• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <stdarg.h>
29 #include <limits.h>
30 
31 #include "v8.h"
32 
33 #include "strtod.h"
34 #include "bignum.h"
35 #include "cached-powers.h"
36 #include "double.h"
37 
38 namespace v8 {
39 namespace internal {
40 
41 // 2^53 = 9007199254740992.
42 // Any integer with at most 15 decimal digits will hence fit into a double
43 // (which has a 53bit significand) without loss of precision.
44 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
45 // 2^64 = 18446744073709551616 > 10^19
46 static const int kMaxUint64DecimalDigits = 19;
47 
48 // Max double: 1.7976931348623157 x 10^308
49 // Min non-zero double: 4.9406564584124654 x 10^-324
50 // Any x >= 10^309 is interpreted as +infinity.
51 // Any x <= 10^-324 is interpreted as 0.
52 // Note that 2.5e-324 (despite being smaller than the min double) will be read
53 // as non-zero (equal to the min non-zero double).
54 static const int kMaxDecimalPower = 309;
55 static const int kMinDecimalPower = -324;
56 
57 // 2^64 = 18446744073709551616
58 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
59 
60 
61 static const double exact_powers_of_ten[] = {
62   1.0,  // 10^0
63   10.0,
64   100.0,
65   1000.0,
66   10000.0,
67   100000.0,
68   1000000.0,
69   10000000.0,
70   100000000.0,
71   1000000000.0,
72   10000000000.0,  // 10^10
73   100000000000.0,
74   1000000000000.0,
75   10000000000000.0,
76   100000000000000.0,
77   1000000000000000.0,
78   10000000000000000.0,
79   100000000000000000.0,
80   1000000000000000000.0,
81   10000000000000000000.0,
82   100000000000000000000.0,  // 10^20
83   1000000000000000000000.0,
84   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
85   10000000000000000000000.0
86 };
87 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
88 
89 // Maximum number of significant digits in the decimal representation.
90 // In fact the value is 772 (see conversions.cc), but to give us some margin
91 // we round up to 780.
92 static const int kMaxSignificantDecimalDigits = 780;
93 
TrimLeadingZeros(Vector<const char> buffer)94 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
95   for (int i = 0; i < buffer.length(); i++) {
96     if (buffer[i] != '0') {
97       return buffer.SubVector(i, buffer.length());
98     }
99   }
100   return Vector<const char>(buffer.start(), 0);
101 }
102 
103 
TrimTrailingZeros(Vector<const char> buffer)104 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
105   for (int i = buffer.length() - 1; i >= 0; --i) {
106     if (buffer[i] != '0') {
107       return buffer.SubVector(0, i + 1);
108     }
109   }
110   return Vector<const char>(buffer.start(), 0);
111 }
112 
113 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)114 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
115                                        int exponent,
116                                        char* significant_buffer,
117                                        int* significant_exponent) {
118   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
119     significant_buffer[i] = buffer[i];
120   }
121   // The input buffer has been trimmed. Therefore the last digit must be
122   // different from '0'.
123   ASSERT(buffer[buffer.length() - 1] != '0');
124   // Set the last digit to be non-zero. This is sufficient to guarantee
125   // correct rounding.
126   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
127   *significant_exponent =
128       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
129 }
130 
131 // Reads digits from the buffer and converts them to a uint64.
132 // Reads in as many digits as fit into a uint64.
133 // When the string starts with "1844674407370955161" no further digit is read.
134 // Since 2^64 = 18446744073709551616 it would still be possible read another
135 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)136 static uint64_t ReadUint64(Vector<const char> buffer,
137                            int* number_of_read_digits) {
138   uint64_t result = 0;
139   int i = 0;
140   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
141     int digit = buffer[i++] - '0';
142     ASSERT(0 <= digit && digit <= 9);
143     result = 10 * result + digit;
144   }
145   *number_of_read_digits = i;
146   return result;
147 }
148 
149 
150 // Reads a DiyFp from the buffer.
151 // The returned DiyFp is not necessarily normalized.
152 // If remaining_decimals is zero then the returned DiyFp is accurate.
153 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)154 static void ReadDiyFp(Vector<const char> buffer,
155                       DiyFp* result,
156                       int* remaining_decimals) {
157   int read_digits;
158   uint64_t significand = ReadUint64(buffer, &read_digits);
159   if (buffer.length() == read_digits) {
160     *result = DiyFp(significand, 0);
161     *remaining_decimals = 0;
162   } else {
163     // Round the significand.
164     if (buffer[read_digits] >= '5') {
165       significand++;
166     }
167     // Compute the binary exponent.
168     int exponent = 0;
169     *result = DiyFp(significand, exponent);
170     *remaining_decimals = buffer.length() - read_digits;
171   }
172 }
173 
174 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)175 static bool DoubleStrtod(Vector<const char> trimmed,
176                          int exponent,
177                          double* result) {
178 #if (defined(V8_TARGET_ARCH_IA32) || defined(USE_SIMULATOR)) && !defined(WIN32)
179   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
180   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
181   // result is not accurate.
182   // We know that Windows32 uses 64 bits and is therefore accurate.
183   // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
184   // the same problem.
185   return false;
186 #endif
187   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
188     int read_digits;
189     // The trimmed input fits into a double.
190     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
191     // can compute the result-double simply by multiplying (resp. dividing) the
192     // two numbers.
193     // This is possible because IEEE guarantees that floating-point operations
194     // return the best possible approximation.
195     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
196       // 10^-exponent fits into a double.
197       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
198       ASSERT(read_digits == trimmed.length());
199       *result /= exact_powers_of_ten[-exponent];
200       return true;
201     }
202     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
203       // 10^exponent fits into a double.
204       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
205       ASSERT(read_digits == trimmed.length());
206       *result *= exact_powers_of_ten[exponent];
207       return true;
208     }
209     int remaining_digits =
210         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
211     if ((0 <= exponent) &&
212         (exponent - remaining_digits < kExactPowersOfTenSize)) {
213       // The trimmed string was short and we can multiply it with
214       // 10^remaining_digits. As a result the remaining exponent now fits
215       // into a double too.
216       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
217       ASSERT(read_digits == trimmed.length());
218       *result *= exact_powers_of_ten[remaining_digits];
219       *result *= exact_powers_of_ten[exponent - remaining_digits];
220       return true;
221     }
222   }
223   return false;
224 }
225 
226 
227 // Returns 10^exponent as an exact DiyFp.
228 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)229 static DiyFp AdjustmentPowerOfTen(int exponent) {
230   ASSERT(0 < exponent);
231   ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
232   // Simply hardcode the remaining powers for the given decimal exponent
233   // distance.
234   ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
235   switch (exponent) {
236     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
237     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
238     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
239     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
240     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
241     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
242     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
243     default:
244       UNREACHABLE();
245       return DiyFp(0, 0);
246   }
247 }
248 
249 
250 // If the function returns true then the result is the correct double.
251 // Otherwise it is either the correct double or the double that is just below
252 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)253 static bool DiyFpStrtod(Vector<const char> buffer,
254                         int exponent,
255                         double* result) {
256   DiyFp input;
257   int remaining_decimals;
258   ReadDiyFp(buffer, &input, &remaining_decimals);
259   // Since we may have dropped some digits the input is not accurate.
260   // If remaining_decimals is different than 0 than the error is at most
261   // .5 ulp (unit in the last place).
262   // We don't want to deal with fractions and therefore keep a common
263   // denominator.
264   const int kDenominatorLog = 3;
265   const int kDenominator = 1 << kDenominatorLog;
266   // Move the remaining decimals into the exponent.
267   exponent += remaining_decimals;
268   int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
269 
270   int old_e = input.e();
271   input.Normalize();
272   error <<= old_e - input.e();
273 
274   ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
275   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
276     *result = 0.0;
277     return true;
278   }
279   DiyFp cached_power;
280   int cached_decimal_exponent;
281   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
282                                                      &cached_power,
283                                                      &cached_decimal_exponent);
284 
285   if (cached_decimal_exponent != exponent) {
286     int adjustment_exponent = exponent - cached_decimal_exponent;
287     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
288     input.Multiply(adjustment_power);
289     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
290       // The product of input with the adjustment power fits into a 64 bit
291       // integer.
292       ASSERT(DiyFp::kSignificandSize == 64);
293     } else {
294       // The adjustment power is exact. There is hence only an error of 0.5.
295       error += kDenominator / 2;
296     }
297   }
298 
299   input.Multiply(cached_power);
300   // The error introduced by a multiplication of a*b equals
301   //   error_a + error_b + error_a*error_b/2^64 + 0.5
302   // Substituting a with 'input' and b with 'cached_power' we have
303   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
304   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
305   int error_b = kDenominator / 2;
306   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
307   int fixed_error = kDenominator / 2;
308   error += error_b + error_ab + fixed_error;
309 
310   old_e = input.e();
311   input.Normalize();
312   error <<= old_e - input.e();
313 
314   // See if the double's significand changes if we add/subtract the error.
315   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
316   int effective_significand_size =
317       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
318   int precision_digits_count =
319       DiyFp::kSignificandSize - effective_significand_size;
320   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
321     // This can only happen for very small denormals. In this case the
322     // half-way multiplied by the denominator exceeds the range of an uint64.
323     // Simply shift everything to the right.
324     int shift_amount = (precision_digits_count + kDenominatorLog) -
325         DiyFp::kSignificandSize + 1;
326     input.set_f(input.f() >> shift_amount);
327     input.set_e(input.e() + shift_amount);
328     // We add 1 for the lost precision of error, and kDenominator for
329     // the lost precision of input.f().
330     error = (error >> shift_amount) + 1 + kDenominator;
331     precision_digits_count -= shift_amount;
332   }
333   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
334   ASSERT(DiyFp::kSignificandSize == 64);
335   ASSERT(precision_digits_count < 64);
336   uint64_t one64 = 1;
337   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
338   uint64_t precision_bits = input.f() & precision_bits_mask;
339   uint64_t half_way = one64 << (precision_digits_count - 1);
340   precision_bits *= kDenominator;
341   half_way *= kDenominator;
342   DiyFp rounded_input(input.f() >> precision_digits_count,
343                       input.e() + precision_digits_count);
344   if (precision_bits >= half_way + error) {
345     rounded_input.set_f(rounded_input.f() + 1);
346   }
347   // If the last_bits are too close to the half-way case than we are too
348   // inaccurate and round down. In this case we return false so that we can
349   // fall back to a more precise algorithm.
350 
351   *result = Double(rounded_input).value();
352   if (half_way - error < precision_bits && precision_bits < half_way + error) {
353     // Too imprecise. The caller will have to fall back to a slower version.
354     // However the returned number is guaranteed to be either the correct
355     // double, or the next-lower double.
356     return false;
357   } else {
358     return true;
359   }
360 }
361 
362 
363 // Returns the correct double for the buffer*10^exponent.
364 // The variable guess should be a close guess that is either the correct double
365 // or its lower neighbor (the nearest double less than the correct one).
366 // Preconditions:
367 //   buffer.length() + exponent <= kMaxDecimalPower + 1
368 //   buffer.length() + exponent > kMinDecimalPower
369 //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)370 static double BignumStrtod(Vector<const char> buffer,
371                            int exponent,
372                            double guess) {
373   if (guess == V8_INFINITY) {
374     return guess;
375   }
376 
377   DiyFp upper_boundary = Double(guess).UpperBoundary();
378 
379   ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
380   ASSERT(buffer.length() + exponent > kMinDecimalPower);
381   ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
382   // Make sure that the Bignum will be able to hold all our numbers.
383   // Our Bignum implementation has a separate field for exponents. Shifts will
384   // consume at most one bigit (< 64 bits).
385   // ln(10) == 3.3219...
386   ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
387   Bignum input;
388   Bignum boundary;
389   input.AssignDecimalString(buffer);
390   boundary.AssignUInt64(upper_boundary.f());
391   if (exponent >= 0) {
392     input.MultiplyByPowerOfTen(exponent);
393   } else {
394     boundary.MultiplyByPowerOfTen(-exponent);
395   }
396   if (upper_boundary.e() > 0) {
397     boundary.ShiftLeft(upper_boundary.e());
398   } else {
399     input.ShiftLeft(-upper_boundary.e());
400   }
401   int comparison = Bignum::Compare(input, boundary);
402   if (comparison < 0) {
403     return guess;
404   } else if (comparison > 0) {
405     return Double(guess).NextDouble();
406   } else if ((Double(guess).Significand() & 1) == 0) {
407     // Round towards even.
408     return guess;
409   } else {
410     return Double(guess).NextDouble();
411   }
412 }
413 
414 
Strtod(Vector<const char> buffer,int exponent)415 double Strtod(Vector<const char> buffer, int exponent) {
416   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
417   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
418   exponent += left_trimmed.length() - trimmed.length();
419   if (trimmed.length() == 0) return 0.0;
420   if (trimmed.length() > kMaxSignificantDecimalDigits) {
421     char significant_buffer[kMaxSignificantDecimalDigits];
422     int significant_exponent;
423     TrimToMaxSignificantDigits(trimmed, exponent,
424                                significant_buffer, &significant_exponent);
425     return Strtod(Vector<const char>(significant_buffer,
426                                      kMaxSignificantDecimalDigits),
427                   significant_exponent);
428   }
429   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
430   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
431 
432   double guess;
433   if (DoubleStrtod(trimmed, exponent, &guess) ||
434       DiyFpStrtod(trimmed, exponent, &guess)) {
435     return guess;
436   }
437   return BignumStrtod(trimmed, exponent, guess);
438 }
439 
440 } }  // namespace v8::internal
441