1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 // X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86DisassemblerShared.h"
18 #include "X86RecognizableInstr.h"
19 #include "X86ModRMFilters.h"
20
21 #include "llvm/Support/ErrorHandling.h"
22
23 #include <string>
24
25 using namespace llvm;
26
27 #define MRM_MAPPING \
28 MAP(C1, 33) \
29 MAP(C2, 34) \
30 MAP(C3, 35) \
31 MAP(C4, 36) \
32 MAP(C8, 37) \
33 MAP(C9, 38) \
34 MAP(E8, 39) \
35 MAP(F0, 40) \
36 MAP(F8, 41) \
37 MAP(F9, 42) \
38 MAP(D0, 45) \
39 MAP(D1, 46)
40
41 // A clone of X86 since we can't depend on something that is generated.
42 namespace X86Local {
43 enum {
44 Pseudo = 0,
45 RawFrm = 1,
46 AddRegFrm = 2,
47 MRMDestReg = 3,
48 MRMDestMem = 4,
49 MRMSrcReg = 5,
50 MRMSrcMem = 6,
51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
55 MRMInitReg = 32,
56 #define MAP(from, to) MRM_##from = to,
57 MRM_MAPPING
58 #undef MAP
59 RawFrmImm8 = 43,
60 RawFrmImm16 = 44,
61 lastMRM
62 };
63
64 enum {
65 TB = 1,
66 REP = 2,
67 D8 = 3, D9 = 4, DA = 5, DB = 6,
68 DC = 7, DD = 8, DE = 9, DF = 10,
69 XD = 11, XS = 12,
70 T8 = 13, P_TA = 14,
71 A6 = 15, A7 = 16
72 };
73 }
74
75 // If rows are added to the opcode extension tables, then corresponding entries
76 // must be added here.
77 //
78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
79 // that byte to ONE_BYTE_EXTENSION_TABLES.
80 //
81 // If the row corresponds to two bytes where the first is 0f, add an entry for
82 // the second byte to TWO_BYTE_EXTENSION_TABLES.
83 //
84 // If the row corresponds to some other set of bytes, you will need to modify
85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
86 // to the X86 TD files, except in two cases: if the first two bytes of such a
87 // new combination are 0f 38 or 0f 3a, you just have to add maps called
88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
90 // in RecognizableInstr::emitDecodePath().
91
92 #define ONE_BYTE_EXTENSION_TABLES \
93 EXTENSION_TABLE(80) \
94 EXTENSION_TABLE(81) \
95 EXTENSION_TABLE(82) \
96 EXTENSION_TABLE(83) \
97 EXTENSION_TABLE(8f) \
98 EXTENSION_TABLE(c0) \
99 EXTENSION_TABLE(c1) \
100 EXTENSION_TABLE(c6) \
101 EXTENSION_TABLE(c7) \
102 EXTENSION_TABLE(d0) \
103 EXTENSION_TABLE(d1) \
104 EXTENSION_TABLE(d2) \
105 EXTENSION_TABLE(d3) \
106 EXTENSION_TABLE(f6) \
107 EXTENSION_TABLE(f7) \
108 EXTENSION_TABLE(fe) \
109 EXTENSION_TABLE(ff)
110
111 #define TWO_BYTE_EXTENSION_TABLES \
112 EXTENSION_TABLE(00) \
113 EXTENSION_TABLE(01) \
114 EXTENSION_TABLE(18) \
115 EXTENSION_TABLE(71) \
116 EXTENSION_TABLE(72) \
117 EXTENSION_TABLE(73) \
118 EXTENSION_TABLE(ae) \
119 EXTENSION_TABLE(ba) \
120 EXTENSION_TABLE(c7)
121
122 using namespace X86Disassembler;
123
124 /// needsModRMForDecode - Indicates whether a particular instruction requires a
125 /// ModR/M byte for the instruction to be properly decoded. For example, a
126 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
127 /// 0b11.
128 ///
129 /// @param form - The form of the instruction.
130 /// @return - true if the form implies that a ModR/M byte is required, false
131 /// otherwise.
needsModRMForDecode(uint8_t form)132 static bool needsModRMForDecode(uint8_t form) {
133 if (form == X86Local::MRMDestReg ||
134 form == X86Local::MRMDestMem ||
135 form == X86Local::MRMSrcReg ||
136 form == X86Local::MRMSrcMem ||
137 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
138 (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
139 return true;
140 else
141 return false;
142 }
143
144 /// isRegFormat - Indicates whether a particular form requires the Mod field of
145 /// the ModR/M byte to be 0b11.
146 ///
147 /// @param form - The form of the instruction.
148 /// @return - true if the form implies that Mod must be 0b11, false
149 /// otherwise.
isRegFormat(uint8_t form)150 static bool isRegFormat(uint8_t form) {
151 if (form == X86Local::MRMDestReg ||
152 form == X86Local::MRMSrcReg ||
153 (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
154 return true;
155 else
156 return false;
157 }
158
159 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
160 /// Useful for switch statements and the like.
161 ///
162 /// @param init - A reference to the BitsInit to be decoded.
163 /// @return - The field, with the first bit in the BitsInit as the lowest
164 /// order bit.
byteFromBitsInit(BitsInit & init)165 static uint8_t byteFromBitsInit(BitsInit &init) {
166 int width = init.getNumBits();
167
168 assert(width <= 8 && "Field is too large for uint8_t!");
169
170 int index;
171 uint8_t mask = 0x01;
172
173 uint8_t ret = 0;
174
175 for (index = 0; index < width; index++) {
176 if (static_cast<BitInit*>(init.getBit(index))->getValue())
177 ret |= mask;
178
179 mask <<= 1;
180 }
181
182 return ret;
183 }
184
185 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
186 /// name of the field.
187 ///
188 /// @param rec - The record from which to extract the value.
189 /// @param name - The name of the field in the record.
190 /// @return - The field, as translated by byteFromBitsInit().
byteFromRec(const Record * rec,const std::string & name)191 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
192 BitsInit* bits = rec->getValueAsBitsInit(name);
193 return byteFromBitsInit(*bits);
194 }
195
RecognizableInstr(DisassemblerTables & tables,const CodeGenInstruction & insn,InstrUID uid)196 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
197 const CodeGenInstruction &insn,
198 InstrUID uid) {
199 UID = uid;
200
201 Rec = insn.TheDef;
202 Name = Rec->getName();
203 Spec = &tables.specForUID(UID);
204
205 if (!Rec->isSubClassOf("X86Inst")) {
206 ShouldBeEmitted = false;
207 return;
208 }
209
210 Prefix = byteFromRec(Rec, "Prefix");
211 Opcode = byteFromRec(Rec, "Opcode");
212 Form = byteFromRec(Rec, "FormBits");
213 SegOvr = byteFromRec(Rec, "SegOvrBits");
214
215 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix");
216 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
217 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix");
218 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix");
219 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix");
220 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix");
221 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
222
223 Name = Rec->getName();
224 AsmString = Rec->getValueAsString("AsmString");
225
226 Operands = &insn.Operands.OperandList;
227
228 IsSSE = HasOpSizePrefix && (Name.find("16") == Name.npos);
229 HasFROperands = hasFROperands();
230 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
231
232 // Check for 64-bit inst which does not require REX
233 Is64Bit = false;
234 // FIXME: Is there some better way to check for In64BitMode?
235 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
236 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
237 if (Predicates[i]->getName().find("64Bit") != Name.npos) {
238 Is64Bit = true;
239 break;
240 }
241 }
242 // FIXME: These instructions aren't marked as 64-bit in any way
243 Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
244 Rec->getName() == "MASKMOVDQU64" ||
245 Rec->getName() == "POPFS64" ||
246 Rec->getName() == "POPGS64" ||
247 Rec->getName() == "PUSHFS64" ||
248 Rec->getName() == "PUSHGS64" ||
249 Rec->getName() == "REX64_PREFIX" ||
250 Rec->getName().find("VMREAD64") != Name.npos ||
251 Rec->getName().find("VMWRITE64") != Name.npos ||
252 Rec->getName().find("MOV64") != Name.npos ||
253 Rec->getName().find("PUSH64") != Name.npos ||
254 Rec->getName().find("POP64") != Name.npos;
255
256 ShouldBeEmitted = true;
257 }
258
processInstr(DisassemblerTables & tables,const CodeGenInstruction & insn,InstrUID uid)259 void RecognizableInstr::processInstr(DisassemblerTables &tables,
260 const CodeGenInstruction &insn,
261 InstrUID uid)
262 {
263 // Ignore "asm parser only" instructions.
264 if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
265 return;
266
267 RecognizableInstr recogInstr(tables, insn, uid);
268
269 recogInstr.emitInstructionSpecifier(tables);
270
271 if (recogInstr.shouldBeEmitted())
272 recogInstr.emitDecodePath(tables);
273 }
274
insnContext() const275 InstructionContext RecognizableInstr::insnContext() const {
276 InstructionContext insnContext;
277
278 if (HasVEX_4VPrefix || HasVEXPrefix) {
279 if (HasOpSizePrefix && HasVEX_LPrefix)
280 insnContext = IC_VEX_L_OPSIZE;
281 else if (HasOpSizePrefix && HasVEX_WPrefix)
282 insnContext = IC_VEX_W_OPSIZE;
283 else if (HasOpSizePrefix)
284 insnContext = IC_VEX_OPSIZE;
285 else if (HasVEX_LPrefix && Prefix == X86Local::XS)
286 insnContext = IC_VEX_L_XS;
287 else if (HasVEX_LPrefix && Prefix == X86Local::XD)
288 insnContext = IC_VEX_L_XD;
289 else if (HasVEX_WPrefix && Prefix == X86Local::XS)
290 insnContext = IC_VEX_W_XS;
291 else if (HasVEX_WPrefix && Prefix == X86Local::XD)
292 insnContext = IC_VEX_W_XD;
293 else if (HasVEX_WPrefix)
294 insnContext = IC_VEX_W;
295 else if (HasVEX_LPrefix)
296 insnContext = IC_VEX_L;
297 else if (Prefix == X86Local::XD)
298 insnContext = IC_VEX_XD;
299 else if (Prefix == X86Local::XS)
300 insnContext = IC_VEX_XS;
301 else
302 insnContext = IC_VEX;
303 } else if (Is64Bit || HasREX_WPrefix) {
304 if (HasREX_WPrefix && HasOpSizePrefix)
305 insnContext = IC_64BIT_REXW_OPSIZE;
306 else if (HasOpSizePrefix)
307 insnContext = IC_64BIT_OPSIZE;
308 else if (HasREX_WPrefix && Prefix == X86Local::XS)
309 insnContext = IC_64BIT_REXW_XS;
310 else if (HasREX_WPrefix && Prefix == X86Local::XD)
311 insnContext = IC_64BIT_REXW_XD;
312 else if (Prefix == X86Local::XD)
313 insnContext = IC_64BIT_XD;
314 else if (Prefix == X86Local::XS)
315 insnContext = IC_64BIT_XS;
316 else if (HasREX_WPrefix)
317 insnContext = IC_64BIT_REXW;
318 else
319 insnContext = IC_64BIT;
320 } else {
321 if (HasOpSizePrefix)
322 insnContext = IC_OPSIZE;
323 else if (Prefix == X86Local::XD)
324 insnContext = IC_XD;
325 else if (Prefix == X86Local::XS)
326 insnContext = IC_XS;
327 else
328 insnContext = IC;
329 }
330
331 return insnContext;
332 }
333
filter() const334 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
335 ///////////////////
336 // FILTER_STRONG
337 //
338
339 // Filter out intrinsics
340
341 if (!Rec->isSubClassOf("X86Inst"))
342 return FILTER_STRONG;
343
344 if (Form == X86Local::Pseudo ||
345 IsCodeGenOnly)
346 return FILTER_STRONG;
347
348 if (Form == X86Local::MRMInitReg)
349 return FILTER_STRONG;
350
351
352 // TEMPORARY pending bug fixes
353
354 if (Name.find("VMOVDQU") != Name.npos ||
355 Name.find("VMOVDQA") != Name.npos ||
356 Name.find("VROUND") != Name.npos)
357 return FILTER_STRONG;
358
359 // Filter out artificial instructions
360
361 if (Name.find("TAILJMP") != Name.npos ||
362 Name.find("_Int") != Name.npos ||
363 Name.find("_int") != Name.npos ||
364 Name.find("Int_") != Name.npos ||
365 Name.find("_NOREX") != Name.npos ||
366 Name.find("_TC") != Name.npos ||
367 Name.find("EH_RETURN") != Name.npos ||
368 Name.find("V_SET") != Name.npos ||
369 Name.find("LOCK_") != Name.npos ||
370 Name.find("WIN") != Name.npos ||
371 Name.find("_AVX") != Name.npos ||
372 Name.find("2SDL") != Name.npos)
373 return FILTER_STRONG;
374
375 // Filter out instructions with segment override prefixes.
376 // They're too messy to handle now and we'll special case them if needed.
377
378 if (SegOvr)
379 return FILTER_STRONG;
380
381 // Filter out instructions that can't be printed.
382
383 if (AsmString.size() == 0)
384 return FILTER_STRONG;
385
386 // Filter out instructions with subreg operands.
387
388 if (AsmString.find("subreg") != AsmString.npos)
389 return FILTER_STRONG;
390
391 /////////////////
392 // FILTER_WEAK
393 //
394
395
396 // Filter out instructions with a LOCK prefix;
397 // prefer forms that do not have the prefix
398 if (HasLockPrefix)
399 return FILTER_WEAK;
400
401 // Filter out alternate forms of AVX instructions
402 if (Name.find("_alt") != Name.npos ||
403 Name.find("XrYr") != Name.npos ||
404 Name.find("r64r") != Name.npos ||
405 Name.find("_64mr") != Name.npos ||
406 Name.find("Xrr") != Name.npos ||
407 Name.find("rr64") != Name.npos)
408 return FILTER_WEAK;
409
410 if (Name == "VMASKMOVDQU64" ||
411 Name == "VEXTRACTPSrr64" ||
412 Name == "VMOVQd64rr" ||
413 Name == "VMOVQs64rr")
414 return FILTER_WEAK;
415
416 // Special cases.
417
418 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
419 return FILTER_WEAK;
420 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
421 return FILTER_WEAK;
422
423 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
424 return FILTER_WEAK;
425 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
426 return FILTER_WEAK;
427 if (Name.find("Fs") != Name.npos)
428 return FILTER_WEAK;
429 if (Name == "MOVLPDrr" ||
430 Name == "MOVLPSrr" ||
431 Name == "PUSHFQ" ||
432 Name == "BSF16rr" ||
433 Name == "BSF16rm" ||
434 Name == "BSR16rr" ||
435 Name == "BSR16rm" ||
436 Name == "MOVSX16rm8" ||
437 Name == "MOVSX16rr8" ||
438 Name == "MOVZX16rm8" ||
439 Name == "MOVZX16rr8" ||
440 Name == "PUSH32i16" ||
441 Name == "PUSH64i16" ||
442 Name == "MOVPQI2QImr" ||
443 Name == "VMOVPQI2QImr" ||
444 Name == "MOVSDmr" ||
445 Name == "MOVSDrm" ||
446 Name == "MOVSSmr" ||
447 Name == "MOVSSrm" ||
448 Name == "MMX_MOVD64rrv164" ||
449 Name == "CRC32m16" ||
450 Name == "MOV64ri64i32" ||
451 Name == "CRC32r16")
452 return FILTER_WEAK;
453
454 if (HasFROperands && Name.find("MOV") != Name.npos &&
455 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
456 (Name.find("to") != Name.npos)))
457 return FILTER_WEAK;
458
459 return FILTER_NORMAL;
460 }
461
hasFROperands() const462 bool RecognizableInstr::hasFROperands() const {
463 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
464 unsigned numOperands = OperandList.size();
465
466 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
467 const std::string &recName = OperandList[operandIndex].Rec->getName();
468
469 if (recName.find("FR") != recName.npos)
470 return true;
471 }
472 return false;
473 }
474
has256BitOperands() const475 bool RecognizableInstr::has256BitOperands() const {
476 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
477 unsigned numOperands = OperandList.size();
478
479 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
480 const std::string &recName = OperandList[operandIndex].Rec->getName();
481
482 if (!recName.compare("VR256") || !recName.compare("f256mem")) {
483 return true;
484 }
485 }
486 return false;
487 }
488
handleOperand(bool optional,unsigned & operandIndex,unsigned & physicalOperandIndex,unsigned & numPhysicalOperands,unsigned * operandMapping,OperandEncoding (* encodingFromString)(const std::string &,bool hasOpSizePrefix))489 void RecognizableInstr::handleOperand(
490 bool optional,
491 unsigned &operandIndex,
492 unsigned &physicalOperandIndex,
493 unsigned &numPhysicalOperands,
494 unsigned *operandMapping,
495 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) {
496 if (optional) {
497 if (physicalOperandIndex >= numPhysicalOperands)
498 return;
499 } else {
500 assert(physicalOperandIndex < numPhysicalOperands);
501 }
502
503 while (operandMapping[operandIndex] != operandIndex) {
504 Spec->operands[operandIndex].encoding = ENCODING_DUP;
505 Spec->operands[operandIndex].type =
506 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
507 ++operandIndex;
508 }
509
510 const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
511
512 Spec->operands[operandIndex].encoding = encodingFromString(typeName,
513 HasOpSizePrefix);
514 Spec->operands[operandIndex].type = typeFromString(typeName,
515 IsSSE,
516 HasREX_WPrefix,
517 HasOpSizePrefix);
518
519 ++operandIndex;
520 ++physicalOperandIndex;
521 }
522
emitInstructionSpecifier(DisassemblerTables & tables)523 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
524 Spec->name = Name;
525
526 if (!Rec->isSubClassOf("X86Inst"))
527 return;
528
529 switch (filter()) {
530 case FILTER_WEAK:
531 Spec->filtered = true;
532 break;
533 case FILTER_STRONG:
534 ShouldBeEmitted = false;
535 return;
536 case FILTER_NORMAL:
537 break;
538 }
539
540 Spec->insnContext = insnContext();
541
542 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
543
544 unsigned operandIndex;
545 unsigned numOperands = OperandList.size();
546 unsigned numPhysicalOperands = 0;
547
548 // operandMapping maps from operands in OperandList to their originals.
549 // If operandMapping[i] != i, then the entry is a duplicate.
550 unsigned operandMapping[X86_MAX_OPERANDS];
551
552 bool hasFROperands = false;
553
554 assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
555
556 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
557 if (OperandList[operandIndex].Constraints.size()) {
558 const CGIOperandList::ConstraintInfo &Constraint =
559 OperandList[operandIndex].Constraints[0];
560 if (Constraint.isTied()) {
561 operandMapping[operandIndex] = Constraint.getTiedOperand();
562 } else {
563 ++numPhysicalOperands;
564 operandMapping[operandIndex] = operandIndex;
565 }
566 } else {
567 ++numPhysicalOperands;
568 operandMapping[operandIndex] = operandIndex;
569 }
570
571 const std::string &recName = OperandList[operandIndex].Rec->getName();
572
573 if (recName.find("FR") != recName.npos)
574 hasFROperands = true;
575 }
576
577 if (hasFROperands && Name.find("MOV") != Name.npos &&
578 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
579 (Name.find("to") != Name.npos)))
580 ShouldBeEmitted = false;
581
582 if (!ShouldBeEmitted)
583 return;
584
585 #define HANDLE_OPERAND(class) \
586 handleOperand(false, \
587 operandIndex, \
588 physicalOperandIndex, \
589 numPhysicalOperands, \
590 operandMapping, \
591 class##EncodingFromString);
592
593 #define HANDLE_OPTIONAL(class) \
594 handleOperand(true, \
595 operandIndex, \
596 physicalOperandIndex, \
597 numPhysicalOperands, \
598 operandMapping, \
599 class##EncodingFromString);
600
601 // operandIndex should always be < numOperands
602 operandIndex = 0;
603 // physicalOperandIndex should always be < numPhysicalOperands
604 unsigned physicalOperandIndex = 0;
605
606 switch (Form) {
607 case X86Local::RawFrm:
608 // Operand 1 (optional) is an address or immediate.
609 // Operand 2 (optional) is an immediate.
610 assert(numPhysicalOperands <= 2 &&
611 "Unexpected number of operands for RawFrm");
612 HANDLE_OPTIONAL(relocation)
613 HANDLE_OPTIONAL(immediate)
614 break;
615 case X86Local::AddRegFrm:
616 // Operand 1 is added to the opcode.
617 // Operand 2 (optional) is an address.
618 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
619 "Unexpected number of operands for AddRegFrm");
620 HANDLE_OPERAND(opcodeModifier)
621 HANDLE_OPTIONAL(relocation)
622 break;
623 case X86Local::MRMDestReg:
624 // Operand 1 is a register operand in the R/M field.
625 // Operand 2 is a register operand in the Reg/Opcode field.
626 // Operand 3 (optional) is an immediate.
627 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
628 "Unexpected number of operands for MRMDestRegFrm");
629 HANDLE_OPERAND(rmRegister)
630 HANDLE_OPERAND(roRegister)
631 HANDLE_OPTIONAL(immediate)
632 break;
633 case X86Local::MRMDestMem:
634 // Operand 1 is a memory operand (possibly SIB-extended)
635 // Operand 2 is a register operand in the Reg/Opcode field.
636 // Operand 3 (optional) is an immediate.
637 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
638 "Unexpected number of operands for MRMDestMemFrm");
639 HANDLE_OPERAND(memory)
640 HANDLE_OPERAND(roRegister)
641 HANDLE_OPTIONAL(immediate)
642 break;
643 case X86Local::MRMSrcReg:
644 // Operand 1 is a register operand in the Reg/Opcode field.
645 // Operand 2 is a register operand in the R/M field.
646 // - In AVX, there is a register operand in the VEX.vvvv field here -
647 // Operand 3 (optional) is an immediate.
648
649 if (HasVEX_4VPrefix)
650 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
651 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
652 else
653 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
654 "Unexpected number of operands for MRMSrcRegFrm");
655
656 HANDLE_OPERAND(roRegister)
657
658 if (HasVEX_4VPrefix)
659 // FIXME: In AVX, the register below becomes the one encoded
660 // in ModRMVEX and the one above the one in the VEX.VVVV field
661 HANDLE_OPERAND(vvvvRegister)
662
663 HANDLE_OPERAND(rmRegister)
664 HANDLE_OPTIONAL(immediate)
665 break;
666 case X86Local::MRMSrcMem:
667 // Operand 1 is a register operand in the Reg/Opcode field.
668 // Operand 2 is a memory operand (possibly SIB-extended)
669 // - In AVX, there is a register operand in the VEX.vvvv field here -
670 // Operand 3 (optional) is an immediate.
671
672 if (HasVEX_4VPrefix)
673 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
674 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
675 else
676 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
677 "Unexpected number of operands for MRMSrcMemFrm");
678
679 HANDLE_OPERAND(roRegister)
680
681 if (HasVEX_4VPrefix)
682 // FIXME: In AVX, the register below becomes the one encoded
683 // in ModRMVEX and the one above the one in the VEX.VVVV field
684 HANDLE_OPERAND(vvvvRegister)
685
686 HANDLE_OPERAND(memory)
687 HANDLE_OPTIONAL(immediate)
688 break;
689 case X86Local::MRM0r:
690 case X86Local::MRM1r:
691 case X86Local::MRM2r:
692 case X86Local::MRM3r:
693 case X86Local::MRM4r:
694 case X86Local::MRM5r:
695 case X86Local::MRM6r:
696 case X86Local::MRM7r:
697 // Operand 1 is a register operand in the R/M field.
698 // Operand 2 (optional) is an immediate or relocation.
699 if (HasVEX_4VPrefix)
700 assert(numPhysicalOperands <= 3 &&
701 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
702 else
703 assert(numPhysicalOperands <= 2 &&
704 "Unexpected number of operands for MRMnRFrm");
705 if (HasVEX_4VPrefix)
706 HANDLE_OPERAND(vvvvRegister);
707 HANDLE_OPTIONAL(rmRegister)
708 HANDLE_OPTIONAL(relocation)
709 break;
710 case X86Local::MRM0m:
711 case X86Local::MRM1m:
712 case X86Local::MRM2m:
713 case X86Local::MRM3m:
714 case X86Local::MRM4m:
715 case X86Local::MRM5m:
716 case X86Local::MRM6m:
717 case X86Local::MRM7m:
718 // Operand 1 is a memory operand (possibly SIB-extended)
719 // Operand 2 (optional) is an immediate or relocation.
720 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
721 "Unexpected number of operands for MRMnMFrm");
722 HANDLE_OPERAND(memory)
723 HANDLE_OPTIONAL(relocation)
724 break;
725 case X86Local::RawFrmImm8:
726 // operand 1 is a 16-bit immediate
727 // operand 2 is an 8-bit immediate
728 assert(numPhysicalOperands == 2 &&
729 "Unexpected number of operands for X86Local::RawFrmImm8");
730 HANDLE_OPERAND(immediate)
731 HANDLE_OPERAND(immediate)
732 break;
733 case X86Local::RawFrmImm16:
734 // operand 1 is a 16-bit immediate
735 // operand 2 is a 16-bit immediate
736 HANDLE_OPERAND(immediate)
737 HANDLE_OPERAND(immediate)
738 break;
739 case X86Local::MRMInitReg:
740 // Ignored.
741 break;
742 }
743
744 #undef HANDLE_OPERAND
745 #undef HANDLE_OPTIONAL
746 }
747
emitDecodePath(DisassemblerTables & tables) const748 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
749 // Special cases where the LLVM tables are not complete
750
751 #define MAP(from, to) \
752 case X86Local::MRM_##from: \
753 filter = new ExactFilter(0x##from); \
754 break;
755
756 OpcodeType opcodeType = (OpcodeType)-1;
757
758 ModRMFilter* filter = NULL;
759 uint8_t opcodeToSet = 0;
760
761 switch (Prefix) {
762 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
763 case X86Local::XD:
764 case X86Local::XS:
765 case X86Local::TB:
766 opcodeType = TWOBYTE;
767
768 switch (Opcode) {
769 default:
770 if (needsModRMForDecode(Form))
771 filter = new ModFilter(isRegFormat(Form));
772 else
773 filter = new DumbFilter();
774 break;
775 #define EXTENSION_TABLE(n) case 0x##n:
776 TWO_BYTE_EXTENSION_TABLES
777 #undef EXTENSION_TABLE
778 switch (Form) {
779 default:
780 llvm_unreachable("Unhandled two-byte extended opcode");
781 case X86Local::MRM0r:
782 case X86Local::MRM1r:
783 case X86Local::MRM2r:
784 case X86Local::MRM3r:
785 case X86Local::MRM4r:
786 case X86Local::MRM5r:
787 case X86Local::MRM6r:
788 case X86Local::MRM7r:
789 filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
790 break;
791 case X86Local::MRM0m:
792 case X86Local::MRM1m:
793 case X86Local::MRM2m:
794 case X86Local::MRM3m:
795 case X86Local::MRM4m:
796 case X86Local::MRM5m:
797 case X86Local::MRM6m:
798 case X86Local::MRM7m:
799 filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
800 break;
801 MRM_MAPPING
802 } // switch (Form)
803 break;
804 } // switch (Opcode)
805 opcodeToSet = Opcode;
806 break;
807 case X86Local::T8:
808 opcodeType = THREEBYTE_38;
809 if (needsModRMForDecode(Form))
810 filter = new ModFilter(isRegFormat(Form));
811 else
812 filter = new DumbFilter();
813 opcodeToSet = Opcode;
814 break;
815 case X86Local::P_TA:
816 opcodeType = THREEBYTE_3A;
817 if (needsModRMForDecode(Form))
818 filter = new ModFilter(isRegFormat(Form));
819 else
820 filter = new DumbFilter();
821 opcodeToSet = Opcode;
822 break;
823 case X86Local::A6:
824 opcodeType = THREEBYTE_A6;
825 if (needsModRMForDecode(Form))
826 filter = new ModFilter(isRegFormat(Form));
827 else
828 filter = new DumbFilter();
829 opcodeToSet = Opcode;
830 break;
831 case X86Local::A7:
832 opcodeType = THREEBYTE_A7;
833 if (needsModRMForDecode(Form))
834 filter = new ModFilter(isRegFormat(Form));
835 else
836 filter = new DumbFilter();
837 opcodeToSet = Opcode;
838 break;
839 case X86Local::D8:
840 case X86Local::D9:
841 case X86Local::DA:
842 case X86Local::DB:
843 case X86Local::DC:
844 case X86Local::DD:
845 case X86Local::DE:
846 case X86Local::DF:
847 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
848 opcodeType = ONEBYTE;
849 if (Form == X86Local::AddRegFrm) {
850 Spec->modifierType = MODIFIER_MODRM;
851 Spec->modifierBase = Opcode;
852 filter = new AddRegEscapeFilter(Opcode);
853 } else {
854 filter = new EscapeFilter(true, Opcode);
855 }
856 opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
857 break;
858 default:
859 opcodeType = ONEBYTE;
860 switch (Opcode) {
861 #define EXTENSION_TABLE(n) case 0x##n:
862 ONE_BYTE_EXTENSION_TABLES
863 #undef EXTENSION_TABLE
864 switch (Form) {
865 default:
866 llvm_unreachable("Fell through the cracks of a single-byte "
867 "extended opcode");
868 case X86Local::MRM0r:
869 case X86Local::MRM1r:
870 case X86Local::MRM2r:
871 case X86Local::MRM3r:
872 case X86Local::MRM4r:
873 case X86Local::MRM5r:
874 case X86Local::MRM6r:
875 case X86Local::MRM7r:
876 filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
877 break;
878 case X86Local::MRM0m:
879 case X86Local::MRM1m:
880 case X86Local::MRM2m:
881 case X86Local::MRM3m:
882 case X86Local::MRM4m:
883 case X86Local::MRM5m:
884 case X86Local::MRM6m:
885 case X86Local::MRM7m:
886 filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
887 break;
888 MRM_MAPPING
889 } // switch (Form)
890 break;
891 case 0xd8:
892 case 0xd9:
893 case 0xda:
894 case 0xdb:
895 case 0xdc:
896 case 0xdd:
897 case 0xde:
898 case 0xdf:
899 filter = new EscapeFilter(false, Form - X86Local::MRM0m);
900 break;
901 default:
902 if (needsModRMForDecode(Form))
903 filter = new ModFilter(isRegFormat(Form));
904 else
905 filter = new DumbFilter();
906 break;
907 } // switch (Opcode)
908 opcodeToSet = Opcode;
909 } // switch (Prefix)
910
911 assert(opcodeType != (OpcodeType)-1 &&
912 "Opcode type not set");
913 assert(filter && "Filter not set");
914
915 if (Form == X86Local::AddRegFrm) {
916 if(Spec->modifierType != MODIFIER_MODRM) {
917 assert(opcodeToSet < 0xf9 &&
918 "Not enough room for all ADDREG_FRM operands");
919
920 uint8_t currentOpcode;
921
922 for (currentOpcode = opcodeToSet;
923 currentOpcode < opcodeToSet + 8;
924 ++currentOpcode)
925 tables.setTableFields(opcodeType,
926 insnContext(),
927 currentOpcode,
928 *filter,
929 UID);
930
931 Spec->modifierType = MODIFIER_OPCODE;
932 Spec->modifierBase = opcodeToSet;
933 } else {
934 // modifierBase was set where MODIFIER_MODRM was set
935 tables.setTableFields(opcodeType,
936 insnContext(),
937 opcodeToSet,
938 *filter,
939 UID);
940 }
941 } else {
942 tables.setTableFields(opcodeType,
943 insnContext(),
944 opcodeToSet,
945 *filter,
946 UID);
947
948 Spec->modifierType = MODIFIER_NONE;
949 Spec->modifierBase = opcodeToSet;
950 }
951
952 delete filter;
953
954 #undef MAP
955 }
956
957 #define TYPE(str, type) if (s == str) return type;
typeFromString(const std::string & s,bool isSSE,bool hasREX_WPrefix,bool hasOpSizePrefix)958 OperandType RecognizableInstr::typeFromString(const std::string &s,
959 bool isSSE,
960 bool hasREX_WPrefix,
961 bool hasOpSizePrefix) {
962 if (isSSE) {
963 // For SSE instructions, we ignore the OpSize prefix and force operand
964 // sizes.
965 TYPE("GR16", TYPE_R16)
966 TYPE("GR32", TYPE_R32)
967 TYPE("GR64", TYPE_R64)
968 }
969 if(hasREX_WPrefix) {
970 // For instructions with a REX_W prefix, a declared 32-bit register encoding
971 // is special.
972 TYPE("GR32", TYPE_R32)
973 }
974 if(!hasOpSizePrefix) {
975 // For instructions without an OpSize prefix, a declared 16-bit register or
976 // immediate encoding is special.
977 TYPE("GR16", TYPE_R16)
978 TYPE("i16imm", TYPE_IMM16)
979 }
980 TYPE("i16mem", TYPE_Mv)
981 TYPE("i16imm", TYPE_IMMv)
982 TYPE("i16i8imm", TYPE_IMMv)
983 TYPE("GR16", TYPE_Rv)
984 TYPE("i32mem", TYPE_Mv)
985 TYPE("i32imm", TYPE_IMMv)
986 TYPE("i32i8imm", TYPE_IMM32)
987 TYPE("GR32", TYPE_Rv)
988 TYPE("i64mem", TYPE_Mv)
989 TYPE("i64i32imm", TYPE_IMM64)
990 TYPE("i64i8imm", TYPE_IMM64)
991 TYPE("GR64", TYPE_R64)
992 TYPE("i8mem", TYPE_M8)
993 TYPE("i8imm", TYPE_IMM8)
994 TYPE("GR8", TYPE_R8)
995 TYPE("VR128", TYPE_XMM128)
996 TYPE("f128mem", TYPE_M128)
997 TYPE("f256mem", TYPE_M256)
998 TYPE("FR64", TYPE_XMM64)
999 TYPE("f64mem", TYPE_M64FP)
1000 TYPE("sdmem", TYPE_M64FP)
1001 TYPE("FR32", TYPE_XMM32)
1002 TYPE("f32mem", TYPE_M32FP)
1003 TYPE("ssmem", TYPE_M32FP)
1004 TYPE("RST", TYPE_ST)
1005 TYPE("i128mem", TYPE_M128)
1006 TYPE("i256mem", TYPE_M256)
1007 TYPE("i64i32imm_pcrel", TYPE_REL64)
1008 TYPE("i16imm_pcrel", TYPE_REL16)
1009 TYPE("i32imm_pcrel", TYPE_REL32)
1010 TYPE("SSECC", TYPE_IMM3)
1011 TYPE("brtarget", TYPE_RELv)
1012 TYPE("uncondbrtarget", TYPE_RELv)
1013 TYPE("brtarget8", TYPE_REL8)
1014 TYPE("f80mem", TYPE_M80FP)
1015 TYPE("lea32mem", TYPE_LEA)
1016 TYPE("lea64_32mem", TYPE_LEA)
1017 TYPE("lea64mem", TYPE_LEA)
1018 TYPE("VR64", TYPE_MM64)
1019 TYPE("i64imm", TYPE_IMMv)
1020 TYPE("opaque32mem", TYPE_M1616)
1021 TYPE("opaque48mem", TYPE_M1632)
1022 TYPE("opaque80mem", TYPE_M1664)
1023 TYPE("opaque512mem", TYPE_M512)
1024 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
1025 TYPE("DEBUG_REG", TYPE_DEBUGREG)
1026 TYPE("CONTROL_REG", TYPE_CONTROLREG)
1027 TYPE("offset8", TYPE_MOFFS8)
1028 TYPE("offset16", TYPE_MOFFS16)
1029 TYPE("offset32", TYPE_MOFFS32)
1030 TYPE("offset64", TYPE_MOFFS64)
1031 TYPE("VR256", TYPE_XMM256)
1032 errs() << "Unhandled type string " << s << "\n";
1033 llvm_unreachable("Unhandled type string");
1034 }
1035 #undef TYPE
1036
1037 #define ENCODING(str, encoding) if (s == str) return encoding;
immediateEncodingFromString(const std::string & s,bool hasOpSizePrefix)1038 OperandEncoding RecognizableInstr::immediateEncodingFromString
1039 (const std::string &s,
1040 bool hasOpSizePrefix) {
1041 if(!hasOpSizePrefix) {
1042 // For instructions without an OpSize prefix, a declared 16-bit register or
1043 // immediate encoding is special.
1044 ENCODING("i16imm", ENCODING_IW)
1045 }
1046 ENCODING("i32i8imm", ENCODING_IB)
1047 ENCODING("SSECC", ENCODING_IB)
1048 ENCODING("i16imm", ENCODING_Iv)
1049 ENCODING("i16i8imm", ENCODING_IB)
1050 ENCODING("i32imm", ENCODING_Iv)
1051 ENCODING("i64i32imm", ENCODING_ID)
1052 ENCODING("i64i8imm", ENCODING_IB)
1053 ENCODING("i8imm", ENCODING_IB)
1054 // This is not a typo. Instructions like BLENDVPD put
1055 // register IDs in 8-bit immediates nowadays.
1056 ENCODING("VR256", ENCODING_IB)
1057 ENCODING("VR128", ENCODING_IB)
1058 errs() << "Unhandled immediate encoding " << s << "\n";
1059 llvm_unreachable("Unhandled immediate encoding");
1060 }
1061
rmRegisterEncodingFromString(const std::string & s,bool hasOpSizePrefix)1062 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
1063 (const std::string &s,
1064 bool hasOpSizePrefix) {
1065 ENCODING("GR16", ENCODING_RM)
1066 ENCODING("GR32", ENCODING_RM)
1067 ENCODING("GR64", ENCODING_RM)
1068 ENCODING("GR8", ENCODING_RM)
1069 ENCODING("VR128", ENCODING_RM)
1070 ENCODING("FR64", ENCODING_RM)
1071 ENCODING("FR32", ENCODING_RM)
1072 ENCODING("VR64", ENCODING_RM)
1073 ENCODING("VR256", ENCODING_RM)
1074 errs() << "Unhandled R/M register encoding " << s << "\n";
1075 llvm_unreachable("Unhandled R/M register encoding");
1076 }
1077
roRegisterEncodingFromString(const std::string & s,bool hasOpSizePrefix)1078 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
1079 (const std::string &s,
1080 bool hasOpSizePrefix) {
1081 ENCODING("GR16", ENCODING_REG)
1082 ENCODING("GR32", ENCODING_REG)
1083 ENCODING("GR64", ENCODING_REG)
1084 ENCODING("GR8", ENCODING_REG)
1085 ENCODING("VR128", ENCODING_REG)
1086 ENCODING("FR64", ENCODING_REG)
1087 ENCODING("FR32", ENCODING_REG)
1088 ENCODING("VR64", ENCODING_REG)
1089 ENCODING("SEGMENT_REG", ENCODING_REG)
1090 ENCODING("DEBUG_REG", ENCODING_REG)
1091 ENCODING("CONTROL_REG", ENCODING_REG)
1092 ENCODING("VR256", ENCODING_REG)
1093 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1094 llvm_unreachable("Unhandled reg/opcode register encoding");
1095 }
1096
vvvvRegisterEncodingFromString(const std::string & s,bool hasOpSizePrefix)1097 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
1098 (const std::string &s,
1099 bool hasOpSizePrefix) {
1100 ENCODING("FR32", ENCODING_VVVV)
1101 ENCODING("FR64", ENCODING_VVVV)
1102 ENCODING("VR128", ENCODING_VVVV)
1103 ENCODING("VR256", ENCODING_VVVV)
1104 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1105 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1106 }
1107
memoryEncodingFromString(const std::string & s,bool hasOpSizePrefix)1108 OperandEncoding RecognizableInstr::memoryEncodingFromString
1109 (const std::string &s,
1110 bool hasOpSizePrefix) {
1111 ENCODING("i16mem", ENCODING_RM)
1112 ENCODING("i32mem", ENCODING_RM)
1113 ENCODING("i64mem", ENCODING_RM)
1114 ENCODING("i8mem", ENCODING_RM)
1115 ENCODING("ssmem", ENCODING_RM)
1116 ENCODING("sdmem", ENCODING_RM)
1117 ENCODING("f128mem", ENCODING_RM)
1118 ENCODING("f256mem", ENCODING_RM)
1119 ENCODING("f64mem", ENCODING_RM)
1120 ENCODING("f32mem", ENCODING_RM)
1121 ENCODING("i128mem", ENCODING_RM)
1122 ENCODING("i256mem", ENCODING_RM)
1123 ENCODING("f80mem", ENCODING_RM)
1124 ENCODING("lea32mem", ENCODING_RM)
1125 ENCODING("lea64_32mem", ENCODING_RM)
1126 ENCODING("lea64mem", ENCODING_RM)
1127 ENCODING("opaque32mem", ENCODING_RM)
1128 ENCODING("opaque48mem", ENCODING_RM)
1129 ENCODING("opaque80mem", ENCODING_RM)
1130 ENCODING("opaque512mem", ENCODING_RM)
1131 errs() << "Unhandled memory encoding " << s << "\n";
1132 llvm_unreachable("Unhandled memory encoding");
1133 }
1134
relocationEncodingFromString(const std::string & s,bool hasOpSizePrefix)1135 OperandEncoding RecognizableInstr::relocationEncodingFromString
1136 (const std::string &s,
1137 bool hasOpSizePrefix) {
1138 if(!hasOpSizePrefix) {
1139 // For instructions without an OpSize prefix, a declared 16-bit register or
1140 // immediate encoding is special.
1141 ENCODING("i16imm", ENCODING_IW)
1142 }
1143 ENCODING("i16imm", ENCODING_Iv)
1144 ENCODING("i16i8imm", ENCODING_IB)
1145 ENCODING("i32imm", ENCODING_Iv)
1146 ENCODING("i32i8imm", ENCODING_IB)
1147 ENCODING("i64i32imm", ENCODING_ID)
1148 ENCODING("i64i8imm", ENCODING_IB)
1149 ENCODING("i8imm", ENCODING_IB)
1150 ENCODING("i64i32imm_pcrel", ENCODING_ID)
1151 ENCODING("i16imm_pcrel", ENCODING_IW)
1152 ENCODING("i32imm_pcrel", ENCODING_ID)
1153 ENCODING("brtarget", ENCODING_Iv)
1154 ENCODING("brtarget8", ENCODING_IB)
1155 ENCODING("i64imm", ENCODING_IO)
1156 ENCODING("offset8", ENCODING_Ia)
1157 ENCODING("offset16", ENCODING_Ia)
1158 ENCODING("offset32", ENCODING_Ia)
1159 ENCODING("offset64", ENCODING_Ia)
1160 errs() << "Unhandled relocation encoding " << s << "\n";
1161 llvm_unreachable("Unhandled relocation encoding");
1162 }
1163
opcodeModifierEncodingFromString(const std::string & s,bool hasOpSizePrefix)1164 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
1165 (const std::string &s,
1166 bool hasOpSizePrefix) {
1167 ENCODING("RST", ENCODING_I)
1168 ENCODING("GR32", ENCODING_Rv)
1169 ENCODING("GR64", ENCODING_RO)
1170 ENCODING("GR16", ENCODING_Rv)
1171 ENCODING("GR8", ENCODING_RB)
1172 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1173 llvm_unreachable("Unhandled opcode modifier encoding");
1174 }
1175 #undef ENCODING
1176