1 /* crypto/bn/bn_kron.c */
2 /* ====================================================================
3 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56 #include "cryptlib.h"
57 #include "bn_lcl.h"
58
59 /* least significant word */
60 #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
61
62 /* Returns -2 for errors because both -1 and 0 are valid results. */
BN_kronecker(const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)63 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
64 {
65 int i;
66 int ret = -2; /* avoid 'uninitialized' warning */
67 int err = 0;
68 BIGNUM *A, *B, *tmp;
69 /* In 'tab', only odd-indexed entries are relevant:
70 * For any odd BIGNUM n,
71 * tab[BN_lsw(n) & 7]
72 * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
73 * Note that the sign of n does not matter.
74 */
75 static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
76
77 bn_check_top(a);
78 bn_check_top(b);
79
80 BN_CTX_start(ctx);
81 A = BN_CTX_get(ctx);
82 B = BN_CTX_get(ctx);
83 if (B == NULL) goto end;
84
85 err = !BN_copy(A, a);
86 if (err) goto end;
87 err = !BN_copy(B, b);
88 if (err) goto end;
89
90 /*
91 * Kronecker symbol, imlemented according to Henri Cohen,
92 * "A Course in Computational Algebraic Number Theory"
93 * (algorithm 1.4.10).
94 */
95
96 /* Cohen's step 1: */
97
98 if (BN_is_zero(B))
99 {
100 ret = BN_abs_is_word(A, 1);
101 goto end;
102 }
103
104 /* Cohen's step 2: */
105
106 if (!BN_is_odd(A) && !BN_is_odd(B))
107 {
108 ret = 0;
109 goto end;
110 }
111
112 /* now B is non-zero */
113 i = 0;
114 while (!BN_is_bit_set(B, i))
115 i++;
116 err = !BN_rshift(B, B, i);
117 if (err) goto end;
118 if (i & 1)
119 {
120 /* i is odd */
121 /* (thus B was even, thus A must be odd!) */
122
123 /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
124 ret = tab[BN_lsw(A) & 7];
125 }
126 else
127 {
128 /* i is even */
129 ret = 1;
130 }
131
132 if (B->neg)
133 {
134 B->neg = 0;
135 if (A->neg)
136 ret = -ret;
137 }
138
139 /* now B is positive and odd, so what remains to be done is
140 * to compute the Jacobi symbol (A/B) and multiply it by 'ret' */
141
142 while (1)
143 {
144 /* Cohen's step 3: */
145
146 /* B is positive and odd */
147
148 if (BN_is_zero(A))
149 {
150 ret = BN_is_one(B) ? ret : 0;
151 goto end;
152 }
153
154 /* now A is non-zero */
155 i = 0;
156 while (!BN_is_bit_set(A, i))
157 i++;
158 err = !BN_rshift(A, A, i);
159 if (err) goto end;
160 if (i & 1)
161 {
162 /* i is odd */
163 /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */
164 ret = ret * tab[BN_lsw(B) & 7];
165 }
166
167 /* Cohen's step 4: */
168 /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */
169 if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
170 ret = -ret;
171
172 /* (A, B) := (B mod |A|, |A|) */
173 err = !BN_nnmod(B, B, A, ctx);
174 if (err) goto end;
175 tmp = A; A = B; B = tmp;
176 tmp->neg = 0;
177 }
178 end:
179 BN_CTX_end(ctx);
180 if (err)
181 return -2;
182 else
183 return ret;
184 }
185