• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2006-2008 the V8 project authors. All rights reserved.
36 
37 #ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
38 #define V8_ARM_ASSEMBLER_ARM_INL_H_
39 
40 #include "arm/assembler-arm.h"
41 #include "cpu.h"
42 #include "debug.h"
43 
44 
45 namespace v8 {
46 namespace internal {
47 
48 
apply(intptr_t delta)49 void RelocInfo::apply(intptr_t delta) {
50   if (RelocInfo::IsInternalReference(rmode_)) {
51     // absolute code pointer inside code object moves with the code object.
52     int32_t* p = reinterpret_cast<int32_t*>(pc_);
53     *p += delta;  // relocate entry
54   }
55   // We do not use pc relative addressing on ARM, so there is
56   // nothing else to do.
57 }
58 
59 
target_address()60 Address RelocInfo::target_address() {
61   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
62   return Assembler::target_address_at(pc_);
63 }
64 
65 
target_address_address()66 Address RelocInfo::target_address_address() {
67   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
68   return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
69 }
70 
71 
target_address_size()72 int RelocInfo::target_address_size() {
73   return Assembler::kExternalTargetSize;
74 }
75 
76 
set_target_address(Address target)77 void RelocInfo::set_target_address(Address target) {
78   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
79   Assembler::set_target_address_at(pc_, target);
80 }
81 
82 
target_object()83 Object* RelocInfo::target_object() {
84   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
85   return Memory::Object_at(Assembler::target_address_address_at(pc_));
86 }
87 
88 
target_object_handle(Assembler * origin)89 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
90   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
91   return Memory::Object_Handle_at(Assembler::target_address_address_at(pc_));
92 }
93 
94 
target_object_address()95 Object** RelocInfo::target_object_address() {
96   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
97   return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
98 }
99 
100 
set_target_object(Object * target)101 void RelocInfo::set_target_object(Object* target) {
102   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
103   Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
104 }
105 
106 
target_reference_address()107 Address* RelocInfo::target_reference_address() {
108   ASSERT(rmode_ == EXTERNAL_REFERENCE);
109   return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
110 }
111 
112 
target_cell_handle()113 Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
114   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
115   Address address = Memory::Address_at(pc_);
116   return Handle<JSGlobalPropertyCell>(
117       reinterpret_cast<JSGlobalPropertyCell**>(address));
118 }
119 
120 
target_cell()121 JSGlobalPropertyCell* RelocInfo::target_cell() {
122   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
123   Address address = Memory::Address_at(pc_);
124   Object* object = HeapObject::FromAddress(
125       address - JSGlobalPropertyCell::kValueOffset);
126   return reinterpret_cast<JSGlobalPropertyCell*>(object);
127 }
128 
129 
set_target_cell(JSGlobalPropertyCell * cell)130 void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell) {
131   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
132   Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
133   Memory::Address_at(pc_) = address;
134 }
135 
136 
call_address()137 Address RelocInfo::call_address() {
138   // The 2 instructions offset assumes patched debug break slot or return
139   // sequence.
140   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
141          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
142   return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
143 }
144 
145 
set_call_address(Address target)146 void RelocInfo::set_call_address(Address target) {
147   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
148          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
149   Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
150 }
151 
152 
call_object()153 Object* RelocInfo::call_object() {
154   return *call_object_address();
155 }
156 
157 
set_call_object(Object * target)158 void RelocInfo::set_call_object(Object* target) {
159   *call_object_address() = target;
160 }
161 
162 
call_object_address()163 Object** RelocInfo::call_object_address() {
164   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
165          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
166   return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
167 }
168 
169 
IsPatchedReturnSequence()170 bool RelocInfo::IsPatchedReturnSequence() {
171   Instr current_instr = Assembler::instr_at(pc_);
172   Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
173 #ifdef USE_BLX
174   // A patched return sequence is:
175   //  ldr ip, [pc, #0]
176   //  blx ip
177   return ((current_instr & kLdrPCMask) == kLdrPCPattern)
178           && ((next_instr & kBlxRegMask) == kBlxRegPattern);
179 #else
180   // A patched return sequence is:
181   //  mov lr, pc
182   //  ldr pc, [pc, #-4]
183   return (current_instr == kMovLrPc)
184           && ((next_instr & kLdrPCMask) == kLdrPCPattern);
185 #endif
186 }
187 
188 
IsPatchedDebugBreakSlotSequence()189 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
190   Instr current_instr = Assembler::instr_at(pc_);
191   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
192 }
193 
194 
Visit(ObjectVisitor * visitor)195 void RelocInfo::Visit(ObjectVisitor* visitor) {
196   RelocInfo::Mode mode = rmode();
197   if (mode == RelocInfo::EMBEDDED_OBJECT) {
198     visitor->VisitPointer(target_object_address());
199   } else if (RelocInfo::IsCodeTarget(mode)) {
200     visitor->VisitCodeTarget(this);
201   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
202     visitor->VisitGlobalPropertyCell(this);
203   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
204     visitor->VisitExternalReference(target_reference_address());
205 #ifdef ENABLE_DEBUGGER_SUPPORT
206   // TODO(isolates): Get a cached isolate below.
207   } else if (((RelocInfo::IsJSReturn(mode) &&
208               IsPatchedReturnSequence()) ||
209              (RelocInfo::IsDebugBreakSlot(mode) &&
210               IsPatchedDebugBreakSlotSequence())) &&
211              Isolate::Current()->debug()->has_break_points()) {
212     visitor->VisitDebugTarget(this);
213 #endif
214   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
215     visitor->VisitRuntimeEntry(this);
216   }
217 }
218 
219 
220 template<typename StaticVisitor>
Visit(Heap * heap)221 void RelocInfo::Visit(Heap* heap) {
222   RelocInfo::Mode mode = rmode();
223   if (mode == RelocInfo::EMBEDDED_OBJECT) {
224     StaticVisitor::VisitPointer(heap, target_object_address());
225   } else if (RelocInfo::IsCodeTarget(mode)) {
226     StaticVisitor::VisitCodeTarget(heap, this);
227   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
228     StaticVisitor::VisitGlobalPropertyCell(heap, this);
229   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
230     StaticVisitor::VisitExternalReference(target_reference_address());
231 #ifdef ENABLE_DEBUGGER_SUPPORT
232   } else if (heap->isolate()->debug()->has_break_points() &&
233              ((RelocInfo::IsJSReturn(mode) &&
234               IsPatchedReturnSequence()) ||
235              (RelocInfo::IsDebugBreakSlot(mode) &&
236               IsPatchedDebugBreakSlotSequence()))) {
237     StaticVisitor::VisitDebugTarget(heap, this);
238 #endif
239   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
240     StaticVisitor::VisitRuntimeEntry(this);
241   }
242 }
243 
244 
Operand(int32_t immediate,RelocInfo::Mode rmode)245 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
246   rm_ = no_reg;
247   imm32_ = immediate;
248   rmode_ = rmode;
249 }
250 
251 
Operand(const ExternalReference & f)252 Operand::Operand(const ExternalReference& f)  {
253   rm_ = no_reg;
254   imm32_ = reinterpret_cast<int32_t>(f.address());
255   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
256 }
257 
258 
Operand(Smi * value)259 Operand::Operand(Smi* value) {
260   rm_ = no_reg;
261   imm32_ =  reinterpret_cast<intptr_t>(value);
262   rmode_ = RelocInfo::NONE;
263 }
264 
265 
Operand(Register rm)266 Operand::Operand(Register rm) {
267   rm_ = rm;
268   rs_ = no_reg;
269   shift_op_ = LSL;
270   shift_imm_ = 0;
271 }
272 
273 
is_reg()274 bool Operand::is_reg() const {
275   return rm_.is_valid() &&
276          rs_.is(no_reg) &&
277          shift_op_ == LSL &&
278          shift_imm_ == 0;
279 }
280 
281 
CheckBuffer()282 void Assembler::CheckBuffer() {
283   if (buffer_space() <= kGap) {
284     GrowBuffer();
285   }
286   if (pc_offset() >= next_buffer_check_) {
287     CheckConstPool(false, true);
288   }
289 }
290 
291 
emit(Instr x)292 void Assembler::emit(Instr x) {
293   CheckBuffer();
294   *reinterpret_cast<Instr*>(pc_) = x;
295   pc_ += kInstrSize;
296 }
297 
298 
target_address_address_at(Address pc)299 Address Assembler::target_address_address_at(Address pc) {
300   Address target_pc = pc;
301   Instr instr = Memory::int32_at(target_pc);
302   // If we have a bx instruction, the instruction before the bx is
303   // what we need to patch.
304   static const int32_t kBxInstMask = 0x0ffffff0;
305   static const int32_t kBxInstPattern = 0x012fff10;
306   if ((instr & kBxInstMask) == kBxInstPattern) {
307     target_pc -= kInstrSize;
308     instr = Memory::int32_at(target_pc);
309   }
310 
311 #ifdef USE_BLX
312   // If we have a blx instruction, the instruction before it is
313   // what needs to be patched.
314   if ((instr & kBlxRegMask) == kBlxRegPattern) {
315     target_pc -= kInstrSize;
316     instr = Memory::int32_at(target_pc);
317   }
318 #endif
319 
320   ASSERT(IsLdrPcImmediateOffset(instr));
321   int offset = instr & 0xfff;  // offset_12 is unsigned
322   if ((instr & (1 << 23)) == 0) offset = -offset;  // U bit defines offset sign
323   // Verify that the constant pool comes after the instruction referencing it.
324   ASSERT(offset >= -4);
325   return target_pc + offset + 8;
326 }
327 
328 
target_address_at(Address pc)329 Address Assembler::target_address_at(Address pc) {
330   return Memory::Address_at(target_address_address_at(pc));
331 }
332 
333 
set_target_at(Address constant_pool_entry,Address target)334 void Assembler::set_target_at(Address constant_pool_entry,
335                               Address target) {
336   Memory::Address_at(constant_pool_entry) = target;
337 }
338 
339 
set_target_address_at(Address pc,Address target)340 void Assembler::set_target_address_at(Address pc, Address target) {
341   Memory::Address_at(target_address_address_at(pc)) = target;
342   // Intuitively, we would think it is necessary to flush the instruction cache
343   // after patching a target address in the code as follows:
344   //   CPU::FlushICache(pc, sizeof(target));
345   // However, on ARM, no instruction was actually patched by the assignment
346   // above; the target address is not part of an instruction, it is patched in
347   // the constant pool and is read via a data access; the instruction accessing
348   // this address in the constant pool remains unchanged.
349 }
350 
351 } }  // namespace v8::internal
352 
353 #endif  // V8_ARM_ASSEMBLER_ARM_INL_H_
354