1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37
38 #include "gdb-jit.h"
39 #include "runtime.h"
40 #include "token.h"
41
42 namespace v8 {
43 namespace internal {
44
45
46 // -----------------------------------------------------------------------------
47 // Platform independent assembler base class.
48
49 class AssemblerBase: public Malloced {
50 public:
51 explicit AssemblerBase(Isolate* isolate);
52
isolate()53 Isolate* isolate() const { return isolate_; }
jit_cookie()54 int jit_cookie() { return jit_cookie_; }
55
56 private:
57 Isolate* isolate_;
58 int jit_cookie_;
59 };
60
61 // -----------------------------------------------------------------------------
62 // Common double constants.
63
64 class DoubleConstant: public AllStatic {
65 public:
66 static const double min_int;
67 static const double one_half;
68 static const double minus_zero;
69 static const double negative_infinity;
70 static const double nan;
71 };
72
73
74 // -----------------------------------------------------------------------------
75 // Labels represent pc locations; they are typically jump or call targets.
76 // After declaration, a label can be freely used to denote known or (yet)
77 // unknown pc location. Assembler::bind() is used to bind a label to the
78 // current pc. A label can be bound only once.
79
80 class Label BASE_EMBEDDED {
81 public:
INLINE(Label ())82 INLINE(Label()) { Unuse(); }
INLINE(~Label ())83 INLINE(~Label()) { ASSERT(!is_linked()); }
84
INLINE(void Unuse ())85 INLINE(void Unuse()) { pos_ = 0; }
86
INLINE(bool is_bound ()const)87 INLINE(bool is_bound() const) { return pos_ < 0; }
INLINE(bool is_unused ()const)88 INLINE(bool is_unused() const) { return pos_ == 0; }
INLINE(bool is_linked ()const)89 INLINE(bool is_linked() const) { return pos_ > 0; }
90
91 // Returns the position of bound or linked labels. Cannot be used
92 // for unused labels.
93 int pos() const;
94
95 private:
96 // pos_ encodes both the binding state (via its sign)
97 // and the binding position (via its value) of a label.
98 //
99 // pos_ < 0 bound label, pos() returns the jump target position
100 // pos_ == 0 unused label
101 // pos_ > 0 linked label, pos() returns the last reference position
102 int pos_;
103
bind_to(int pos)104 void bind_to(int pos) {
105 pos_ = -pos - 1;
106 ASSERT(is_bound());
107 }
link_to(int pos)108 void link_to(int pos) {
109 pos_ = pos + 1;
110 ASSERT(is_linked());
111 }
112
113 friend class Assembler;
114 friend class RegexpAssembler;
115 friend class Displacement;
116 friend class RegExpMacroAssemblerIrregexp;
117 };
118
119
120 // -----------------------------------------------------------------------------
121 // NearLabels are labels used for short jumps (in Intel jargon).
122 // NearLabels should be used if it can be guaranteed that the jump range is
123 // within -128 to +127. We already use short jumps when jumping backwards,
124 // so using a NearLabel will only have performance impact if used for forward
125 // jumps.
126 class NearLabel BASE_EMBEDDED {
127 public:
NearLabel()128 NearLabel() { Unuse(); }
~NearLabel()129 ~NearLabel() { ASSERT(!is_linked()); }
130
Unuse()131 void Unuse() {
132 pos_ = -1;
133 unresolved_branches_ = 0;
134 #ifdef DEBUG
135 for (int i = 0; i < kMaxUnresolvedBranches; i++) {
136 unresolved_positions_[i] = -1;
137 }
138 #endif
139 }
140
pos()141 int pos() {
142 ASSERT(is_bound());
143 return pos_;
144 }
145
is_bound()146 bool is_bound() { return pos_ >= 0; }
is_linked()147 bool is_linked() { return !is_bound() && unresolved_branches_ > 0; }
is_unused()148 bool is_unused() { return !is_bound() && unresolved_branches_ == 0; }
149
bind_to(int position)150 void bind_to(int position) {
151 ASSERT(!is_bound());
152 pos_ = position;
153 }
154
link_to(int position)155 void link_to(int position) {
156 ASSERT(!is_bound());
157 ASSERT(unresolved_branches_ < kMaxUnresolvedBranches);
158 unresolved_positions_[unresolved_branches_++] = position;
159 }
160
161 private:
162 static const int kMaxUnresolvedBranches = 8;
163 int pos_;
164 int unresolved_branches_;
165 int unresolved_positions_[kMaxUnresolvedBranches];
166
167 friend class Assembler;
168 };
169
170
171 // -----------------------------------------------------------------------------
172 // Relocation information
173
174
175 // Relocation information consists of the address (pc) of the datum
176 // to which the relocation information applies, the relocation mode
177 // (rmode), and an optional data field. The relocation mode may be
178 // "descriptive" and not indicate a need for relocation, but simply
179 // describe a property of the datum. Such rmodes are useful for GC
180 // and nice disassembly output.
181
182 class RelocInfo BASE_EMBEDDED {
183 public:
184 // The constant kNoPosition is used with the collecting of source positions
185 // in the relocation information. Two types of source positions are collected
186 // "position" (RelocMode position) and "statement position" (RelocMode
187 // statement_position). The "position" is collected at places in the source
188 // code which are of interest when making stack traces to pin-point the source
189 // location of a stack frame as close as possible. The "statement position" is
190 // collected at the beginning at each statement, and is used to indicate
191 // possible break locations. kNoPosition is used to indicate an
192 // invalid/uninitialized position value.
193 static const int kNoPosition = -1;
194
195 // This string is used to add padding comments to the reloc info in cases
196 // where we are not sure to have enough space for patching in during
197 // lazy deoptimization. This is the case if we have indirect calls for which
198 // we do not normally record relocation info.
199 static const char* kFillerCommentString;
200
201 // The minimum size of a comment is equal to three bytes for the extra tagged
202 // pc + the tag for the data, and kPointerSize for the actual pointer to the
203 // comment.
204 static const int kMinRelocCommentSize = 3 + kPointerSize;
205
206 // The maximum size for a call instruction including pc-jump.
207 static const int kMaxCallSize = 6;
208
209 // The maximum pc delta that will use the short encoding.
210 static const int kMaxSmallPCDelta;
211
212 enum Mode {
213 // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
214 CONSTRUCT_CALL, // code target that is a call to a JavaScript constructor.
215 CODE_TARGET_CONTEXT, // Code target used for contextual loads and stores.
216 DEBUG_BREAK, // Code target for the debugger statement.
217 CODE_TARGET, // Code target which is not any of the above.
218 EMBEDDED_OBJECT,
219 GLOBAL_PROPERTY_CELL,
220
221 // Everything after runtime_entry (inclusive) is not GC'ed.
222 RUNTIME_ENTRY,
223 JS_RETURN, // Marks start of the ExitJSFrame code.
224 COMMENT,
225 POSITION, // See comment for kNoPosition above.
226 STATEMENT_POSITION, // See comment for kNoPosition above.
227 DEBUG_BREAK_SLOT, // Additional code inserted for debug break slot.
228 EXTERNAL_REFERENCE, // The address of an external C++ function.
229 INTERNAL_REFERENCE, // An address inside the same function.
230
231 // add more as needed
232 // Pseudo-types
233 NUMBER_OF_MODES, // must be no greater than 14 - see RelocInfoWriter
234 NONE, // never recorded
235 LAST_CODE_ENUM = CODE_TARGET,
236 LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL
237 };
238
239
RelocInfo()240 RelocInfo() {}
RelocInfo(byte * pc,Mode rmode,intptr_t data)241 RelocInfo(byte* pc, Mode rmode, intptr_t data)
242 : pc_(pc), rmode_(rmode), data_(data) {
243 }
244
IsConstructCall(Mode mode)245 static inline bool IsConstructCall(Mode mode) {
246 return mode == CONSTRUCT_CALL;
247 }
IsCodeTarget(Mode mode)248 static inline bool IsCodeTarget(Mode mode) {
249 return mode <= LAST_CODE_ENUM;
250 }
251 // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)252 static inline bool IsGCRelocMode(Mode mode) {
253 return mode <= LAST_GCED_ENUM;
254 }
IsJSReturn(Mode mode)255 static inline bool IsJSReturn(Mode mode) {
256 return mode == JS_RETURN;
257 }
IsComment(Mode mode)258 static inline bool IsComment(Mode mode) {
259 return mode == COMMENT;
260 }
IsPosition(Mode mode)261 static inline bool IsPosition(Mode mode) {
262 return mode == POSITION || mode == STATEMENT_POSITION;
263 }
IsStatementPosition(Mode mode)264 static inline bool IsStatementPosition(Mode mode) {
265 return mode == STATEMENT_POSITION;
266 }
IsExternalReference(Mode mode)267 static inline bool IsExternalReference(Mode mode) {
268 return mode == EXTERNAL_REFERENCE;
269 }
IsInternalReference(Mode mode)270 static inline bool IsInternalReference(Mode mode) {
271 return mode == INTERNAL_REFERENCE;
272 }
IsDebugBreakSlot(Mode mode)273 static inline bool IsDebugBreakSlot(Mode mode) {
274 return mode == DEBUG_BREAK_SLOT;
275 }
ModeMask(Mode mode)276 static inline int ModeMask(Mode mode) { return 1 << mode; }
277
278 // Accessors
pc()279 byte* pc() const { return pc_; }
set_pc(byte * pc)280 void set_pc(byte* pc) { pc_ = pc; }
rmode()281 Mode rmode() const { return rmode_; }
data()282 intptr_t data() const { return data_; }
283
284 // Apply a relocation by delta bytes
285 INLINE(void apply(intptr_t delta));
286
287 // Is the pointer this relocation info refers to coded like a plain pointer
288 // or is it strange in some way (eg relative or patched into a series of
289 // instructions).
290 bool IsCodedSpecially();
291
292 // Read/modify the code target in the branch/call instruction
293 // this relocation applies to;
294 // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
295 INLINE(Address target_address());
296 INLINE(void set_target_address(Address target));
297 INLINE(Object* target_object());
298 INLINE(Handle<Object> target_object_handle(Assembler* origin));
299 INLINE(Object** target_object_address());
300 INLINE(void set_target_object(Object* target));
301 INLINE(JSGlobalPropertyCell* target_cell());
302 INLINE(Handle<JSGlobalPropertyCell> target_cell_handle());
303 INLINE(void set_target_cell(JSGlobalPropertyCell* cell));
304
305
306 // Read the address of the word containing the target_address in an
307 // instruction stream. What this means exactly is architecture-independent.
308 // The only architecture-independent user of this function is the serializer.
309 // The serializer uses it to find out how many raw bytes of instruction to
310 // output before the next target. Architecture-independent code shouldn't
311 // dereference the pointer it gets back from this.
312 INLINE(Address target_address_address());
313 // This indicates how much space a target takes up when deserializing a code
314 // stream. For most architectures this is just the size of a pointer. For
315 // an instruction like movw/movt where the target bits are mixed into the
316 // instruction bits the size of the target will be zero, indicating that the
317 // serializer should not step forwards in memory after a target is resolved
318 // and written. In this case the target_address_address function above
319 // should return the end of the instructions to be patched, allowing the
320 // deserializer to deserialize the instructions as raw bytes and put them in
321 // place, ready to be patched with the target.
322 INLINE(int target_address_size());
323
324 // Read/modify the reference in the instruction this relocation
325 // applies to; can only be called if rmode_ is external_reference
326 INLINE(Address* target_reference_address());
327
328 // Read/modify the address of a call instruction. This is used to relocate
329 // the break points where straight-line code is patched with a call
330 // instruction.
331 INLINE(Address call_address());
332 INLINE(void set_call_address(Address target));
333 INLINE(Object* call_object());
334 INLINE(void set_call_object(Object* target));
335 INLINE(Object** call_object_address());
336
337 template<typename StaticVisitor> inline void Visit(Heap* heap);
338 inline void Visit(ObjectVisitor* v);
339
340 // Patch the code with some other code.
341 void PatchCode(byte* instructions, int instruction_count);
342
343 // Patch the code with a call.
344 void PatchCodeWithCall(Address target, int guard_bytes);
345
346 // Check whether this return sequence has been patched
347 // with a call to the debugger.
348 INLINE(bool IsPatchedReturnSequence());
349
350 // Check whether this debug break slot has been patched with a call to the
351 // debugger.
352 INLINE(bool IsPatchedDebugBreakSlotSequence());
353
354 #ifdef ENABLE_DISASSEMBLER
355 // Printing
356 static const char* RelocModeName(Mode rmode);
357 void Print(FILE* out);
358 #endif // ENABLE_DISASSEMBLER
359 #ifdef DEBUG
360 // Debugging
361 void Verify();
362 #endif
363
364 static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
365 static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
366 static const int kDebugMask = kPositionMask | 1 << COMMENT;
367 static const int kApplyMask; // Modes affected by apply. Depends on arch.
368
369 private:
370 // On ARM, note that pc_ is the address of the constant pool entry
371 // to be relocated and not the address of the instruction
372 // referencing the constant pool entry (except when rmode_ ==
373 // comment).
374 byte* pc_;
375 Mode rmode_;
376 intptr_t data_;
377 friend class RelocIterator;
378 };
379
380
381 // RelocInfoWriter serializes a stream of relocation info. It writes towards
382 // lower addresses.
383 class RelocInfoWriter BASE_EMBEDDED {
384 public:
RelocInfoWriter()385 RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_data_(0) {}
RelocInfoWriter(byte * pos,byte * pc)386 RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc),
387 last_data_(0) {}
388
pos()389 byte* pos() const { return pos_; }
last_pc()390 byte* last_pc() const { return last_pc_; }
391
392 void Write(const RelocInfo* rinfo);
393
394 // Update the state of the stream after reloc info buffer
395 // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)396 void Reposition(byte* pos, byte* pc) {
397 pos_ = pos;
398 last_pc_ = pc;
399 }
400
401 // Max size (bytes) of a written RelocInfo. Longest encoding is
402 // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
403 // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
404 // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
405 // Here we use the maximum of the two.
406 static const int kMaxSize = 16;
407
408 private:
409 inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
410 inline void WriteTaggedPC(uint32_t pc_delta, int tag);
411 inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
412 inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
413 inline void WriteTaggedData(intptr_t data_delta, int tag);
414 inline void WriteExtraTag(int extra_tag, int top_tag);
415
416 byte* pos_;
417 byte* last_pc_;
418 intptr_t last_data_;
419 DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
420 };
421
422
423 // A RelocIterator iterates over relocation information.
424 // Typical use:
425 //
426 // for (RelocIterator it(code); !it.done(); it.next()) {
427 // // do something with it.rinfo() here
428 // }
429 //
430 // A mask can be specified to skip unwanted modes.
431 class RelocIterator: public Malloced {
432 public:
433 // Create a new iterator positioned at
434 // the beginning of the reloc info.
435 // Relocation information with mode k is included in the
436 // iteration iff bit k of mode_mask is set.
437 explicit RelocIterator(Code* code, int mode_mask = -1);
438 explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
439
440 // Iteration
done()441 bool done() const { return done_; }
442 void next();
443
444 // Return pointer valid until next next().
rinfo()445 RelocInfo* rinfo() {
446 ASSERT(!done());
447 return &rinfo_;
448 }
449
450 private:
451 // Advance* moves the position before/after reading.
452 // *Read* reads from current byte(s) into rinfo_.
453 // *Get* just reads and returns info on current byte.
454 void Advance(int bytes = 1) { pos_ -= bytes; }
455 int AdvanceGetTag();
456 int GetExtraTag();
457 int GetTopTag();
458 void ReadTaggedPC();
459 void AdvanceReadPC();
460 void AdvanceReadData();
461 void AdvanceReadVariableLengthPCJump();
462 int GetPositionTypeTag();
463 void ReadTaggedData();
464
465 static RelocInfo::Mode DebugInfoModeFromTag(int tag);
466
467 // If the given mode is wanted, set it in rinfo_ and return true.
468 // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)469 bool SetMode(RelocInfo::Mode mode) {
470 return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
471 }
472
473 byte* pos_;
474 byte* end_;
475 RelocInfo rinfo_;
476 bool done_;
477 int mode_mask_;
478 DISALLOW_COPY_AND_ASSIGN(RelocIterator);
479 };
480
481
482 //------------------------------------------------------------------------------
483 // External function
484
485 //----------------------------------------------------------------------------
486 class IC_Utility;
487 class SCTableReference;
488 #ifdef ENABLE_DEBUGGER_SUPPORT
489 class Debug_Address;
490 #endif
491
492
493 // An ExternalReference represents a C++ address used in the generated
494 // code. All references to C++ functions and variables must be encapsulated in
495 // an ExternalReference instance. This is done in order to track the origin of
496 // all external references in the code so that they can be bound to the correct
497 // addresses when deserializing a heap.
498 class ExternalReference BASE_EMBEDDED {
499 public:
500 // Used in the simulator to support different native api calls.
501 enum Type {
502 // Builtin call.
503 // MaybeObject* f(v8::internal::Arguments).
504 BUILTIN_CALL, // default
505
506 // Builtin call that returns floating point.
507 // double f(double, double).
508 FP_RETURN_CALL,
509
510 // Direct call to API function callback.
511 // Handle<Value> f(v8::Arguments&)
512 DIRECT_API_CALL,
513
514 // Direct call to accessor getter callback.
515 // Handle<value> f(Local<String> property, AccessorInfo& info)
516 DIRECT_GETTER_CALL
517 };
518
519 typedef void* ExternalReferenceRedirector(void* original, Type type);
520
521 ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
522
523 ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
524
525 ExternalReference(Builtins::Name name, Isolate* isolate);
526
527 ExternalReference(Runtime::FunctionId id, Isolate* isolate);
528
529 ExternalReference(const Runtime::Function* f, Isolate* isolate);
530
531 ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
532
533 #ifdef ENABLE_DEBUGGER_SUPPORT
534 ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
535 #endif
536
537 explicit ExternalReference(StatsCounter* counter);
538
539 ExternalReference(Isolate::AddressId id, Isolate* isolate);
540
541 explicit ExternalReference(const SCTableReference& table_ref);
542
543 // Isolate::Current() as an external reference.
544 static ExternalReference isolate_address();
545
546 // One-of-a-kind references. These references are not part of a general
547 // pattern. This means that they have to be added to the
548 // ExternalReferenceTable in serialize.cc manually.
549
550 static ExternalReference perform_gc_function(Isolate* isolate);
551 static ExternalReference fill_heap_number_with_random_function(
552 Isolate* isolate);
553 static ExternalReference random_uint32_function(Isolate* isolate);
554 static ExternalReference transcendental_cache_array_address(Isolate* isolate);
555 static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
556
557 // Deoptimization support.
558 static ExternalReference new_deoptimizer_function(Isolate* isolate);
559 static ExternalReference compute_output_frames_function(Isolate* isolate);
560 static ExternalReference global_contexts_list(Isolate* isolate);
561
562 // Static data in the keyed lookup cache.
563 static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
564 static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
565
566 // Static variable Factory::the_hole_value.location()
567 static ExternalReference the_hole_value_location(Isolate* isolate);
568
569 // Static variable Factory::arguments_marker.location()
570 static ExternalReference arguments_marker_location(Isolate* isolate);
571
572 // Static variable Heap::roots_address()
573 static ExternalReference roots_address(Isolate* isolate);
574
575 // Static variable StackGuard::address_of_jslimit()
576 static ExternalReference address_of_stack_limit(Isolate* isolate);
577
578 // Static variable StackGuard::address_of_real_jslimit()
579 static ExternalReference address_of_real_stack_limit(Isolate* isolate);
580
581 // Static variable RegExpStack::limit_address()
582 static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
583
584 // Static variables for RegExp.
585 static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
586 static ExternalReference address_of_regexp_stack_memory_address(
587 Isolate* isolate);
588 static ExternalReference address_of_regexp_stack_memory_size(
589 Isolate* isolate);
590
591 // Static variable Heap::NewSpaceStart()
592 static ExternalReference new_space_start(Isolate* isolate);
593 static ExternalReference new_space_mask(Isolate* isolate);
594 static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
595
596 // Used for fast allocation in generated code.
597 static ExternalReference new_space_allocation_top_address(Isolate* isolate);
598 static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
599
600 static ExternalReference double_fp_operation(Token::Value operation,
601 Isolate* isolate);
602 static ExternalReference compare_doubles(Isolate* isolate);
603 static ExternalReference power_double_double_function(Isolate* isolate);
604 static ExternalReference power_double_int_function(Isolate* isolate);
605
606 static ExternalReference handle_scope_next_address();
607 static ExternalReference handle_scope_limit_address();
608 static ExternalReference handle_scope_level_address();
609
610 static ExternalReference scheduled_exception_address(Isolate* isolate);
611
612 // Static variables containing common double constants.
613 static ExternalReference address_of_min_int();
614 static ExternalReference address_of_one_half();
615 static ExternalReference address_of_minus_zero();
616 static ExternalReference address_of_negative_infinity();
617 static ExternalReference address_of_nan();
618
619 static ExternalReference math_sin_double_function(Isolate* isolate);
620 static ExternalReference math_cos_double_function(Isolate* isolate);
621 static ExternalReference math_log_double_function(Isolate* isolate);
622
address()623 Address address() const {return reinterpret_cast<Address>(address_);}
624
625 #ifdef ENABLE_DEBUGGER_SUPPORT
626 // Function Debug::Break()
627 static ExternalReference debug_break(Isolate* isolate);
628
629 // Used to check if single stepping is enabled in generated code.
630 static ExternalReference debug_step_in_fp_address(Isolate* isolate);
631 #endif
632
633 #ifndef V8_INTERPRETED_REGEXP
634 // C functions called from RegExp generated code.
635
636 // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
637 static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
638
639 // Function RegExpMacroAssembler*::CheckStackGuardState()
640 static ExternalReference re_check_stack_guard_state(Isolate* isolate);
641
642 // Function NativeRegExpMacroAssembler::GrowStack()
643 static ExternalReference re_grow_stack(Isolate* isolate);
644
645 // byte NativeRegExpMacroAssembler::word_character_bitmap
646 static ExternalReference re_word_character_map();
647
648 #endif
649
650 // This lets you register a function that rewrites all external references.
651 // Used by the ARM simulator to catch calls to external references.
set_redirector(ExternalReferenceRedirector * redirector)652 static void set_redirector(ExternalReferenceRedirector* redirector) {
653 // We can't stack them.
654 ASSERT(Isolate::Current()->external_reference_redirector() == NULL);
655 Isolate::Current()->set_external_reference_redirector(
656 reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
657 }
658
659 private:
ExternalReference(void * address)660 explicit ExternalReference(void* address)
661 : address_(address) {}
662
663 static void* Redirect(Isolate* isolate,
664 void* address,
665 Type type = ExternalReference::BUILTIN_CALL) {
666 ExternalReferenceRedirector* redirector =
667 reinterpret_cast<ExternalReferenceRedirector*>(
668 isolate->external_reference_redirector());
669 if (redirector == NULL) return address;
670 void* answer = (*redirector)(address, type);
671 return answer;
672 }
673
674 static void* Redirect(Isolate* isolate,
675 Address address_arg,
676 Type type = ExternalReference::BUILTIN_CALL) {
677 ExternalReferenceRedirector* redirector =
678 reinterpret_cast<ExternalReferenceRedirector*>(
679 isolate->external_reference_redirector());
680 void* address = reinterpret_cast<void*>(address_arg);
681 void* answer = (redirector == NULL) ?
682 address :
683 (*redirector)(address, type);
684 return answer;
685 }
686
687 void* address_;
688 };
689
690
691 // -----------------------------------------------------------------------------
692 // Position recording support
693
694 struct PositionState {
PositionStatePositionState695 PositionState() : current_position(RelocInfo::kNoPosition),
696 written_position(RelocInfo::kNoPosition),
697 current_statement_position(RelocInfo::kNoPosition),
698 written_statement_position(RelocInfo::kNoPosition) {}
699
700 int current_position;
701 int written_position;
702
703 int current_statement_position;
704 int written_statement_position;
705 };
706
707
708 class PositionsRecorder BASE_EMBEDDED {
709 public:
PositionsRecorder(Assembler * assembler)710 explicit PositionsRecorder(Assembler* assembler)
711 : assembler_(assembler) {
712 #ifdef ENABLE_GDB_JIT_INTERFACE
713 gdbjit_lineinfo_ = NULL;
714 #endif
715 }
716
717 #ifdef ENABLE_GDB_JIT_INTERFACE
~PositionsRecorder()718 ~PositionsRecorder() {
719 delete gdbjit_lineinfo_;
720 }
721
StartGDBJITLineInfoRecording()722 void StartGDBJITLineInfoRecording() {
723 if (FLAG_gdbjit) {
724 gdbjit_lineinfo_ = new GDBJITLineInfo();
725 }
726 }
727
DetachGDBJITLineInfo()728 GDBJITLineInfo* DetachGDBJITLineInfo() {
729 GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
730 gdbjit_lineinfo_ = NULL; // To prevent deallocation in destructor.
731 return lineinfo;
732 }
733 #endif
734
735 // Set current position to pos.
736 void RecordPosition(int pos);
737
738 // Set current statement position to pos.
739 void RecordStatementPosition(int pos);
740
741 // Write recorded positions to relocation information.
742 bool WriteRecordedPositions();
743
current_position()744 int current_position() const { return state_.current_position; }
745
current_statement_position()746 int current_statement_position() const {
747 return state_.current_statement_position;
748 }
749
750 private:
751 Assembler* assembler_;
752 PositionState state_;
753 #ifdef ENABLE_GDB_JIT_INTERFACE
754 GDBJITLineInfo* gdbjit_lineinfo_;
755 #endif
756
757 friend class PreservePositionScope;
758
759 DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
760 };
761
762
763 class PreservePositionScope BASE_EMBEDDED {
764 public:
PreservePositionScope(PositionsRecorder * positions_recorder)765 explicit PreservePositionScope(PositionsRecorder* positions_recorder)
766 : positions_recorder_(positions_recorder),
767 saved_state_(positions_recorder->state_) {}
768
~PreservePositionScope()769 ~PreservePositionScope() {
770 positions_recorder_->state_ = saved_state_;
771 }
772
773 private:
774 PositionsRecorder* positions_recorder_;
775 const PositionState saved_state_;
776
777 DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
778 };
779
780
781 // -----------------------------------------------------------------------------
782 // Utility functions
783
is_intn(int x,int n)784 static inline bool is_intn(int x, int n) {
785 return -(1 << (n-1)) <= x && x < (1 << (n-1));
786 }
787
is_int8(int x)788 static inline bool is_int8(int x) { return is_intn(x, 8); }
is_int16(int x)789 static inline bool is_int16(int x) { return is_intn(x, 16); }
is_int18(int x)790 static inline bool is_int18(int x) { return is_intn(x, 18); }
is_int24(int x)791 static inline bool is_int24(int x) { return is_intn(x, 24); }
792
is_uintn(int x,int n)793 static inline bool is_uintn(int x, int n) {
794 return (x & -(1 << n)) == 0;
795 }
796
is_uint2(int x)797 static inline bool is_uint2(int x) { return is_uintn(x, 2); }
is_uint3(int x)798 static inline bool is_uint3(int x) { return is_uintn(x, 3); }
is_uint4(int x)799 static inline bool is_uint4(int x) { return is_uintn(x, 4); }
is_uint5(int x)800 static inline bool is_uint5(int x) { return is_uintn(x, 5); }
is_uint6(int x)801 static inline bool is_uint6(int x) { return is_uintn(x, 6); }
is_uint8(int x)802 static inline bool is_uint8(int x) { return is_uintn(x, 8); }
is_uint10(int x)803 static inline bool is_uint10(int x) { return is_uintn(x, 10); }
is_uint12(int x)804 static inline bool is_uint12(int x) { return is_uintn(x, 12); }
is_uint16(int x)805 static inline bool is_uint16(int x) { return is_uintn(x, 16); }
is_uint24(int x)806 static inline bool is_uint24(int x) { return is_uintn(x, 24); }
is_uint26(int x)807 static inline bool is_uint26(int x) { return is_uintn(x, 26); }
is_uint28(int x)808 static inline bool is_uint28(int x) { return is_uintn(x, 28); }
809
NumberOfBitsSet(uint32_t x)810 static inline int NumberOfBitsSet(uint32_t x) {
811 unsigned int num_bits_set;
812 for (num_bits_set = 0; x; x >>= 1) {
813 num_bits_set += x & 1;
814 }
815 return num_bits_set;
816 }
817
818 // Computes pow(x, y) with the special cases in the spec for Math.pow.
819 double power_double_int(double x, int y);
820 double power_double_double(double x, double y);
821
822 } } // namespace v8::internal
823
824 #endif // V8_ASSEMBLER_H_
825