredBB->getInstList().pop_back();
155 
156   // Make all PHI nodes that referred to BB now refer to Pred as their
157   // source...
158   BB->replaceAllUsesWith(PredBB);
159 
160   // Move all definitions in the successor to the predecessor...
161   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
162 
163   // Inherit predecessors name if it exists.
164   if (!PredBB->hasName())
165     PredBB->takeName(BB);
166 
167   // Finally, erase the old block and update dominator info.
168   if (P) {
169     if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
170       if (DomTreeNode *DTN = DT->getNode(BB)) {
171         DomTreeNode *PredDTN = DT->getNode(PredBB);
172         SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
173         for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
174              DE = Children.end(); DI != DE; ++DI)
175           DT->changeImmediateDominator(*DI, PredDTN);
176 
177         DT->eraseNode(BB);
178       }
179 
180       if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
181         LI->removeBlock(BB);
182 
183       if (MemoryDependenceAnalysis *MD =
184             P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
185         MD->invalidateCachedPredecessors();
186     }
187   }
188 
189   BB->eraseFromParent();
190   return true;
191 }
192 
193 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
194 /// with a value, then remove and delete the original instruction.
195 ///
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)196 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
197                                 BasicBlock::iterator &BI, Value *V) {
198   Instruction &I = *BI;
199   // Replaces all of the uses of the instruction with uses of the value
200   I.replaceAllUsesWith(V);
201 
202   // Make sure to propagate a name if there is one already.
203   if (I.hasName() && !V->hasName())
204     V->takeName(&I);
205 
206   // Delete the unnecessary instruction now...
207   BI = BIL.erase(BI);
208 }
209 
210 
211 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
212 /// instruction specified by I.  The original instruction is deleted and BI is
213 /// updated to point to the new instruction.
214 ///
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)215 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
216                                BasicBlock::iterator &BI, Instruction *I) {
217   assert(I->getParent() == 0 &&
218          "ReplaceInstWithInst: Instruction already inserted into basic block!");
219 
220   // Insert the new instruction into the basic block...
221   BasicBlock::iterator New = BIL.insert(BI, I);
222 
223   // Replace all uses of the old instruction, and delete it.
224   ReplaceInstWithValue(BIL, BI, I);
225 
226   // Move BI back to point to the newly inserted instruction
227   BI = New;
228 }
229 
230 /// ReplaceInstWithInst - Replace the instruction specified by From with the
231 /// instruction specified by To.
232 ///
ReplaceInstWithInst(Instruction * From,Instruction * To)233 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
234   BasicBlock::iterator BI(From);
235   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
236 }
237 
238 /// GetSuccessorNumber - Search for the specified successor of basic block BB
239 /// and return its position in the terminator instruction's list of
240 /// successors.  It is an error to call this with a block that is not a
241 /// successor.
GetSuccessorNumber(BasicBlock * BB,BasicBlock * Succ)242 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
243   TerminatorInst *Term = BB->getTerminator();
244 #ifndef NDEBUG
245   unsigned e = Term->getNumSuccessors();
246 #endif
247   for (unsigned i = 0; ; ++i) {
248     assert(i != e && "Didn't find edge?");
249     if (Term->getSuccessor(i) == Succ)
250       return i;
251   }
252   return 0;
253 }
254 
255 /// SplitEdge -  Split the edge connecting specified block. Pass P must
256 /// not be NULL.
SplitEdge(BasicBlock * BB,BasicBlock * Succ,Pass * P)257 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
258   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
259 
260   // If this is a critical edge, let SplitCriticalEdge do it.
261   TerminatorInst *LatchTerm = BB->getTerminator();
262   if (SplitCriticalEdge(LatchTerm, SuccNum, P))
263     return LatchTerm->getSuccessor(SuccNum);
264 
265   // If the edge isn't critical, then BB has a single successor or Succ has a
266   // single pred.  Split the block.
267   BasicBlock::iterator SplitPoint;
268   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
269     // If the successor only has a single pred, split the top of the successor
270     // block.
271     assert(SP == BB && "CFG broken");
272     SP = NULL;
273     return SplitBlock(Succ, Succ->begin(), P);
274   }
275 
276   // Otherwise, if BB has a single successor, split it at the bottom of the
277   // block.
278   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
279          "Should have a single succ!");
280   return SplitBlock(BB, BB->getTerminator(), P);
281 }
282 
283 /// SplitBlock - Split the specified block at the specified instruction - every
284 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
285 /// to a new block.  The two blocks are joined by an unconditional branch and
286 /// the loop info is updated.
287 ///
SplitBlock(BasicBlock * Old,Instruction * SplitPt,Pass * P)288 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
289   BasicBlock::iterator SplitIt = SplitPt;
290   while (isa<PHINode>(SplitIt))
291     ++SplitIt;
292   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
293 
294   // The new block lives in whichever loop the old one did. This preserves
295   // LCSSA as well, because we force the split point to be after any PHI nodes.
296   if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
297     if (Loop *L = LI->getLoopFor(Old))
298       L->addBasicBlockToLoop(New, LI->getBase());
299 
300   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
301     // Old dominates New. New node dominates all other nodes dominated by Old.
302     DomTreeNode *OldNode = DT->getNode(Old);
303     std::vector<DomTreeNode *> Children;
304     for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
305          I != E; ++I)
306       Children.push_back(*I);
307 
308       DomTreeNode *NewNode = DT->addNewBlock(New,Old);
309       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
310              E = Children.end(); I != E; ++I)
311         DT->changeImmediateDominator(*I, NewNode);
312   }
313 
314   return New;
315 }
316 
317 
318 /// SplitBlockPredecessors - This method transforms BB by introducing a new
319 /// basic block into the function, and moving some of the predecessors of BB to
320 /// be predecessors of the new block.  The new predecessors are indicated by the
321 /// Preds array, which has NumPreds elements in it.  The new block is given a
322 /// suffix of 'Suffix'.
323 ///
324 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
325 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
326 /// preserve LoopSimplify (because it's complicated to handle the case where one
327 /// of the edges being split is an exit of a loop with other exits).
328 ///
SplitBlockPredecessors(BasicBlock * BB,BasicBlock * const * Preds,unsigned NumPreds,const char * Suffix,Pass * P)329 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
330                                          BasicBlock *const *Preds,
331                                          unsigned NumPreds, const char *Suffix,
332                                          Pass *P) {
333   // Create new basic block, insert right before the original block.
334   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
335                                          BB->getParent(), BB);
336 
337   // The new block unconditionally branches to the old block.
338   BranchInst *BI = BranchInst::Create(BB, NewBB);
339 
340   LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
341   Loop *L = LI ? LI->getLoopFor(BB) : 0;
342   bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
343 
344   // Move the edges from Preds to point to NewBB instead of BB.
345   // While here, if we need to preserve loop analyses, collect
346   // some information about how this split will affect loops.
347   bool HasLoopExit = false;
348   bool IsLoopEntry = !!L;
349   bool SplitMakesNewLoopHeader = false;
350   for (unsigned i = 0; i != NumPreds; ++i) {
351     // This is slightly more strict than necessary; the minimum requirement
352     // is that there be no more than one indirectbr branching to BB. And
353     // all BlockAddress uses would need to be updated.
354     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
355            "Cannot split an edge from an IndirectBrInst");
356 
357     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
358 
359     if (LI) {
360       // If we need to preserve LCSSA, determine if any of
361       // the preds is a loop exit.
362       if (PreserveLCSSA)
363         if (Loop *PL = LI->getLoopFor(Preds[i]))
364           if (!PL->contains(BB))
365             HasLoopExit = true;
366       // If we need to preserve LoopInfo, note whether any of the
367       // preds crosses an interesting loop boundary.
368       if (L) {
369         if (L->contains(Preds[i]))
370           IsLoopEntry = false;
371         else
372           SplitMakesNewLoopHeader = true;
373       }
374     }
375   }
376 
377   // Update dominator tree if available.
378   DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
379   if (DT)
380     DT->splitBlock(NewBB);
381 
382   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
383   // node becomes an incoming value for BB's phi node.  However, if the Preds
384   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
385   // account for the newly created predecessor.
386   if (NumPreds == 0) {
387     // Insert dummy values as the incoming value.
388     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
389       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
390     return NewBB;
391   }
392 
393   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
394 
395   if (L) {
396     if (IsLoopEntry) {
397       // Add the new block to the nearest enclosing loop (and not an
398       // adjacent loop). To find this, examine each of the predecessors and
399       // determine which loops enclose them, and select the most-nested loop
400       // which contains the loop containing the block being split.
401       Loop *InnermostPredLoop = 0;
402       for (unsigned i = 0; i != NumPreds; ++i)
403         if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
404           // Seek a loop which actually contains the block being split (to
405           // avoid adjacent loops).
406           while (PredLoop && !PredLoop->contains(BB))
407             PredLoop = PredLoop->getParentLoop();
408           // Select the most-nested of these loops which contains the block.
409           if (PredLoop &&
410               PredLoop->contains(BB) &&
411               (!InnermostPredLoop ||
412                InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
413             InnermostPredLoop = PredLoop;
414         }
415       if (InnermostPredLoop)
416         InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
417     } else {
418       L->addBasicBlockToLoop(NewBB, LI->getBase());
419       if (SplitMakesNewLoopHeader)
420         L->moveToHeader(NewBB);
421     }
422   }
423 
424   // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
425   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
426     PHINode *PN = cast<PHINode>(I++);
427 
428     // Check to see if all of the values coming in are the same.  If so, we
429     // don't need to create a new PHI node, unless it's needed for LCSSA.
430     Value *InVal = 0;
431     if (!HasLoopExit) {
432       InVal = PN->getIncomingValueForBlock(Preds[0]);
433       for (unsigned i = 1; i != NumPreds; ++i)
434         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
435           InVal = 0;
436           break;
437         }
438     }
439 
440     if (InVal) {
441       // If all incoming values for the new PHI would be the same, just don't
442       // make a new PHI.  Instead, just remove the incoming values from the old
443       // PHI.
444       for (unsigned i = 0; i != NumPreds; ++i)
445         PN->removeIncomingValue(Preds[i], false);
446     } else {
447       // If the values coming into the block are not the same, we need a PHI.
448       // Create the new PHI node, insert it into NewBB at the end of the block
449       PHINode *NewPHI =
450         PHINode::Create(PN->getType(), NumPreds, PN->getName()+".ph", BI);
451       if (AA) AA->copyValue(PN, NewPHI);
452 
453       // Move all of the PHI values for 'Preds' to the new PHI.
454       for (unsigned i = 0; i != NumPreds; ++i) {
455         Value *V = PN->removeIncomingValue(Preds[i], false);
456         NewPHI->addIncoming(V, Preds[i]);
457       }
458       InVal = NewPHI;
459     }
460 
461     // Add an incoming value to the PHI node in the loop for the preheader
462     // edge.
463     PN->addIncoming(InVal, NewBB);
464   }
465 
466   return NewBB;
467 }
468 
469 /// FindFunctionBackedges - Analyze the specified function to find all of the
470 /// loop backedges in the function and return them.  This is a relatively cheap
471 /// (compared to computing dominators and loop info) analysis.
472 ///
473 /// The output is added to Result, as pairs of <from,to> edge info.
FindFunctionBackedges(const Function & F,SmallVectorImpl<std::pair<const BasicBlock *,const BasicBlock * >> & Result)474 void llvm::FindFunctionBackedges(const Function &F,
475      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
476   const BasicBlock *BB = &F.getEntryBlock();
477   if (succ_begin(BB) == succ_end(BB))
478     return;
479 
480   SmallPtrSet<const BasicBlock*, 8> Visited;
481   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
482   SmallPtrSet<const BasicBlock*, 8> InStack;
483 
484   Visited.insert(BB);
485   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
486   InStack.insert(BB);
487   do {
488     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
489     const BasicBlock *ParentBB = Top.first;
490     succ_const_iterator &I = Top.second;
491 
492     bool FoundNew = false;
493     while (I != succ_end(ParentBB)) {
494       BB = *I++;
495       if (Visited.insert(BB)) {
496         FoundNew = true;
497         break;
498       }
499       // Successor is in VisitStack, it's a back edge.
500       if (InStack.count(BB))
501         Result.push_back(std::make_pair(ParentBB, BB));
502     }
503 
504     if (FoundNew) {
505       // Go down one level if there is a unvisited successor.
506       InStack.insert(BB);
507       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
508     } else {
509       // Go up one level.
510       InStack.erase(VisitStack.pop_back_val().first);
511     }
512   } while (!VisitStack.empty());
513 }
514 
515 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
516 /// instruction into a predecessor which ends in an unconditional branch. If
517 /// the return instruction returns a value defined by a PHI, propagate the
518 /// right value into the return. It returns the new return instruction in the
519 /// predecessor.
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred)520 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
521                                              BasicBlock *Pred) {
522   Instruction *UncondBranch = Pred->getTerminator();
523   // Clone the return and add it to the end of the predecessor.
524   Instruction *NewRet = RI->clone();
525   Pred->getInstList().push_back(NewRet);
526 
527   // If the return instruction returns a value, and if the value was a
528   // PHI node in "BB", propagate the right value into the return.
529   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
530        i != e; ++i)
531     if (PHINode *PN = dyn_cast<PHINode>(*i))
532       if (PN->getParent() == BB)
533         *i = PN->getIncomingValueForBlock(Pred);
534 
535   // Update any PHI nodes in the returning block to realize that we no
536   // longer branch to them.
537   BB->removePredecessor(Pred);
538   UncondBranch->eraseFromParent();
539   return cast<ReturnInst>(NewRet);
540 }
541 
542 /// GetFirstDebugLocInBasicBlock - Return first valid DebugLoc entry in a
543 /// given basic block.
GetFirstDebugLocInBasicBlock(const BasicBlock * BB)544 DebugLoc llvm::GetFirstDebugLocInBasicBlock(const BasicBlock *BB) {
545   if (const Instruction *I = BB->getFirstNonPHI())
546     return I->getDebugLoc();
547   // Scanning entire block may be too expensive, if the first instruction
548   // does not have valid location info.
549   return DebugLoc();
550 }
551