1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2006-2008 the V8 project authors. All rights reserved.
36
37 #ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
38 #define V8_ARM_ASSEMBLER_ARM_INL_H_
39
40 #include "arm/assembler-arm.h"
41 #include "cpu.h"
42 #include "debug.h"
43
44
45 namespace v8 {
46 namespace internal {
47
48
apply(intptr_t delta)49 void RelocInfo::apply(intptr_t delta) {
50 if (RelocInfo::IsInternalReference(rmode_)) {
51 // absolute code pointer inside code object moves with the code object.
52 int32_t* p = reinterpret_cast<int32_t*>(pc_);
53 *p += delta; // relocate entry
54 }
55 // We do not use pc relative addressing on ARM, so there is
56 // nothing else to do.
57 }
58
59
target_address()60 Address RelocInfo::target_address() {
61 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
62 return Assembler::target_address_at(pc_);
63 }
64
65
target_address_address()66 Address RelocInfo::target_address_address() {
67 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
68 return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
69 }
70
71
target_address_size()72 int RelocInfo::target_address_size() {
73 return Assembler::kExternalTargetSize;
74 }
75
76
set_target_address(Address target)77 void RelocInfo::set_target_address(Address target) {
78 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
79 Assembler::set_target_address_at(pc_, target);
80 }
81
82
target_object()83 Object* RelocInfo::target_object() {
84 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
85 return Memory::Object_at(Assembler::target_address_address_at(pc_));
86 }
87
88
target_object_handle(Assembler * origin)89 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
90 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
91 return Memory::Object_Handle_at(Assembler::target_address_address_at(pc_));
92 }
93
94
target_object_address()95 Object** RelocInfo::target_object_address() {
96 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
97 return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
98 }
99
100
set_target_object(Object * target)101 void RelocInfo::set_target_object(Object* target) {
102 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
103 Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
104 }
105
106
target_reference_address()107 Address* RelocInfo::target_reference_address() {
108 ASSERT(rmode_ == EXTERNAL_REFERENCE);
109 return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
110 }
111
112
target_cell_handle()113 Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
114 ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
115 Address address = Memory::Address_at(pc_);
116 return Handle<JSGlobalPropertyCell>(
117 reinterpret_cast<JSGlobalPropertyCell**>(address));
118 }
119
120
target_cell()121 JSGlobalPropertyCell* RelocInfo::target_cell() {
122 ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
123 Address address = Memory::Address_at(pc_);
124 Object* object = HeapObject::FromAddress(
125 address - JSGlobalPropertyCell::kValueOffset);
126 return reinterpret_cast<JSGlobalPropertyCell*>(object);
127 }
128
129
set_target_cell(JSGlobalPropertyCell * cell)130 void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell) {
131 ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
132 Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
133 Memory::Address_at(pc_) = address;
134 }
135
136
call_address()137 Address RelocInfo::call_address() {
138 // The 2 instructions offset assumes patched debug break slot or return
139 // sequence.
140 ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
141 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
142 return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
143 }
144
145
set_call_address(Address target)146 void RelocInfo::set_call_address(Address target) {
147 ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
148 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
149 Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
150 }
151
152
call_object()153 Object* RelocInfo::call_object() {
154 return *call_object_address();
155 }
156
157
set_call_object(Object * target)158 void RelocInfo::set_call_object(Object* target) {
159 *call_object_address() = target;
160 }
161
162
call_object_address()163 Object** RelocInfo::call_object_address() {
164 ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
165 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
166 return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
167 }
168
169
IsPatchedReturnSequence()170 bool RelocInfo::IsPatchedReturnSequence() {
171 Instr current_instr = Assembler::instr_at(pc_);
172 Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
173 #ifdef USE_BLX
174 // A patched return sequence is:
175 // ldr ip, [pc, #0]
176 // blx ip
177 return ((current_instr & kLdrPCMask) == kLdrPCPattern)
178 && ((next_instr & kBlxRegMask) == kBlxRegPattern);
179 #else
180 // A patched return sequence is:
181 // mov lr, pc
182 // ldr pc, [pc, #-4]
183 return (current_instr == kMovLrPc)
184 && ((next_instr & kLdrPCMask) == kLdrPCPattern);
185 #endif
186 }
187
188
IsPatchedDebugBreakSlotSequence()189 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
190 Instr current_instr = Assembler::instr_at(pc_);
191 return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
192 }
193
194
Visit(ObjectVisitor * visitor)195 void RelocInfo::Visit(ObjectVisitor* visitor) {
196 RelocInfo::Mode mode = rmode();
197 if (mode == RelocInfo::EMBEDDED_OBJECT) {
198 visitor->VisitPointer(target_object_address());
199 } else if (RelocInfo::IsCodeTarget(mode)) {
200 visitor->VisitCodeTarget(this);
201 } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
202 visitor->VisitGlobalPropertyCell(this);
203 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
204 visitor->VisitExternalReference(target_reference_address());
205 #ifdef ENABLE_DEBUGGER_SUPPORT
206 // TODO(isolates): Get a cached isolate below.
207 } else if (((RelocInfo::IsJSReturn(mode) &&
208 IsPatchedReturnSequence()) ||
209 (RelocInfo::IsDebugBreakSlot(mode) &&
210 IsPatchedDebugBreakSlotSequence())) &&
211 Isolate::Current()->debug()->has_break_points()) {
212 visitor->VisitDebugTarget(this);
213 #endif
214 } else if (mode == RelocInfo::RUNTIME_ENTRY) {
215 visitor->VisitRuntimeEntry(this);
216 }
217 }
218
219
220 template<typename StaticVisitor>
Visit(Heap * heap)221 void RelocInfo::Visit(Heap* heap) {
222 RelocInfo::Mode mode = rmode();
223 if (mode == RelocInfo::EMBEDDED_OBJECT) {
224 StaticVisitor::VisitPointer(heap, target_object_address());
225 } else if (RelocInfo::IsCodeTarget(mode)) {
226 StaticVisitor::VisitCodeTarget(heap, this);
227 } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
228 StaticVisitor::VisitGlobalPropertyCell(heap, this);
229 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
230 StaticVisitor::VisitExternalReference(target_reference_address());
231 #ifdef ENABLE_DEBUGGER_SUPPORT
232 } else if (heap->isolate()->debug()->has_break_points() &&
233 ((RelocInfo::IsJSReturn(mode) &&
234 IsPatchedReturnSequence()) ||
235 (RelocInfo::IsDebugBreakSlot(mode) &&
236 IsPatchedDebugBreakSlotSequence()))) {
237 StaticVisitor::VisitDebugTarget(heap, this);
238 #endif
239 } else if (mode == RelocInfo::RUNTIME_ENTRY) {
240 StaticVisitor::VisitRuntimeEntry(this);
241 }
242 }
243
244
Operand(int32_t immediate,RelocInfo::Mode rmode)245 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
246 rm_ = no_reg;
247 imm32_ = immediate;
248 rmode_ = rmode;
249 }
250
251
Operand(const ExternalReference & f)252 Operand::Operand(const ExternalReference& f) {
253 rm_ = no_reg;
254 imm32_ = reinterpret_cast<int32_t>(f.address());
255 rmode_ = RelocInfo::EXTERNAL_REFERENCE;
256 }
257
258
Operand(Smi * value)259 Operand::Operand(Smi* value) {
260 rm_ = no_reg;
261 imm32_ = reinterpret_cast<intptr_t>(value);
262 rmode_ = RelocInfo::NONE;
263 }
264
265
Operand(Register rm)266 Operand::Operand(Register rm) {
267 rm_ = rm;
268 rs_ = no_reg;
269 shift_op_ = LSL;
270 shift_imm_ = 0;
271 }
272
273
is_reg()274 bool Operand::is_reg() const {
275 return rm_.is_valid() &&
276 rs_.is(no_reg) &&
277 shift_op_ == LSL &&
278 shift_imm_ == 0;
279 }
280
281
CheckBuffer()282 void Assembler::CheckBuffer() {
283 if (buffer_space() <= kGap) {
284 GrowBuffer();
285 }
286 if (pc_offset() >= next_buffer_check_) {
287 CheckConstPool(false, true);
288 }
289 }
290
291
emit(Instr x)292 void Assembler::emit(Instr x) {
293 CheckBuffer();
294 *reinterpret_cast<Instr*>(pc_) = x;
295 pc_ += kInstrSize;
296 }
297
298
target_address_address_at(Address pc)299 Address Assembler::target_address_address_at(Address pc) {
300 Address target_pc = pc;
301 Instr instr = Memory::int32_at(target_pc);
302 // If we have a bx instruction, the instruction before the bx is
303 // what we need to patch.
304 static const int32_t kBxInstMask = 0x0ffffff0;
305 static const int32_t kBxInstPattern = 0x012fff10;
306 if ((instr & kBxInstMask) == kBxInstPattern) {
307 target_pc -= kInstrSize;
308 instr = Memory::int32_at(target_pc);
309 }
310
311 #ifdef USE_BLX
312 // If we have a blx instruction, the instruction before it is
313 // what needs to be patched.
314 if ((instr & kBlxRegMask) == kBlxRegPattern) {
315 target_pc -= kInstrSize;
316 instr = Memory::int32_at(target_pc);
317 }
318 #endif
319
320 ASSERT(IsLdrPcImmediateOffset(instr));
321 int offset = instr & 0xfff; // offset_12 is unsigned
322 if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
323 // Verify that the constant pool comes after the instruction referencing it.
324 ASSERT(offset >= -4);
325 return target_pc + offset + 8;
326 }
327
328
target_address_at(Address pc)329 Address Assembler::target_address_at(Address pc) {
330 return Memory::Address_at(target_address_address_at(pc));
331 }
332
333
set_target_at(Address constant_pool_entry,Address target)334 void Assembler::set_target_at(Address constant_pool_entry,
335 Address target) {
336 Memory::Address_at(constant_pool_entry) = target;
337 }
338
339
set_target_address_at(Address pc,Address target)340 void Assembler::set_target_address_at(Address pc, Address target) {
341 Memory::Address_at(target_address_address_at(pc)) = target;
342 // Intuitively, we would think it is necessary to flush the instruction cache
343 // after patching a target address in the code as follows:
344 // CPU::FlushICache(pc, sizeof(target));
345 // However, on ARM, no instruction was actually patched by the assignment
346 // above; the target address is not part of an instruction, it is patched in
347 // the constant pool and is read via a data access; the instruction accessing
348 // this address in the constant pool remains unchanged.
349 }
350
351 } } // namespace v8::internal
352
353 #endif // V8_ARM_ASSEMBLER_ARM_INL_H_
354