• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <math.h>
29 
30 #include "v8.h"
31 #include "bignum-dtoa.h"
32 
33 #include "bignum.h"
34 #include "double.h"
35 
36 namespace v8 {
37 namespace internal {
38 
NormalizedExponent(uint64_t significand,int exponent)39 static int NormalizedExponent(uint64_t significand, int exponent) {
40   ASSERT(significand != 0);
41   while ((significand & Double::kHiddenBit) == 0) {
42     significand = significand << 1;
43     exponent = exponent - 1;
44   }
45   return exponent;
46 }
47 
48 
49 // Forward declarations:
50 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
51 static int EstimatePower(int exponent);
52 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
53 // and denominator.
54 static void InitialScaledStartValues(double v,
55                                      int estimated_power,
56                                      bool need_boundary_deltas,
57                                      Bignum* numerator,
58                                      Bignum* denominator,
59                                      Bignum* delta_minus,
60                                      Bignum* delta_plus);
61 // Multiplies numerator/denominator so that its values lies in the range 1-10.
62 // Returns decimal_point s.t.
63 //  v = numerator'/denominator' * 10^(decimal_point-1)
64 //     where numerator' and denominator' are the values of numerator and
65 //     denominator after the call to this function.
66 static void FixupMultiply10(int estimated_power, bool is_even,
67                             int* decimal_point,
68                             Bignum* numerator, Bignum* denominator,
69                             Bignum* delta_minus, Bignum* delta_plus);
70 // Generates digits from the left to the right and stops when the generated
71 // digits yield the shortest decimal representation of v.
72 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
73                                    Bignum* delta_minus, Bignum* delta_plus,
74                                    bool is_even,
75                                    Vector<char> buffer, int* length);
76 // Generates 'requested_digits' after the decimal point.
77 static void BignumToFixed(int requested_digits, int* decimal_point,
78                           Bignum* numerator, Bignum* denominator,
79                           Vector<char>(buffer), int* length);
80 // Generates 'count' digits of numerator/denominator.
81 // Once 'count' digits have been produced rounds the result depending on the
82 // remainder (remainders of exactly .5 round upwards). Might update the
83 // decimal_point when rounding up (for example for 0.9999).
84 static void GenerateCountedDigits(int count, int* decimal_point,
85                                   Bignum* numerator, Bignum* denominator,
86                                   Vector<char>(buffer), int* length);
87 
88 
BignumDtoa(double v,BignumDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)89 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
90                 Vector<char> buffer, int* length, int* decimal_point) {
91   ASSERT(v > 0);
92   ASSERT(!Double(v).IsSpecial());
93   uint64_t significand = Double(v).Significand();
94   bool is_even = (significand & 1) == 0;
95   int exponent = Double(v).Exponent();
96   int normalized_exponent = NormalizedExponent(significand, exponent);
97   // estimated_power might be too low by 1.
98   int estimated_power = EstimatePower(normalized_exponent);
99 
100   // Shortcut for Fixed.
101   // The requested digits correspond to the digits after the point. If the
102   // number is much too small, then there is no need in trying to get any
103   // digits.
104   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
105     buffer[0] = '\0';
106     *length = 0;
107     // Set decimal-point to -requested_digits. This is what Gay does.
108     // Note that it should not have any effect anyways since the string is
109     // empty.
110     *decimal_point = -requested_digits;
111     return;
112   }
113 
114   Bignum numerator;
115   Bignum denominator;
116   Bignum delta_minus;
117   Bignum delta_plus;
118   // Make sure the bignum can grow large enough. The smallest double equals
119   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
120   // The maximum double is 1.7976931348623157e308 which needs fewer than
121   // 308*4 binary digits.
122   ASSERT(Bignum::kMaxSignificantBits >= 324*4);
123   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
124   InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
125                            &numerator, &denominator,
126                            &delta_minus, &delta_plus);
127   // We now have v = (numerator / denominator) * 10^estimated_power.
128   FixupMultiply10(estimated_power, is_even, decimal_point,
129                   &numerator, &denominator,
130                   &delta_minus, &delta_plus);
131   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
132   //  1 <= (numerator + delta_plus) / denominator < 10
133   switch (mode) {
134     case BIGNUM_DTOA_SHORTEST:
135       GenerateShortestDigits(&numerator, &denominator,
136                              &delta_minus, &delta_plus,
137                              is_even, buffer, length);
138       break;
139     case BIGNUM_DTOA_FIXED:
140       BignumToFixed(requested_digits, decimal_point,
141                     &numerator, &denominator,
142                     buffer, length);
143       break;
144     case BIGNUM_DTOA_PRECISION:
145       GenerateCountedDigits(requested_digits, decimal_point,
146                             &numerator, &denominator,
147                             buffer, length);
148       break;
149     default:
150       UNREACHABLE();
151   }
152   buffer[*length] = '\0';
153 }
154 
155 
156 // The procedure starts generating digits from the left to the right and stops
157 // when the generated digits yield the shortest decimal representation of v. A
158 // decimal representation of v is a number lying closer to v than to any other
159 // double, so it converts to v when read.
160 //
161 // This is true if d, the decimal representation, is between m- and m+, the
162 // upper and lower boundaries. d must be strictly between them if !is_even.
163 //           m- := (numerator - delta_minus) / denominator
164 //           m+ := (numerator + delta_plus) / denominator
165 //
166 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
167 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
168 //   will be produced. This should be the standard precondition.
GenerateShortestDigits(Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus,bool is_even,Vector<char> buffer,int * length)169 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
170                                    Bignum* delta_minus, Bignum* delta_plus,
171                                    bool is_even,
172                                    Vector<char> buffer, int* length) {
173   // Small optimization: if delta_minus and delta_plus are the same just reuse
174   // one of the two bignums.
175   if (Bignum::Equal(*delta_minus, *delta_plus)) {
176     delta_plus = delta_minus;
177   }
178   *length = 0;
179   while (true) {
180     uint16_t digit;
181     digit = numerator->DivideModuloIntBignum(*denominator);
182     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
183     // digit = numerator / denominator (integer division).
184     // numerator = numerator % denominator.
185     buffer[(*length)++] = digit + '0';
186 
187     // Can we stop already?
188     // If the remainder of the division is less than the distance to the lower
189     // boundary we can stop. In this case we simply round down (discarding the
190     // remainder).
191     // Similarly we test if we can round up (using the upper boundary).
192     bool in_delta_room_minus;
193     bool in_delta_room_plus;
194     if (is_even) {
195       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
196     } else {
197       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
198     }
199     if (is_even) {
200       in_delta_room_plus =
201           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
202     } else {
203       in_delta_room_plus =
204           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
205     }
206     if (!in_delta_room_minus && !in_delta_room_plus) {
207       // Prepare for next iteration.
208       numerator->Times10();
209       delta_minus->Times10();
210       // We optimized delta_plus to be equal to delta_minus (if they share the
211       // same value). So don't multiply delta_plus if they point to the same
212       // object.
213       if (delta_minus != delta_plus) {
214         delta_plus->Times10();
215       }
216     } else if (in_delta_room_minus && in_delta_room_plus) {
217       // Let's see if 2*numerator < denominator.
218       // If yes, then the next digit would be < 5 and we can round down.
219       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
220       if (compare < 0) {
221         // Remaining digits are less than .5. -> Round down (== do nothing).
222       } else if (compare > 0) {
223         // Remaining digits are more than .5 of denominator. -> Round up.
224         // Note that the last digit could not be a '9' as otherwise the whole
225         // loop would have stopped earlier.
226         // We still have an assert here in case the preconditions were not
227         // satisfied.
228         ASSERT(buffer[(*length) - 1] != '9');
229         buffer[(*length) - 1]++;
230       } else {
231         // Halfway case.
232         // TODO(floitsch): need a way to solve half-way cases.
233         //   For now let's round towards even (since this is what Gay seems to
234         //   do).
235 
236         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
237           // Round down => Do nothing.
238         } else {
239           ASSERT(buffer[(*length) - 1] != '9');
240           buffer[(*length) - 1]++;
241         }
242       }
243       return;
244     } else if (in_delta_room_minus) {
245       // Round down (== do nothing).
246       return;
247     } else {  // in_delta_room_plus
248       // Round up.
249       // Note again that the last digit could not be '9' since this would have
250       // stopped the loop earlier.
251       // We still have an ASSERT here, in case the preconditions were not
252       // satisfied.
253       ASSERT(buffer[(*length) -1] != '9');
254       buffer[(*length) - 1]++;
255       return;
256     }
257   }
258 }
259 
260 
261 // Let v = numerator / denominator < 10.
262 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
263 // from left to right. Once 'count' digits have been produced we decide wether
264 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
265 // as 9.999999 propagate a carry all the way, and change the
266 // exponent (decimal_point), when rounding upwards.
GenerateCountedDigits(int count,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)267 static void GenerateCountedDigits(int count, int* decimal_point,
268                                   Bignum* numerator, Bignum* denominator,
269                                   Vector<char>(buffer), int* length) {
270   ASSERT(count >= 0);
271   for (int i = 0; i < count - 1; ++i) {
272     uint16_t digit;
273     digit = numerator->DivideModuloIntBignum(*denominator);
274     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
275     // digit = numerator / denominator (integer division).
276     // numerator = numerator % denominator.
277     buffer[i] = digit + '0';
278     // Prepare for next iteration.
279     numerator->Times10();
280   }
281   // Generate the last digit.
282   uint16_t digit;
283   digit = numerator->DivideModuloIntBignum(*denominator);
284   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
285     digit++;
286   }
287   buffer[count - 1] = digit + '0';
288   // Correct bad digits (in case we had a sequence of '9's). Propagate the
289   // carry until we hat a non-'9' or til we reach the first digit.
290   for (int i = count - 1; i > 0; --i) {
291     if (buffer[i] != '0' + 10) break;
292     buffer[i] = '0';
293     buffer[i - 1]++;
294   }
295   if (buffer[0] == '0' + 10) {
296     // Propagate a carry past the top place.
297     buffer[0] = '1';
298     (*decimal_point)++;
299   }
300   *length = count;
301 }
302 
303 
304 // Generates 'requested_digits' after the decimal point. It might omit
305 // trailing '0's. If the input number is too small then no digits at all are
306 // generated (ex.: 2 fixed digits for 0.00001).
307 //
308 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
BignumToFixed(int requested_digits,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)309 static void BignumToFixed(int requested_digits, int* decimal_point,
310                           Bignum* numerator, Bignum* denominator,
311                           Vector<char>(buffer), int* length) {
312   // Note that we have to look at more than just the requested_digits, since
313   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
314   // Even though the power of v equals 0 we can't just stop here.
315   if (-(*decimal_point) > requested_digits) {
316     // The number is definitively too small.
317     // Ex: 0.001 with requested_digits == 1.
318     // Set decimal-point to -requested_digits. This is what Gay does.
319     // Note that it should not have any effect anyways since the string is
320     // empty.
321     *decimal_point = -requested_digits;
322     *length = 0;
323     return;
324   } else if (-(*decimal_point) == requested_digits) {
325     // We only need to verify if the number rounds down or up.
326     // Ex: 0.04 and 0.06 with requested_digits == 1.
327     ASSERT(*decimal_point == -requested_digits);
328     // Initially the fraction lies in range (1, 10]. Multiply the denominator
329     // by 10 so that we can compare more easily.
330     denominator->Times10();
331     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
332       // If the fraction is >= 0.5 then we have to include the rounded
333       // digit.
334       buffer[0] = '1';
335       *length = 1;
336       (*decimal_point)++;
337     } else {
338       // Note that we caught most of similar cases earlier.
339       *length = 0;
340     }
341     return;
342   } else {
343     // The requested digits correspond to the digits after the point.
344     // The variable 'needed_digits' includes the digits before the point.
345     int needed_digits = (*decimal_point) + requested_digits;
346     GenerateCountedDigits(needed_digits, decimal_point,
347                           numerator, denominator,
348                           buffer, length);
349   }
350 }
351 
352 
353 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
354 // v = f * 2^exponent and 2^52 <= f < 2^53.
355 // v is hence a normalized double with the given exponent. The output is an
356 // approximation for the exponent of the decimal approimation .digits * 10^k.
357 //
358 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
359 // Note: this property holds for v's upper boundary m+ too.
360 //    10^k <= m+ < 10^k+1.
361 //   (see explanation below).
362 //
363 // Examples:
364 //  EstimatePower(0)   => 16
365 //  EstimatePower(-52) => 0
366 //
367 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
EstimatePower(int exponent)368 static int EstimatePower(int exponent) {
369   // This function estimates log10 of v where v = f*2^e (with e == exponent).
370   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
371   // Note that f is bounded by its container size. Let p = 53 (the double's
372   // significand size). Then 2^(p-1) <= f < 2^p.
373   //
374   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
375   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
376   // The computed number undershoots by less than 0.631 (when we compute log3
377   // and not log10).
378   //
379   // Optimization: since we only need an approximated result this computation
380   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
381   // not really measurable, though.
382   //
383   // Since we want to avoid overshooting we decrement by 1e10 so that
384   // floating-point imprecisions don't affect us.
385   //
386   // Explanation for v's boundary m+: the computation takes advantage of
387   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
388   // (even for denormals where the delta can be much more important).
389 
390   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
391 
392   // For doubles len(f) == 53 (don't forget the hidden bit).
393   const int kSignificandSize = 53;
394   double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
395   return static_cast<int>(estimate);
396 }
397 
398 
399 // See comments for InitialScaledStartValues.
InitialScaledStartValuesPositiveExponent(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)400 static void InitialScaledStartValuesPositiveExponent(
401     double v, int estimated_power, bool need_boundary_deltas,
402     Bignum* numerator, Bignum* denominator,
403     Bignum* delta_minus, Bignum* delta_plus) {
404   // A positive exponent implies a positive power.
405   ASSERT(estimated_power >= 0);
406   // Since the estimated_power is positive we simply multiply the denominator
407   // by 10^estimated_power.
408 
409   // numerator = v.
410   numerator->AssignUInt64(Double(v).Significand());
411   numerator->ShiftLeft(Double(v).Exponent());
412   // denominator = 10^estimated_power.
413   denominator->AssignPowerUInt16(10, estimated_power);
414 
415   if (need_boundary_deltas) {
416     // Introduce a common denominator so that the deltas to the boundaries are
417     // integers.
418     denominator->ShiftLeft(1);
419     numerator->ShiftLeft(1);
420     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
421     // denominator (of 2) delta_plus equals 2^e.
422     delta_plus->AssignUInt16(1);
423     delta_plus->ShiftLeft(Double(v).Exponent());
424     // Same for delta_minus (with adjustments below if f == 2^p-1).
425     delta_minus->AssignUInt16(1);
426     delta_minus->ShiftLeft(Double(v).Exponent());
427 
428     // If the significand (without the hidden bit) is 0, then the lower
429     // boundary is closer than just half a ulp (unit in the last place).
430     // There is only one exception: if the next lower number is a denormal then
431     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
432     // have to test it in the other function where exponent < 0).
433     uint64_t v_bits = Double(v).AsUint64();
434     if ((v_bits & Double::kSignificandMask) == 0) {
435       // The lower boundary is closer at half the distance of "normal" numbers.
436       // Increase the common denominator and adapt all but the delta_minus.
437       denominator->ShiftLeft(1);  // *2
438       numerator->ShiftLeft(1);    // *2
439       delta_plus->ShiftLeft(1);   // *2
440     }
441   }
442 }
443 
444 
445 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentPositivePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)446 static void InitialScaledStartValuesNegativeExponentPositivePower(
447     double v, int estimated_power, bool need_boundary_deltas,
448     Bignum* numerator, Bignum* denominator,
449     Bignum* delta_minus, Bignum* delta_plus) {
450   uint64_t significand = Double(v).Significand();
451   int exponent = Double(v).Exponent();
452   // v = f * 2^e with e < 0, and with estimated_power >= 0.
453   // This means that e is close to 0 (have a look at how estimated_power is
454   // computed).
455 
456   // numerator = significand
457   //  since v = significand * 2^exponent this is equivalent to
458   //  numerator = v * / 2^-exponent
459   numerator->AssignUInt64(significand);
460   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
461   denominator->AssignPowerUInt16(10, estimated_power);
462   denominator->ShiftLeft(-exponent);
463 
464   if (need_boundary_deltas) {
465     // Introduce a common denominator so that the deltas to the boundaries are
466     // integers.
467     denominator->ShiftLeft(1);
468     numerator->ShiftLeft(1);
469     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
470     // denominator (of 2) delta_plus equals 2^e.
471     // Given that the denominator already includes v's exponent the distance
472     // to the boundaries is simply 1.
473     delta_plus->AssignUInt16(1);
474     // Same for delta_minus (with adjustments below if f == 2^p-1).
475     delta_minus->AssignUInt16(1);
476 
477     // If the significand (without the hidden bit) is 0, then the lower
478     // boundary is closer than just one ulp (unit in the last place).
479     // There is only one exception: if the next lower number is a denormal
480     // then the distance is 1 ulp. Since the exponent is close to zero
481     // (otherwise estimated_power would have been negative) this cannot happen
482     // here either.
483     uint64_t v_bits = Double(v).AsUint64();
484     if ((v_bits & Double::kSignificandMask) == 0) {
485       // The lower boundary is closer at half the distance of "normal" numbers.
486       // Increase the denominator and adapt all but the delta_minus.
487       denominator->ShiftLeft(1);  // *2
488       numerator->ShiftLeft(1);    // *2
489       delta_plus->ShiftLeft(1);   // *2
490     }
491   }
492 }
493 
494 
495 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentNegativePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)496 static void InitialScaledStartValuesNegativeExponentNegativePower(
497     double v, int estimated_power, bool need_boundary_deltas,
498     Bignum* numerator, Bignum* denominator,
499     Bignum* delta_minus, Bignum* delta_plus) {
500   const uint64_t kMinimalNormalizedExponent =
501       V8_2PART_UINT64_C(0x00100000, 00000000);
502   uint64_t significand = Double(v).Significand();
503   int exponent = Double(v).Exponent();
504   // Instead of multiplying the denominator with 10^estimated_power we
505   // multiply all values (numerator and deltas) by 10^-estimated_power.
506 
507   // Use numerator as temporary container for power_ten.
508   Bignum* power_ten = numerator;
509   power_ten->AssignPowerUInt16(10, -estimated_power);
510 
511   if (need_boundary_deltas) {
512     // Since power_ten == numerator we must make a copy of 10^estimated_power
513     // before we complete the computation of the numerator.
514     // delta_plus = delta_minus = 10^estimated_power
515     delta_plus->AssignBignum(*power_ten);
516     delta_minus->AssignBignum(*power_ten);
517   }
518 
519   // numerator = significand * 2 * 10^-estimated_power
520   //  since v = significand * 2^exponent this is equivalent to
521   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
522   // Remember: numerator has been abused as power_ten. So no need to assign it
523   //  to itself.
524   ASSERT(numerator == power_ten);
525   numerator->MultiplyByUInt64(significand);
526 
527   // denominator = 2 * 2^-exponent with exponent < 0.
528   denominator->AssignUInt16(1);
529   denominator->ShiftLeft(-exponent);
530 
531   if (need_boundary_deltas) {
532     // Introduce a common denominator so that the deltas to the boundaries are
533     // integers.
534     numerator->ShiftLeft(1);
535     denominator->ShiftLeft(1);
536     // With this shift the boundaries have their correct value, since
537     // delta_plus = 10^-estimated_power, and
538     // delta_minus = 10^-estimated_power.
539     // These assignments have been done earlier.
540 
541     // The special case where the lower boundary is twice as close.
542     // This time we have to look out for the exception too.
543     uint64_t v_bits = Double(v).AsUint64();
544     if ((v_bits & Double::kSignificandMask) == 0 &&
545         // The only exception where a significand == 0 has its boundaries at
546         // "normal" distances:
547         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
548       numerator->ShiftLeft(1);    // *2
549       denominator->ShiftLeft(1);  // *2
550       delta_plus->ShiftLeft(1);   // *2
551     }
552   }
553 }
554 
555 
556 // Let v = significand * 2^exponent.
557 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
558 // and denominator. The functions GenerateShortestDigits and
559 // GenerateCountedDigits will then convert this ratio to its decimal
560 // representation d, with the required accuracy.
561 // Then d * 10^estimated_power is the representation of v.
562 // (Note: the fraction and the estimated_power might get adjusted before
563 // generating the decimal representation.)
564 //
565 // The initial start values consist of:
566 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
567 //  - a scaled (common) denominator.
568 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
569 //  decimal converting back to v):
570 //  - v - m-: the distance to the lower boundary.
571 //  - m+ - v: the distance to the upper boundary.
572 //
573 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
574 //
575 // Let ep == estimated_power, then the returned values will satisfy:
576 //  v / 10^ep = numerator / denominator.
577 //  v's boundarys m- and m+:
578 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
579 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
580 //  Or in other words:
581 //    m- == v - delta_minus * 10^ep / denominator;
582 //    m+ == v + delta_plus * 10^ep / denominator;
583 //
584 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
585 //  or       10^k <= v < 10^(k+1)
586 //  we then have 0.1 <= numerator/denominator < 1
587 //           or    1 <= numerator/denominator < 10
588 //
589 // It is then easy to kickstart the digit-generation routine.
590 //
591 // The boundary-deltas are only filled if need_boundary_deltas is set.
InitialScaledStartValues(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)592 static void InitialScaledStartValues(double v,
593                                      int estimated_power,
594                                      bool need_boundary_deltas,
595                                      Bignum* numerator,
596                                      Bignum* denominator,
597                                      Bignum* delta_minus,
598                                      Bignum* delta_plus) {
599   if (Double(v).Exponent() >= 0) {
600     InitialScaledStartValuesPositiveExponent(
601         v, estimated_power, need_boundary_deltas,
602         numerator, denominator, delta_minus, delta_plus);
603   } else if (estimated_power >= 0) {
604     InitialScaledStartValuesNegativeExponentPositivePower(
605         v, estimated_power, need_boundary_deltas,
606         numerator, denominator, delta_minus, delta_plus);
607   } else {
608     InitialScaledStartValuesNegativeExponentNegativePower(
609         v, estimated_power, need_boundary_deltas,
610         numerator, denominator, delta_minus, delta_plus);
611   }
612 }
613 
614 
615 // This routine multiplies numerator/denominator so that its values lies in the
616 // range 1-10. That is after a call to this function we have:
617 //    1 <= (numerator + delta_plus) /denominator < 10.
618 // Let numerator the input before modification and numerator' the argument
619 // after modification, then the output-parameter decimal_point is such that
620 //  numerator / denominator * 10^estimated_power ==
621 //    numerator' / denominator' * 10^(decimal_point - 1)
622 // In some cases estimated_power was too low, and this is already the case. We
623 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
624 // estimated_power) but do not touch the numerator or denominator.
625 // Otherwise the routine multiplies the numerator and the deltas by 10.
FixupMultiply10(int estimated_power,bool is_even,int * decimal_point,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)626 static void FixupMultiply10(int estimated_power, bool is_even,
627                             int* decimal_point,
628                             Bignum* numerator, Bignum* denominator,
629                             Bignum* delta_minus, Bignum* delta_plus) {
630   bool in_range;
631   if (is_even) {
632     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
633     // are rounded to the closest floating-point number with even significand.
634     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
635   } else {
636     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
637   }
638   if (in_range) {
639     // Since numerator + delta_plus >= denominator we already have
640     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
641     *decimal_point = estimated_power + 1;
642   } else {
643     *decimal_point = estimated_power;
644     numerator->Times10();
645     if (Bignum::Equal(*delta_minus, *delta_plus)) {
646       delta_minus->Times10();
647       delta_plus->AssignBignum(*delta_minus);
648     } else {
649       delta_minus->Times10();
650       delta_plus->Times10();
651     }
652   }
653 }
654 
655 } }  // namespace v8::internal
656