• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // A Disassembler object is used to disassemble a block of code instruction by
29 // instruction. The default implementation of the NameConverter object can be
30 // overriden to modify register names or to do symbol lookup on addresses.
31 //
32 // The example below will disassemble a block of code and print it to stdout.
33 //
34 //   NameConverter converter;
35 //   Disassembler d(converter);
36 //   for (byte* pc = begin; pc < end;) {
37 //     v8::internal::EmbeddedVector<char, 256> buffer;
38 //     byte* prev_pc = pc;
39 //     pc += d.InstructionDecode(buffer, pc);
40 //     printf("%p    %08x      %s\n",
41 //            prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
42 //   }
43 //
44 // The Disassembler class also has a convenience method to disassemble a block
45 // of code into a FILE*, meaning that the above functionality could also be
46 // achieved by just calling Disassembler::Disassemble(stdout, begin, end);
47 
48 
49 #include <assert.h>
50 #include <stdio.h>
51 #include <stdarg.h>
52 #include <string.h>
53 #ifndef WIN32
54 #include <stdint.h>
55 #endif
56 
57 #include "v8.h"
58 
59 #if defined(V8_TARGET_ARCH_ARM)
60 
61 #include "constants-arm.h"
62 #include "disasm.h"
63 #include "macro-assembler.h"
64 #include "platform.h"
65 
66 
67 namespace v8 {
68 namespace internal {
69 
70 
71 //------------------------------------------------------------------------------
72 
73 // Decoder decodes and disassembles instructions into an output buffer.
74 // It uses the converter to convert register names and call destinations into
75 // more informative description.
76 class Decoder {
77  public:
Decoder(const disasm::NameConverter & converter,Vector<char> out_buffer)78   Decoder(const disasm::NameConverter& converter,
79           Vector<char> out_buffer)
80     : converter_(converter),
81       out_buffer_(out_buffer),
82       out_buffer_pos_(0) {
83     out_buffer_[out_buffer_pos_] = '\0';
84   }
85 
~Decoder()86   ~Decoder() {}
87 
88   // Writes one disassembled instruction into 'buffer' (0-terminated).
89   // Returns the length of the disassembled machine instruction in bytes.
90   int InstructionDecode(byte* instruction);
91 
92   static bool IsConstantPoolAt(byte* instr_ptr);
93   static int ConstantPoolSizeAt(byte* instr_ptr);
94 
95  private:
96   // Bottleneck functions to print into the out_buffer.
97   void PrintChar(const char ch);
98   void Print(const char* str);
99 
100   // Printing of common values.
101   void PrintRegister(int reg);
102   void PrintSRegister(int reg);
103   void PrintDRegister(int reg);
104   int FormatVFPRegister(Instruction* instr, const char* format);
105   void PrintMovwMovt(Instruction* instr);
106   int FormatVFPinstruction(Instruction* instr, const char* format);
107   void PrintCondition(Instruction* instr);
108   void PrintShiftRm(Instruction* instr);
109   void PrintShiftImm(Instruction* instr);
110   void PrintShiftSat(Instruction* instr);
111   void PrintPU(Instruction* instr);
112   void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
113 
114   // Handle formatting of instructions and their options.
115   int FormatRegister(Instruction* instr, const char* option);
116   int FormatOption(Instruction* instr, const char* option);
117   void Format(Instruction* instr, const char* format);
118   void Unknown(Instruction* instr);
119 
120   // Each of these functions decodes one particular instruction type, a 3-bit
121   // field in the instruction encoding.
122   // Types 0 and 1 are combined as they are largely the same except for the way
123   // they interpret the shifter operand.
124   void DecodeType01(Instruction* instr);
125   void DecodeType2(Instruction* instr);
126   void DecodeType3(Instruction* instr);
127   void DecodeType4(Instruction* instr);
128   void DecodeType5(Instruction* instr);
129   void DecodeType6(Instruction* instr);
130   // Type 7 includes special Debugger instructions.
131   int DecodeType7(Instruction* instr);
132   // For VFP support.
133   void DecodeTypeVFP(Instruction* instr);
134   void DecodeType6CoprocessorIns(Instruction* instr);
135 
136   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
137   void DecodeVCMP(Instruction* instr);
138   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
139   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
140 
141   const disasm::NameConverter& converter_;
142   Vector<char> out_buffer_;
143   int out_buffer_pos_;
144 
145   DISALLOW_COPY_AND_ASSIGN(Decoder);
146 };
147 
148 
149 // Support for assertions in the Decoder formatting functions.
150 #define STRING_STARTS_WITH(string, compare_string) \
151   (strncmp(string, compare_string, strlen(compare_string)) == 0)
152 
153 
154 // Append the ch to the output buffer.
PrintChar(const char ch)155 void Decoder::PrintChar(const char ch) {
156   out_buffer_[out_buffer_pos_++] = ch;
157 }
158 
159 
160 // Append the str to the output buffer.
Print(const char * str)161 void Decoder::Print(const char* str) {
162   char cur = *str++;
163   while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
164     PrintChar(cur);
165     cur = *str++;
166   }
167   out_buffer_[out_buffer_pos_] = 0;
168 }
169 
170 
171 // These condition names are defined in a way to match the native disassembler
172 // formatting. See for example the command "objdump -d <binary file>".
173 static const char* cond_names[kNumberOfConditions] = {
174   "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
175   "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
176 };
177 
178 
179 // Print the condition guarding the instruction.
PrintCondition(Instruction * instr)180 void Decoder::PrintCondition(Instruction* instr) {
181   Print(cond_names[instr->ConditionValue()]);
182 }
183 
184 
185 // Print the register name according to the active name converter.
PrintRegister(int reg)186 void Decoder::PrintRegister(int reg) {
187   Print(converter_.NameOfCPURegister(reg));
188 }
189 
190 // Print the VFP S register name according to the active name converter.
PrintSRegister(int reg)191 void Decoder::PrintSRegister(int reg) {
192   Print(VFPRegisters::Name(reg, false));
193 }
194 
195 // Print the  VFP D register name according to the active name converter.
PrintDRegister(int reg)196 void Decoder::PrintDRegister(int reg) {
197   Print(VFPRegisters::Name(reg, true));
198 }
199 
200 
201 // These shift names are defined in a way to match the native disassembler
202 // formatting. See for example the command "objdump -d <binary file>".
203 static const char* shift_names[kNumberOfShifts] = {
204   "lsl", "lsr", "asr", "ror"
205 };
206 
207 
208 // Print the register shift operands for the instruction. Generally used for
209 // data processing instructions.
PrintShiftRm(Instruction * instr)210 void Decoder::PrintShiftRm(Instruction* instr) {
211   ShiftOp shift = instr->ShiftField();
212   int shift_index = instr->ShiftValue();
213   int shift_amount = instr->ShiftAmountValue();
214   int rm = instr->RmValue();
215 
216   PrintRegister(rm);
217 
218   if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
219     // Special case for using rm only.
220     return;
221   }
222   if (instr->RegShiftValue() == 0) {
223     // by immediate
224     if ((shift == ROR) && (shift_amount == 0)) {
225       Print(", RRX");
226       return;
227     } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
228       shift_amount = 32;
229     }
230     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
231                                     ", %s #%d",
232                                     shift_names[shift_index],
233                                     shift_amount);
234   } else {
235     // by register
236     int rs = instr->RsValue();
237     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
238                                     ", %s ", shift_names[shift_index]);
239     PrintRegister(rs);
240   }
241 }
242 
243 
244 // Print the immediate operand for the instruction. Generally used for data
245 // processing instructions.
PrintShiftImm(Instruction * instr)246 void Decoder::PrintShiftImm(Instruction* instr) {
247   int rotate = instr->RotateValue() * 2;
248   int immed8 = instr->Immed8Value();
249   int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
250   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
251                                   "#%d", imm);
252 }
253 
254 
255 // Print the optional shift and immediate used by saturating instructions.
PrintShiftSat(Instruction * instr)256 void Decoder::PrintShiftSat(Instruction* instr) {
257   int shift = instr->Bits(11, 7);
258   if (shift > 0) {
259     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
260                                     ", %s #%d",
261                                     shift_names[instr->Bit(6) * 2],
262                                     instr->Bits(11, 7));
263   }
264 }
265 
266 
267 // Print PU formatting to reduce complexity of FormatOption.
PrintPU(Instruction * instr)268 void Decoder::PrintPU(Instruction* instr) {
269   switch (instr->PUField()) {
270     case da_x: {
271       Print("da");
272       break;
273     }
274     case ia_x: {
275       Print("ia");
276       break;
277     }
278     case db_x: {
279       Print("db");
280       break;
281     }
282     case ib_x: {
283       Print("ib");
284       break;
285     }
286     default: {
287       UNREACHABLE();
288       break;
289     }
290   }
291 }
292 
293 
294 // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
295 // the FormatOption method.
PrintSoftwareInterrupt(SoftwareInterruptCodes svc)296 void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
297   switch (svc) {
298     case kCallRtRedirected:
299       Print("call rt redirected");
300       return;
301     case kBreakpoint:
302       Print("breakpoint");
303       return;
304     default:
305       if (svc >= kStopCode) {
306         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
307                                         "%d - 0x%x",
308                                         svc & kStopCodeMask,
309                                         svc & kStopCodeMask);
310       } else {
311         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
312                                         "%d",
313                                         svc);
314       }
315       return;
316   }
317 }
318 
319 
320 // Handle all register based formatting in this function to reduce the
321 // complexity of FormatOption.
FormatRegister(Instruction * instr,const char * format)322 int Decoder::FormatRegister(Instruction* instr, const char* format) {
323   ASSERT(format[0] == 'r');
324   if (format[1] == 'n') {  // 'rn: Rn register
325     int reg = instr->RnValue();
326     PrintRegister(reg);
327     return 2;
328   } else if (format[1] == 'd') {  // 'rd: Rd register
329     int reg = instr->RdValue();
330     PrintRegister(reg);
331     return 2;
332   } else if (format[1] == 's') {  // 'rs: Rs register
333     int reg = instr->RsValue();
334     PrintRegister(reg);
335     return 2;
336   } else if (format[1] == 'm') {  // 'rm: Rm register
337     int reg = instr->RmValue();
338     PrintRegister(reg);
339     return 2;
340   } else if (format[1] == 't') {  // 'rt: Rt register
341     int reg = instr->RtValue();
342     PrintRegister(reg);
343     return 2;
344   } else if (format[1] == 'l') {
345     // 'rlist: register list for load and store multiple instructions
346     ASSERT(STRING_STARTS_WITH(format, "rlist"));
347     int rlist = instr->RlistValue();
348     int reg = 0;
349     Print("{");
350     // Print register list in ascending order, by scanning the bit mask.
351     while (rlist != 0) {
352       if ((rlist & 1) != 0) {
353         PrintRegister(reg);
354         if ((rlist >> 1) != 0) {
355           Print(", ");
356         }
357       }
358       reg++;
359       rlist >>= 1;
360     }
361     Print("}");
362     return 5;
363   }
364   UNREACHABLE();
365   return -1;
366 }
367 
368 
369 // Handle all VFP register based formatting in this function to reduce the
370 // complexity of FormatOption.
FormatVFPRegister(Instruction * instr,const char * format)371 int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
372   ASSERT((format[0] == 'S') || (format[0] == 'D'));
373 
374   VFPRegPrecision precision =
375       format[0] == 'D' ? kDoublePrecision : kSinglePrecision;
376 
377   int retval = 2;
378   int reg = -1;
379   if (format[1] == 'n') {
380     reg = instr->VFPNRegValue(precision);
381   } else if (format[1] == 'm') {
382     reg = instr->VFPMRegValue(precision);
383   } else if (format[1] == 'd') {
384     reg = instr->VFPDRegValue(precision);
385     if (format[2] == '+') {
386       int immed8 = instr->Immed8Value();
387       if (format[0] == 'S') reg += immed8 - 1;
388       if (format[0] == 'D') reg += (immed8 / 2 - 1);
389     }
390     if (format[2] == '+') retval = 3;
391   } else {
392     UNREACHABLE();
393   }
394 
395   if (precision == kSinglePrecision) {
396     PrintSRegister(reg);
397   } else {
398     PrintDRegister(reg);
399   }
400 
401   return retval;
402 }
403 
404 
FormatVFPinstruction(Instruction * instr,const char * format)405 int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
406     Print(format);
407     return 0;
408 }
409 
410 
411 // Print the movw or movt instruction.
PrintMovwMovt(Instruction * instr)412 void Decoder::PrintMovwMovt(Instruction* instr) {
413   int imm = instr->ImmedMovwMovtValue();
414   int rd = instr->RdValue();
415   PrintRegister(rd);
416   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
417                                   ", #%d", imm);
418 }
419 
420 
421 // FormatOption takes a formatting string and interprets it based on
422 // the current instructions. The format string points to the first
423 // character of the option string (the option escape has already been
424 // consumed by the caller.)  FormatOption returns the number of
425 // characters that were consumed from the formatting string.
FormatOption(Instruction * instr,const char * format)426 int Decoder::FormatOption(Instruction* instr, const char* format) {
427   switch (format[0]) {
428     case 'a': {  // 'a: accumulate multiplies
429       if (instr->Bit(21) == 0) {
430         Print("ul");
431       } else {
432         Print("la");
433       }
434       return 1;
435     }
436     case 'b': {  // 'b: byte loads or stores
437       if (instr->HasB()) {
438         Print("b");
439       }
440       return 1;
441     }
442     case 'c': {  // 'cond: conditional execution
443       ASSERT(STRING_STARTS_WITH(format, "cond"));
444       PrintCondition(instr);
445       return 4;
446     }
447     case 'd': {  // 'd: vmov double immediate.
448       double d = instr->DoubleImmedVmov();
449       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
450                                       "#%g", d);
451       return 1;
452     }
453     case 'f': {  // 'f: bitfield instructions - v7 and above.
454       uint32_t lsbit = instr->Bits(11, 7);
455       uint32_t width = instr->Bits(20, 16) + 1;
456       if (instr->Bit(21) == 0) {
457         // BFC/BFI:
458         // Bits 20-16 represent most-significant bit. Covert to width.
459         width -= lsbit;
460         ASSERT(width > 0);
461       }
462       ASSERT((width + lsbit) <= 32);
463       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
464                                       "#%d, #%d", lsbit, width);
465       return 1;
466     }
467     case 'h': {  // 'h: halfword operation for extra loads and stores
468       if (instr->HasH()) {
469         Print("h");
470       } else {
471         Print("b");
472       }
473       return 1;
474     }
475     case 'i': {  // 'i: immediate value from adjacent bits.
476       // Expects tokens in the form imm%02d@%02d, ie. imm05@07, imm10@16
477       int width = (format[3] - '0') * 10 + (format[4] - '0');
478       int lsb   = (format[6] - '0') * 10 + (format[7] - '0');
479 
480       ASSERT((width >= 1) && (width <= 32));
481       ASSERT((lsb >= 0) && (lsb <= 31));
482       ASSERT((width + lsb) <= 32);
483 
484       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
485                                       "%d",
486                                       instr->Bits(width + lsb - 1, lsb));
487       return 8;
488     }
489     case 'l': {  // 'l: branch and link
490       if (instr->HasLink()) {
491         Print("l");
492       }
493       return 1;
494     }
495     case 'm': {
496       if (format[1] == 'w') {
497         // 'mw: movt/movw instructions.
498         PrintMovwMovt(instr);
499         return 2;
500       }
501       if (format[1] == 'e') {  // 'memop: load/store instructions.
502         ASSERT(STRING_STARTS_WITH(format, "memop"));
503         if (instr->HasL()) {
504           Print("ldr");
505         } else if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0)) {
506           if (instr->Bits(7, 4) == 0xf) {
507             Print("strd");
508           } else {
509             Print("ldrd");
510           }
511         } else {
512           Print("str");
513         }
514         return 5;
515       }
516       // 'msg: for simulator break instructions
517       ASSERT(STRING_STARTS_WITH(format, "msg"));
518       byte* str =
519           reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
520       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
521                                       "%s", converter_.NameInCode(str));
522       return 3;
523     }
524     case 'o': {
525       if ((format[3] == '1') && (format[4] == '2')) {
526         // 'off12: 12-bit offset for load and store instructions
527         ASSERT(STRING_STARTS_WITH(format, "off12"));
528         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
529                                         "%d", instr->Offset12Value());
530         return 5;
531       } else if (format[3] == '0') {
532         // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
533         ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19"));
534         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
535                                         "%d",
536                                         (instr->Bits(19, 8) << 4) +
537                                         instr->Bits(3, 0));
538         return 15;
539       }
540       // 'off8: 8-bit offset for extra load and store instructions
541       ASSERT(STRING_STARTS_WITH(format, "off8"));
542       int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
543       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
544                                       "%d", offs8);
545       return 4;
546     }
547     case 'p': {  // 'pu: P and U bits for load and store instructions
548       ASSERT(STRING_STARTS_WITH(format, "pu"));
549       PrintPU(instr);
550       return 2;
551     }
552     case 'r': {
553       return FormatRegister(instr, format);
554     }
555     case 's': {
556       if (format[1] == 'h') {  // 'shift_op or 'shift_rm or 'shift_sat.
557         if (format[6] == 'o') {  // 'shift_op
558           ASSERT(STRING_STARTS_WITH(format, "shift_op"));
559           if (instr->TypeValue() == 0) {
560             PrintShiftRm(instr);
561           } else {
562             ASSERT(instr->TypeValue() == 1);
563             PrintShiftImm(instr);
564           }
565           return 8;
566         } else if (format[6] == 's') {  // 'shift_sat.
567           ASSERT(STRING_STARTS_WITH(format, "shift_sat"));
568           PrintShiftSat(instr);
569           return 9;
570         } else {  // 'shift_rm
571           ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
572           PrintShiftRm(instr);
573           return 8;
574         }
575       } else if (format[1] == 'v') {  // 'svc
576         ASSERT(STRING_STARTS_WITH(format, "svc"));
577         PrintSoftwareInterrupt(instr->SvcValue());
578         return 3;
579       } else if (format[1] == 'i') {  // 'sign: signed extra loads and stores
580         ASSERT(STRING_STARTS_WITH(format, "sign"));
581         if (instr->HasSign()) {
582           Print("s");
583         }
584         return 4;
585       }
586       // 's: S field of data processing instructions
587       if (instr->HasS()) {
588         Print("s");
589       }
590       return 1;
591     }
592     case 't': {  // 'target: target of branch instructions
593       ASSERT(STRING_STARTS_WITH(format, "target"));
594       int off = (instr->SImmed24Value() << 2) + 8;
595       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
596                                       "%+d -> %s",
597                                       off,
598                                       converter_.NameOfAddress(
599                                         reinterpret_cast<byte*>(instr) + off));
600       return 6;
601     }
602     case 'u': {  // 'u: signed or unsigned multiplies
603       // The manual gets the meaning of bit 22 backwards in the multiply
604       // instruction overview on page A3.16.2.  The instructions that
605       // exist in u and s variants are the following:
606       // smull A4.1.87
607       // umull A4.1.129
608       // umlal A4.1.128
609       // smlal A4.1.76
610       // For these 0 means u and 1 means s.  As can be seen on their individual
611       // pages.  The other 18 mul instructions have the bit set or unset in
612       // arbitrary ways that are unrelated to the signedness of the instruction.
613       // None of these 18 instructions exist in both a 'u' and an 's' variant.
614 
615       if (instr->Bit(22) == 0) {
616         Print("u");
617       } else {
618         Print("s");
619       }
620       return 1;
621     }
622     case 'v': {
623       return FormatVFPinstruction(instr, format);
624     }
625     case 'S':
626     case 'D': {
627       return FormatVFPRegister(instr, format);
628     }
629     case 'w': {  // 'w: W field of load and store instructions
630       if (instr->HasW()) {
631         Print("!");
632       }
633       return 1;
634     }
635     default: {
636       UNREACHABLE();
637       break;
638     }
639   }
640   UNREACHABLE();
641   return -1;
642 }
643 
644 
645 // Format takes a formatting string for a whole instruction and prints it into
646 // the output buffer. All escaped options are handed to FormatOption to be
647 // parsed further.
Format(Instruction * instr,const char * format)648 void Decoder::Format(Instruction* instr, const char* format) {
649   char cur = *format++;
650   while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
651     if (cur == '\'') {  // Single quote is used as the formatting escape.
652       format += FormatOption(instr, format);
653     } else {
654       out_buffer_[out_buffer_pos_++] = cur;
655     }
656     cur = *format++;
657   }
658   out_buffer_[out_buffer_pos_]  = '\0';
659 }
660 
661 
662 // For currently unimplemented decodings the disassembler calls Unknown(instr)
663 // which will just print "unknown" of the instruction bits.
Unknown(Instruction * instr)664 void Decoder::Unknown(Instruction* instr) {
665   Format(instr, "unknown");
666 }
667 
668 
DecodeType01(Instruction * instr)669 void Decoder::DecodeType01(Instruction* instr) {
670   int type = instr->TypeValue();
671   if ((type == 0) && instr->IsSpecialType0()) {
672     // multiply instruction or extra loads and stores
673     if (instr->Bits(7, 4) == 9) {
674       if (instr->Bit(24) == 0) {
675         // multiply instructions
676         if (instr->Bit(23) == 0) {
677           if (instr->Bit(21) == 0) {
678             // The MUL instruction description (A 4.1.33) refers to Rd as being
679             // the destination for the operation, but it confusingly uses the
680             // Rn field to encode it.
681             Format(instr, "mul'cond's 'rn, 'rm, 'rs");
682           } else {
683             // The MLA instruction description (A 4.1.28) refers to the order
684             // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
685             // Rn field to encode the Rd register and the Rd field to encode
686             // the Rn register.
687             Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
688           }
689         } else {
690           // The signed/long multiply instructions use the terms RdHi and RdLo
691           // when referring to the target registers. They are mapped to the Rn
692           // and Rd fields as follows:
693           // RdLo == Rd field
694           // RdHi == Rn field
695           // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
696           Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
697         }
698       } else {
699         Unknown(instr);  // not used by V8
700       }
701     } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) {
702       // ldrd, strd
703       switch (instr->PUField()) {
704         case da_x: {
705           if (instr->Bit(22) == 0) {
706             Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
707           } else {
708             Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
709           }
710           break;
711         }
712         case ia_x: {
713           if (instr->Bit(22) == 0) {
714             Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
715           } else {
716             Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
717           }
718           break;
719         }
720         case db_x: {
721           if (instr->Bit(22) == 0) {
722             Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
723           } else {
724             Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
725           }
726           break;
727         }
728         case ib_x: {
729           if (instr->Bit(22) == 0) {
730             Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
731           } else {
732             Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
733           }
734           break;
735         }
736         default: {
737           // The PU field is a 2-bit field.
738           UNREACHABLE();
739           break;
740         }
741       }
742     } else {
743       // extra load/store instructions
744       switch (instr->PUField()) {
745         case da_x: {
746           if (instr->Bit(22) == 0) {
747             Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
748           } else {
749             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
750           }
751           break;
752         }
753         case ia_x: {
754           if (instr->Bit(22) == 0) {
755             Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
756           } else {
757             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
758           }
759           break;
760         }
761         case db_x: {
762           if (instr->Bit(22) == 0) {
763             Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
764           } else {
765             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
766           }
767           break;
768         }
769         case ib_x: {
770           if (instr->Bit(22) == 0) {
771             Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
772           } else {
773             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
774           }
775           break;
776         }
777         default: {
778           // The PU field is a 2-bit field.
779           UNREACHABLE();
780           break;
781         }
782       }
783       return;
784     }
785   } else if ((type == 0) && instr->IsMiscType0()) {
786     if (instr->Bits(22, 21) == 1) {
787       switch (instr->BitField(7, 4)) {
788         case BX:
789           Format(instr, "bx'cond 'rm");
790           break;
791         case BLX:
792           Format(instr, "blx'cond 'rm");
793           break;
794         case BKPT:
795           Format(instr, "bkpt 'off0to3and8to19");
796           break;
797         default:
798           Unknown(instr);  // not used by V8
799           break;
800       }
801     } else if (instr->Bits(22, 21) == 3) {
802       switch (instr->BitField(7, 4)) {
803         case CLZ:
804           Format(instr, "clz'cond 'rd, 'rm");
805           break;
806         default:
807           Unknown(instr);  // not used by V8
808           break;
809       }
810     } else {
811       Unknown(instr);  // not used by V8
812     }
813   } else {
814     switch (instr->OpcodeField()) {
815       case AND: {
816         Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
817         break;
818       }
819       case EOR: {
820         Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
821         break;
822       }
823       case SUB: {
824         Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
825         break;
826       }
827       case RSB: {
828         Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
829         break;
830       }
831       case ADD: {
832         Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
833         break;
834       }
835       case ADC: {
836         Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
837         break;
838       }
839       case SBC: {
840         Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
841         break;
842       }
843       case RSC: {
844         Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
845         break;
846       }
847       case TST: {
848         if (instr->HasS()) {
849           Format(instr, "tst'cond 'rn, 'shift_op");
850         } else {
851           Format(instr, "movw'cond 'mw");
852         }
853         break;
854       }
855       case TEQ: {
856         if (instr->HasS()) {
857           Format(instr, "teq'cond 'rn, 'shift_op");
858         } else {
859           // Other instructions matching this pattern are handled in the
860           // miscellaneous instructions part above.
861           UNREACHABLE();
862         }
863         break;
864       }
865       case CMP: {
866         if (instr->HasS()) {
867           Format(instr, "cmp'cond 'rn, 'shift_op");
868         } else {
869           Format(instr, "movt'cond 'mw");
870         }
871         break;
872       }
873       case CMN: {
874         if (instr->HasS()) {
875           Format(instr, "cmn'cond 'rn, 'shift_op");
876         } else {
877           // Other instructions matching this pattern are handled in the
878           // miscellaneous instructions part above.
879           UNREACHABLE();
880         }
881         break;
882       }
883       case ORR: {
884         Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
885         break;
886       }
887       case MOV: {
888         Format(instr, "mov'cond's 'rd, 'shift_op");
889         break;
890       }
891       case BIC: {
892         Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
893         break;
894       }
895       case MVN: {
896         Format(instr, "mvn'cond's 'rd, 'shift_op");
897         break;
898       }
899       default: {
900         // The Opcode field is a 4-bit field.
901         UNREACHABLE();
902         break;
903       }
904     }
905   }
906 }
907 
908 
DecodeType2(Instruction * instr)909 void Decoder::DecodeType2(Instruction* instr) {
910   switch (instr->PUField()) {
911     case da_x: {
912       if (instr->HasW()) {
913         Unknown(instr);  // not used in V8
914         return;
915       }
916       Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
917       break;
918     }
919     case ia_x: {
920       if (instr->HasW()) {
921         Unknown(instr);  // not used in V8
922         return;
923       }
924       Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
925       break;
926     }
927     case db_x: {
928       Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
929       break;
930     }
931     case ib_x: {
932       Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
933       break;
934     }
935     default: {
936       // The PU field is a 2-bit field.
937       UNREACHABLE();
938       break;
939     }
940   }
941 }
942 
943 
DecodeType3(Instruction * instr)944 void Decoder::DecodeType3(Instruction* instr) {
945   switch (instr->PUField()) {
946     case da_x: {
947       ASSERT(!instr->HasW());
948       Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
949       break;
950     }
951     case ia_x: {
952       if (instr->HasW()) {
953         ASSERT(instr->Bits(5, 4) == 0x1);
954         if (instr->Bit(22) == 0x1) {
955           Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
956         } else {
957           UNREACHABLE();  // SSAT.
958         }
959       } else {
960         Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
961       }
962       break;
963     }
964     case db_x: {
965       Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
966       break;
967     }
968     case ib_x: {
969       if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
970         uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
971         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
972         uint32_t msbit = widthminus1 + lsbit;
973         if (msbit <= 31) {
974           if (instr->Bit(22)) {
975             Format(instr, "ubfx'cond 'rd, 'rm, 'f");
976           } else {
977             Format(instr, "sbfx'cond 'rd, 'rm, 'f");
978           }
979         } else {
980           UNREACHABLE();
981         }
982       } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
983         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
984         uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
985         if (msbit >= lsbit) {
986           if (instr->RmValue() == 15) {
987             Format(instr, "bfc'cond 'rd, 'f");
988           } else {
989             Format(instr, "bfi'cond 'rd, 'rm, 'f");
990           }
991         } else {
992           UNREACHABLE();
993         }
994       } else {
995         Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
996       }
997       break;
998     }
999     default: {
1000       // The PU field is a 2-bit field.
1001       UNREACHABLE();
1002       break;
1003     }
1004   }
1005 }
1006 
1007 
DecodeType4(Instruction * instr)1008 void Decoder::DecodeType4(Instruction* instr) {
1009   if (instr->Bit(22) != 0) {
1010     // Privileged mode currently not supported.
1011     Unknown(instr);
1012   } else {
1013     if (instr->HasL()) {
1014       Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
1015     } else {
1016       Format(instr, "stm'cond'pu 'rn'w, 'rlist");
1017     }
1018   }
1019 }
1020 
1021 
DecodeType5(Instruction * instr)1022 void Decoder::DecodeType5(Instruction* instr) {
1023   Format(instr, "b'l'cond 'target");
1024 }
1025 
1026 
DecodeType6(Instruction * instr)1027 void Decoder::DecodeType6(Instruction* instr) {
1028   DecodeType6CoprocessorIns(instr);
1029 }
1030 
1031 
DecodeType7(Instruction * instr)1032 int Decoder::DecodeType7(Instruction* instr) {
1033   if (instr->Bit(24) == 1) {
1034     if (instr->SvcValue() >= kStopCode) {
1035       Format(instr, "stop'cond 'svc");
1036       // Also print the stop message. Its address is encoded
1037       // in the following 4 bytes.
1038       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
1039                                       "\n  %p  %08x       stop message: %s",
1040                                       reinterpret_cast<int32_t*>(instr
1041                                                      + Instruction::kInstrSize),
1042                                       *reinterpret_cast<char**>(instr
1043                                                     + Instruction::kInstrSize),
1044                                       *reinterpret_cast<char**>(instr
1045                                                     + Instruction::kInstrSize));
1046       // We have decoded 2 * Instruction::kInstrSize bytes.
1047       return 2 * Instruction::kInstrSize;
1048     } else {
1049       Format(instr, "svc'cond 'svc");
1050     }
1051   } else {
1052     DecodeTypeVFP(instr);
1053   }
1054   return Instruction::kInstrSize;
1055 }
1056 
1057 
1058 // void Decoder::DecodeTypeVFP(Instruction* instr)
1059 // vmov: Sn = Rt
1060 // vmov: Rt = Sn
1061 // vcvt: Dd = Sm
1062 // vcvt: Sd = Dm
1063 // Dd = vabs(Dm)
1064 // Dd = vneg(Dm)
1065 // Dd = vadd(Dn, Dm)
1066 // Dd = vsub(Dn, Dm)
1067 // Dd = vmul(Dn, Dm)
1068 // Dd = vdiv(Dn, Dm)
1069 // vcmp(Dd, Dm)
1070 // vmrs
1071 // vmsr
1072 // Dd = vsqrt(Dm)
DecodeTypeVFP(Instruction * instr)1073 void Decoder::DecodeTypeVFP(Instruction* instr) {
1074   ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
1075   ASSERT(instr->Bits(11, 9) == 0x5);
1076 
1077   if (instr->Bit(4) == 0) {
1078     if (instr->Opc1Value() == 0x7) {
1079       // Other data processing instructions
1080       if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
1081         // vmov register to register.
1082         if (instr->SzValue() == 0x1) {
1083           Format(instr, "vmov.f64'cond 'Dd, 'Dm");
1084         } else {
1085           Format(instr, "vmov.f32'cond 'Sd, 'Sm");
1086         }
1087       } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
1088         // vabs
1089         Format(instr, "vabs'cond 'Dd, 'Dm");
1090       } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
1091         // vneg
1092         Format(instr, "vneg'cond 'Dd, 'Dm");
1093       } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
1094         DecodeVCVTBetweenDoubleAndSingle(instr);
1095       } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
1096         DecodeVCVTBetweenFloatingPointAndInteger(instr);
1097       } else if (((instr->Opc2Value() >> 1) == 0x6) &&
1098                  (instr->Opc3Value() & 0x1)) {
1099         DecodeVCVTBetweenFloatingPointAndInteger(instr);
1100       } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
1101                  (instr->Opc3Value() & 0x1)) {
1102         DecodeVCMP(instr);
1103       } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
1104         Format(instr, "vsqrt.f64'cond 'Dd, 'Dm");
1105       } else if (instr->Opc3Value() == 0x0) {
1106         if (instr->SzValue() == 0x1) {
1107           Format(instr, "vmov.f64'cond 'Dd, 'd");
1108         } else {
1109           Unknown(instr);  // Not used by V8.
1110         }
1111       } else {
1112         Unknown(instr);  // Not used by V8.
1113       }
1114     } else if (instr->Opc1Value() == 0x3) {
1115       if (instr->SzValue() == 0x1) {
1116         if (instr->Opc3Value() & 0x1) {
1117           Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm");
1118         } else {
1119           Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm");
1120         }
1121       } else {
1122         Unknown(instr);  // Not used by V8.
1123       }
1124     } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
1125       if (instr->SzValue() == 0x1) {
1126         Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm");
1127       } else {
1128         Unknown(instr);  // Not used by V8.
1129       }
1130     } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
1131       if (instr->SzValue() == 0x1) {
1132         Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm");
1133       } else {
1134         Unknown(instr);  // Not used by V8.
1135       }
1136     } else {
1137       Unknown(instr);  // Not used by V8.
1138     }
1139   } else {
1140     if ((instr->VCValue() == 0x0) &&
1141         (instr->VAValue() == 0x0)) {
1142       DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
1143     } else if ((instr->VCValue() == 0x0) &&
1144                (instr->VAValue() == 0x7) &&
1145                (instr->Bits(19, 16) == 0x1)) {
1146       if (instr->VLValue() == 0) {
1147         if (instr->Bits(15, 12) == 0xF) {
1148           Format(instr, "vmsr'cond FPSCR, APSR");
1149         } else {
1150           Format(instr, "vmsr'cond FPSCR, 'rt");
1151         }
1152       } else {
1153         if (instr->Bits(15, 12) == 0xF) {
1154           Format(instr, "vmrs'cond APSR, FPSCR");
1155         } else {
1156           Format(instr, "vmrs'cond 'rt, FPSCR");
1157         }
1158       }
1159     }
1160   }
1161 }
1162 
1163 
DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction * instr)1164 void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
1165     Instruction* instr) {
1166   ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
1167          (instr->VAValue() == 0x0));
1168 
1169   bool to_arm_register = (instr->VLValue() == 0x1);
1170 
1171   if (to_arm_register) {
1172     Format(instr, "vmov'cond 'rt, 'Sn");
1173   } else {
1174     Format(instr, "vmov'cond 'Sn, 'rt");
1175   }
1176 }
1177 
1178 
DecodeVCMP(Instruction * instr)1179 void Decoder::DecodeVCMP(Instruction* instr) {
1180   ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
1181   ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
1182          (instr->Opc3Value() & 0x1));
1183 
1184   // Comparison.
1185   bool dp_operation = (instr->SzValue() == 1);
1186   bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
1187 
1188   if (dp_operation && !raise_exception_for_qnan) {
1189     if (instr->Opc2Value() == 0x4) {
1190       Format(instr, "vcmp.f64'cond 'Dd, 'Dm");
1191     } else if (instr->Opc2Value() == 0x5) {
1192       Format(instr, "vcmp.f64'cond 'Dd, #0.0");
1193     } else {
1194       Unknown(instr);  // invalid
1195     }
1196   } else {
1197     Unknown(instr);  // Not used by V8.
1198   }
1199 }
1200 
1201 
DecodeVCVTBetweenDoubleAndSingle(Instruction * instr)1202 void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
1203   ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
1204   ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
1205 
1206   bool double_to_single = (instr->SzValue() == 1);
1207 
1208   if (double_to_single) {
1209     Format(instr, "vcvt.f32.f64'cond 'Sd, 'Dm");
1210   } else {
1211     Format(instr, "vcvt.f64.f32'cond 'Dd, 'Sm");
1212   }
1213 }
1214 
1215 
DecodeVCVTBetweenFloatingPointAndInteger(Instruction * instr)1216 void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
1217   ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
1218   ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
1219          (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
1220 
1221   bool to_integer = (instr->Bit(18) == 1);
1222   bool dp_operation = (instr->SzValue() == 1);
1223   if (to_integer) {
1224     bool unsigned_integer = (instr->Bit(16) == 0);
1225 
1226     if (dp_operation) {
1227       if (unsigned_integer) {
1228         Format(instr, "vcvt.u32.f64'cond 'Sd, 'Dm");
1229       } else {
1230         Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm");
1231       }
1232     } else {
1233       if (unsigned_integer) {
1234         Format(instr, "vcvt.u32.f32'cond 'Sd, 'Sm");
1235       } else {
1236         Format(instr, "vcvt.s32.f32'cond 'Sd, 'Sm");
1237       }
1238     }
1239   } else {
1240     bool unsigned_integer = (instr->Bit(7) == 0);
1241 
1242     if (dp_operation) {
1243       if (unsigned_integer) {
1244         Format(instr, "vcvt.f64.u32'cond 'Dd, 'Sm");
1245       } else {
1246         Format(instr, "vcvt.f64.s32'cond 'Dd, 'Sm");
1247       }
1248     } else {
1249       if (unsigned_integer) {
1250         Format(instr, "vcvt.f32.u32'cond 'Sd, 'Sm");
1251       } else {
1252         Format(instr, "vcvt.f32.s32'cond 'Sd, 'Sm");
1253       }
1254     }
1255   }
1256 }
1257 
1258 
1259 // Decode Type 6 coprocessor instructions.
1260 // Dm = vmov(Rt, Rt2)
1261 // <Rt, Rt2> = vmov(Dm)
1262 // Ddst = MEM(Rbase + 4*offset).
1263 // MEM(Rbase + 4*offset) = Dsrc.
DecodeType6CoprocessorIns(Instruction * instr)1264 void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
1265   ASSERT(instr->TypeValue() == 6);
1266 
1267   if (instr->CoprocessorValue() == 0xA) {
1268     switch (instr->OpcodeValue()) {
1269       case 0x8:
1270       case 0xA:
1271         if (instr->HasL()) {
1272           Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
1273         } else {
1274           Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
1275         }
1276         break;
1277       case 0xC:
1278       case 0xE:
1279         if (instr->HasL()) {
1280           Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
1281         } else {
1282           Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
1283         }
1284         break;
1285       case 0x4:
1286       case 0x5:
1287       case 0x6:
1288       case 0x7:
1289       case 0x9:
1290       case 0xB: {
1291         bool to_vfp_register = (instr->VLValue() == 0x1);
1292         if (to_vfp_register) {
1293           Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}");
1294         } else {
1295           Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}");
1296         }
1297         break;
1298       }
1299       default:
1300         Unknown(instr);  // Not used by V8.
1301     }
1302   } else if (instr->CoprocessorValue() == 0xB) {
1303     switch (instr->OpcodeValue()) {
1304       case 0x2:
1305         // Load and store double to two GP registers
1306         if (instr->Bits(7, 4) != 0x1) {
1307           Unknown(instr);  // Not used by V8.
1308         } else if (instr->HasL()) {
1309           Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
1310         } else {
1311           Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
1312         }
1313         break;
1314       case 0x8:
1315         if (instr->HasL()) {
1316           Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]");
1317         } else {
1318           Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]");
1319         }
1320         break;
1321       case 0xC:
1322         if (instr->HasL()) {
1323           Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]");
1324         } else {
1325           Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]");
1326         }
1327         break;
1328       case 0x4:
1329       case 0x5:
1330       case 0x9: {
1331         bool to_vfp_register = (instr->VLValue() == 0x1);
1332         if (to_vfp_register) {
1333           Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}");
1334         } else {
1335           Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}");
1336         }
1337         break;
1338       }
1339       default:
1340         Unknown(instr);  // Not used by V8.
1341     }
1342   } else {
1343     Unknown(instr);  // Not used by V8.
1344   }
1345 }
1346 
1347 
IsConstantPoolAt(byte * instr_ptr)1348 bool Decoder::IsConstantPoolAt(byte* instr_ptr) {
1349   int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
1350   return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker;
1351 }
1352 
1353 
ConstantPoolSizeAt(byte * instr_ptr)1354 int Decoder::ConstantPoolSizeAt(byte* instr_ptr) {
1355   if (IsConstantPoolAt(instr_ptr)) {
1356     int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
1357     return instruction_bits & kConstantPoolLengthMask;
1358   } else {
1359     return -1;
1360   }
1361 }
1362 
1363 
1364 // Disassemble the instruction at *instr_ptr into the output buffer.
InstructionDecode(byte * instr_ptr)1365 int Decoder::InstructionDecode(byte* instr_ptr) {
1366   Instruction* instr = Instruction::At(instr_ptr);
1367   // Print raw instruction bytes.
1368   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
1369                                   "%08x       ",
1370                                   instr->InstructionBits());
1371   if (instr->ConditionField() == kSpecialCondition) {
1372     Unknown(instr);
1373     return Instruction::kInstrSize;
1374   }
1375   int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
1376   if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) {
1377     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
1378                                     "constant pool begin (length %d)",
1379                                     instruction_bits &
1380                                     kConstantPoolLengthMask);
1381     return Instruction::kInstrSize;
1382   }
1383   switch (instr->TypeValue()) {
1384     case 0:
1385     case 1: {
1386       DecodeType01(instr);
1387       break;
1388     }
1389     case 2: {
1390       DecodeType2(instr);
1391       break;
1392     }
1393     case 3: {
1394       DecodeType3(instr);
1395       break;
1396     }
1397     case 4: {
1398       DecodeType4(instr);
1399       break;
1400     }
1401     case 5: {
1402       DecodeType5(instr);
1403       break;
1404     }
1405     case 6: {
1406       DecodeType6(instr);
1407       break;
1408     }
1409     case 7: {
1410       return DecodeType7(instr);
1411     }
1412     default: {
1413       // The type field is 3-bits in the ARM encoding.
1414       UNREACHABLE();
1415       break;
1416     }
1417   }
1418   return Instruction::kInstrSize;
1419 }
1420 
1421 
1422 } }  // namespace v8::internal
1423 
1424 
1425 
1426 //------------------------------------------------------------------------------
1427 
1428 namespace disasm {
1429 
1430 
NameOfAddress(byte * addr) const1431 const char* NameConverter::NameOfAddress(byte* addr) const {
1432   v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
1433   return tmp_buffer_.start();
1434 }
1435 
1436 
NameOfConstant(byte * addr) const1437 const char* NameConverter::NameOfConstant(byte* addr) const {
1438   return NameOfAddress(addr);
1439 }
1440 
1441 
NameOfCPURegister(int reg) const1442 const char* NameConverter::NameOfCPURegister(int reg) const {
1443   return v8::internal::Registers::Name(reg);
1444 }
1445 
1446 
NameOfByteCPURegister(int reg) const1447 const char* NameConverter::NameOfByteCPURegister(int reg) const {
1448   UNREACHABLE();  // ARM does not have the concept of a byte register
1449   return "nobytereg";
1450 }
1451 
1452 
NameOfXMMRegister(int reg) const1453 const char* NameConverter::NameOfXMMRegister(int reg) const {
1454   UNREACHABLE();  // ARM does not have any XMM registers
1455   return "noxmmreg";
1456 }
1457 
1458 
NameInCode(byte * addr) const1459 const char* NameConverter::NameInCode(byte* addr) const {
1460   // The default name converter is called for unknown code. So we will not try
1461   // to access any memory.
1462   return "";
1463 }
1464 
1465 
1466 //------------------------------------------------------------------------------
1467 
Disassembler(const NameConverter & converter)1468 Disassembler::Disassembler(const NameConverter& converter)
1469     : converter_(converter) {}
1470 
1471 
~Disassembler()1472 Disassembler::~Disassembler() {}
1473 
1474 
InstructionDecode(v8::internal::Vector<char> buffer,byte * instruction)1475 int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
1476                                     byte* instruction) {
1477   v8::internal::Decoder d(converter_, buffer);
1478   return d.InstructionDecode(instruction);
1479 }
1480 
1481 
ConstantPoolSizeAt(byte * instruction)1482 int Disassembler::ConstantPoolSizeAt(byte* instruction) {
1483   return v8::internal::Decoder::ConstantPoolSizeAt(instruction);
1484 }
1485 
1486 
Disassemble(FILE * f,byte * begin,byte * end)1487 void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
1488   NameConverter converter;
1489   Disassembler d(converter);
1490   for (byte* pc = begin; pc < end;) {
1491     v8::internal::EmbeddedVector<char, 128> buffer;
1492     buffer[0] = '\0';
1493     byte* prev_pc = pc;
1494     pc += d.InstructionDecode(buffer, pc);
1495     fprintf(f, "%p    %08x      %s\n",
1496             prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
1497   }
1498 }
1499 
1500 
1501 }  // namespace disasm
1502 
1503 #endif  // V8_TARGET_ARCH_ARM
1504